
Reduction of Logic to Arithmetic 
Ranganath G Kulkarni 

E mail: kulkarni137@gmail.com 
Address: R G Kulkarni 

C/o G V Kulkarni 
Jambukeshwar Street 

Jamkhandi, INDIA 
PIN: 587301 

 
 

Abstract:  It is possible to make decisions mathematically of first order predicate calculus. A new 
mathematical formula is found for the solution of decision problem. We can reduce a logical algorithm into 
simple algorithm without logical trees. 
 
I 
Introduction:  
 
For n number of inputs, is there any mathematical formula that answers yes or no ?[1][2][3] Now it is 
possible, a mathematical formula[4] is found that can be used to reduce the logical algorithm into simple 
algorithm without logical trees. This converts logical operation to arithmetic operation. It is a solution for 
decision problem of first order predicate calculus or first order logic. Therefore in a computer 
programming we can replace logical test containing thousands of if-else by single mathematical equation 
using the proposed formula. We can convert decision algorithm into algebraic manipulation or math 
equation. This changes the design of algorithm and also programming.   
 

II  

Theory: 

Consider the function   Y=[[(|x|+|c|+x)/(|x|+|c|+c)]. (1/e)] 

Where  -infinity<c<infinity          

Now,  Y1=|Y/logY|   and  Y2=|Y1/logY1| 

For   n number of terms   Yn=|Yn-1/logYn-1| 

Taking limit as n tends to infinity     yields,   For x>c  then Yn=e   and Z=f 

For   x=c  then Yn=1/e  and  Z=g,    For  x<c   then  Yn=0 and Z=h  

This result has no proof, but we can easily verify it. We call Yn as fundamental logic function.  We 
consider Yn as standard math library function. 

Where the function Z is given by    
 
Z=f[(Yn-1/e)Yn/(e-1/e)e]+g[(Yn-e)Yn/(1/e-e)(1/e)]+h[(Yn-e)(Yn-1/e)] 

Here f, g and h are functions of x.  In logical language, this formula is a solution for decision problem[5][6] 
of  first order logic.This formula can be used to replace decision algorithm by simple algorithm without 
decision trees.   



If  a program contains  many logical tests then we can convert into single math equation by replacing f, 

g, h by Z1, Z2, Z3 respectively. Where Z1, Z2 and Z3 are of the same form as function Z. This can be 
explained clearly as follows. 

 For the function Z the independent variable is x and is compared with constant c. Here the 
corresponding logic function is Yn depends on x and c. The mathematical formula Z is expressed 
as f, g and h with logic function Yn. Where f, g and h are functions of x. Similarly for the 
function Z1, Z2, Z3 the independent variables are x1, x2, x3 and constants are c1, c2, c3 
respectively. The corresponding logic functions are Yi, Yj, Yk respectively. Now the function Z 
can expressed as 

 Z=Z1[(Yn-1/e)Yn/(e-1/e)e]+Z2[(Yn-e)Yn/(1/e-e)(1/e)]+Z3[(Yn-e)(Yn-1/e)] 

 
   Here   Z1=f1[(Yi-1/e)Yi/(e-1/e)e]+g1[(Yi-e)Yi/(1/e-e)(1/e)]+h1[(Yi-e)(Yi-1/e)] 

 
 where f1, g1 and h1 are functions of x1. The logic function Yi depends on x1 and c1 
respectively.  Similarly the formula 

 
Z2=f2[(Yj-1/e)Yj/(e-1/e)e]+g2[(Yj-e)Yj/(1/e-e)(1/e)]+h2[(Yj-e)(Yj-1/e)] 

  
   and Z3=f3[(Yk-1/e)Yk/(e-1/e)e]+g3[(Yk-e)Yk/(1/e-e)(1/e)]+h3[(Yk-e)(Yk-1/e)] 

 
A program containing many logical test can be illustrated with the example as follows. In the 
above formula Z if x>c is true then Z becomes Z=Z1 Here the formula Z1 has logical test, the 
independent variable x1 is compared with constant c1. The final result will be Z=f1 or Z=g1 or 
Z=h1 depending upon the value of x1 and c1. Therefore a program containing many logical test can 
be replaced by single mathematical equation. Therefore by using the proposed formula and 
optimization techniques we can make elegant programming. 

 

 
III 

Discussion: 

 Here, by using the function Yn it is possible to  express non-closed form expression into closed form 
expression. It is a solution for decision problem of first order predicate calculus. This formula can be used 
for reduction of logical algorithm into simple algorithm without logical trees. This reduces logical operation 
to arithmetic operation. Hence the reduction of logic to arithmetic. By using the proposed formula and 
optimization techniques we can make elegant programming. It changes the style of designing algorithm 
and also we can make efficient programming.  



IV 

 Conclusion: 

I have found the decision fragment for first order predicate calculus.  In a computer programming we can 
replace logical test by single mathematical equation. Therefore we can make elegant programming. 

V  

Concept implementation: 

We can replace a logical test containing thousands of if else by single mathematical equation. In 
otherwords we can convert a logical algorithm into algebraic manipulation or math equation. This 
converts logical operation to arithmetic operation. Here the arithmetic operation is also done by logic 
circuits but the point is that by using  the proposed formula and optimization techniques we can make 
elegant programming. A complex program canbe executable in an ordinary processor. It saves memory 
time and energy. We can develop software that works on ordinary processor . Therefore it can be useful 
for mobile tablet and all computers. 

In C programming  we can illustrate with example, how logical test can be replaced by a single 
mathematical equation. Consider  a C program, where f, g and h are functions of x. We can write as 

   main() 

{ 

  float x, c, f, g, h, Z1, Z2,  Z3; 

  printf(“Enter numbers x and c “); 

  scanf(“%f%f”, &x, &c); 

  if(x>c) 

  Z1=f; 

   printf(“Z1=%f”, Z1); 

   else if (x==c) 

    Z2=g; 

     printf(“Z2=%f”, Z2); 

     else 

     Z3=h; 

     printf(“Z3=%f, Z3); 

} 



Now by using the mathematical formula we can replace logical test by a single mathematical equation. 
The function Yn has only three values e, 1/e and 0 for values x>c, x=c and x<c respectively. This function 
is responsible for reduction of logic  to arithmetic. We call this function as logic function.  For simplicity 
of the program, we consider the logic function  Yn as standard math library function. 

     main() 

  {   

     float  x, c, f, g, h, Z; 

       printf(“Enter numbers x and c “); 

         scanf(“%f%f”, &x, &c); 

        Z=f[(Yn-1/e)Yn/(e-1/e)e]+g[(Yn-e)Yn/(1/e-e)(1/e)]+h[(Yn-e)(Yn-1/e)];
 

          printf(“Z=%f”, Z); 

  } 
  In this program there is no logical test. The fundamental  logic  function Yn converts  logical operation 
to algebraic manipulation or math equation.   
 
i) Techniques of programming using logic functions: 
 
Now we see in practice how programming can be made easily. Consider the reduction formula  
  

                  Z=f[(Yn-1/e)Yn/(e-1/e)e]+g[(Yn-e)Yn/(1/e-e)(1/e)]+h[(Yn-e)(Yn-1/e)] 

The fundamental  logic function Yn(x, d) depends on  variable x and constant d. Here , we have denoted 
constant as d,  because we are taking c for the next section.  We can express the reduction formula as  

                                           Z=af+bg+ch 

Where    a=[(Yn-1/e)Yn/(e-1/e)e] ,       b= [(Yn-e)Yn/(1/e-e)(1/e)]   and     c=[(Yn-e)(Yn-1/e)] 

Here  a, b and c are functions of  the  fundamental  logic function  Yn(x,d). Therefore a, b and c are also 
logic functions. They have only two values either 0 or 1. We consider  logic functions  a, b and c as 
standard math library functions. By using logic functions  a, b and c  we can replace logical trees  by a 
single mathematical equation.   

     if  x>d    then     a=1,   b=0,  c=0  and Z  becomes   Z=f 

     if    x=d  then   b=1,  c=0,   a=0  and Z becomes  Z=g 

     if    x<d   then    c=1,   a=0,   b=0  and    Z becomes  Z=h 

The  logical test  has  three possibilities, greater than, equal to and less than.  Here the term a indicates 
greater than , the term b indicates equal to and the term c indicates less than. 



The  programming  can  be made easily is illustrated with two examples.  

1)Consider a C program, p, q, r,  s and t are functions of x.  d1, d2, d3 are constants,  where  d1>d2>d3 

In  this program we have not mentioned  d1, d2,  d3 in the declaration,  because they are constant 
numbers. 

          main()                                  

  { 

     float x, p, q, r, s, t, Z1, Z1’, Z2, Z3, Z4; 

     printf(“Enter the number x”); 

     scanf(“%f”,  &x); 

     if(x>d1) 

      Z1=p; 

      printf(“Z1=%f”,  Z1);       

     else if (x==d1) 

       Z1’=q; 

      printf(“Z1’=%f”,  Z1’); 

      else if (x>d2) 

      Z2=r; 

      printf(“Z2=%f”, Z2);         

      else if (x>d3) 

       Z3=s; 

       printf(“Z3=%f”, Z3); 

       else 

         Z4=t; 

         printf(“Z4=%f”, Z4); 

          } 

We can make programming easily  by using logic functions a, b and c, which have value either 0 or 1. In 
the above C program  we have first logical test if x>d1, the fundamental logic function for the variable x 
and constant d1 is Yi(x, d1).  The corresponding logic functions are a1, b1 and c1. Here if x>d1 then 
a1=1,  b1=0,  c1=0 else a1=0. In the second logical test  if x=d1 then b1=1, c1=0, a1=0 else b1=0. In the 
third logical test  if x>d2 the fundamental logic function for the variable x and constant d2 is Yj(x, d2). The 



corresponding logic functions are a2, b2 and c2. Here if x>d2 then a2=1, b2=0, c2=0 else a2=0 The fourth 
logical test is if x>d3,  the fundamental logic function for the variable x and constant d3 is Yk(x, d3). The 
corresponding logic functions are  a3, b3 and c3. Here if x>d3 then a3=1, b3=0, c3=0 else a3=0. 

We can replace the logical trees of the above C program by single mathematical equation and is given by  

              Z=(a1p+b1q)+c1[a2r+(b2+c2)(a3s+(b3+c3)t)] 

This equation looks complicated , but it is simple to formulate. Now, we see how the program can be 
expressed in a single math equation. We can express this formula as  

       Z =a1p+b1q+c1h 

Here h=a2r+(b2+c2)l,     where l=a3s+(b3+c3)t 

The equations Z, h and l are of the form of reduction formula  Z=af+bg+ch 

The reduction formula has three terms. Here the term a indicates greater than, the term b indicates equal 
to and the term c indicates less than. 

In the above C program , we have first logical test  if x>d1 is true then a1=1, b1=0, c1=0 therefore the first 
term is a1p. the second logical test is if x=d1 then b1=1, c1=0, a1=0. Therefore the second term is b1q.  If 
both test fails  we  have the third term c1h. Here, the function h contains logical test . If x>d2 is true then 
the first term is a2r If x>d2 is not true then there is logical test either x=d2  or x< d2. But there is no logical 
test for both. Therefore the second and third term is b2l and c2l respectively. The function l contains 
logical test , if x>d3 is true then the first term is a3s. If this test fails , then there is logical test  either x=d3 
or x<d3. But there is no logical test for both. Therefore the second and third term is b3t and c3t 
respectively. The function t does not contain logical test. Therefore the program finally terminates. 

Now,  we can write C program in a single mathematical statement by using logic functions (a1, b1, c1), 
(a2, b2, c2), (a3, b3, c3) 

          main() 

    { 

          float x, p, q, r, s, t, Z; 

           printf(“Enter the number x”); 

           scanf(“%f”, &x); 

           Z=(a1p+b1q)+c1[a2r+(b2+c2)(a3s+(b3+c3)t)]; 

           printf(“Z=%f”, Z);        

     } 

2)Consider another example that illustrates how to write a C program in a single mathematical statement 
containing AND and OR operation. 

Consider a C program , p, q, r, s are functions of  x. The variables are x, x1, x2, x3, x4 and d, d1, d2, d3, 
d4 are constants.  



In this program we have not mentioned d, d1, d2, d3, d4 in declaration , because they are constant 
numbers. 

            main() 

  { 

           float x, x1, x2, x3, x4, p, q, r, s, Z1, Z2, Z3, Z4; 

           printf(“Enter the numbers x, x1, x2, x3, x4”); 

           scanf(“%f%f%f%f%f”,   &x, &x1, &x2, &x3, &x4); 

          if (x>d && x1>d1) 

             Z1=p; 

            printf(“Z1=%f”,  Z1); 

          else if (x2>d2  || x3>d3) 

             Z2=q; 

             printf(“Z2=%f”, Z2);    

          else if (x4>d4) 

             Z3=r; 

             printf(“Z3=%f”, Z3);    

              else  

               Z4=s; 

              printf(“Z4=%f”, Z4)  ; 

               } 

Now, we see how to write the above C program using logic functions. The fundamental logic functions for 
logical tests x>d, x1>d1,  x2>d2, x3>d3 and x4>d4 are Yi(x, d), Yj(x1, d1), Yk(x2, d2), Yl(x3, d3) and  
Ym(x4, d4) respectively. The corresponding logic functions are (a, b, c), (a1, b1, c1), (a2, b2, c2), (a3, b3, 
c3), and (a4, b4, c4)  respectively.  

Consider the first logical test of the above C program which is if(x>d && x1>d1) Here, if both logical tests 
are true then the result is true . The comparison x>d indicates a and the x1>d1  indicates a1. Therefore 
the result which is true is given by aa1. This is the only term valid for AND operation. But the logical test 
has three possibilities greater than, equal to and less than. Therefore expanding a to  a+b+c  and  a1 to 
a1+b1+c1  Now aa1 becomes  

                (a+b+c)(a1+b1+c1)=aa1+a(b1+c1)+a1(b+c)+(b+c)(b1+c1) 

Here the only term aa1 is true if both logical tests are true. Therefore the remaining terms indicates false 
result  of  AND  operation. We can express for both true and false result of  AND operation as  



                             Z=aa1p+[a(b1+c1)+a1(b+c)+(b+c)(b1+c1)]h       ………………..1) 

                       Here the function h contains logical test  OR operation. The logical test  OR operation has 
if (x2>d2  || x3>d3) Here the comparison x2>d2  indicates a2 and the comparison x3>d3  indicates a3. In 
OR operation if either or both of the logical test is true then the  result is true. 

Assuming a2 is true, the second logical test of OR  operation has three possibilities a3 or b3 or c3. For 
this combination  the true result of  OR operation has terms a2(a3+b3+c3). Now, assuming a3 is true, the 
first logical test of OR  operation has three possibilities  a2 or b2 or c2. For this combination the true result 
of OR operation has terms  a3(a2+b2+c2). Therefore, the terms of OR operation for which the result is 
true is given by    

           a2(a3+b3+c3)+a3(a2+b2+c2) 

Here the term a2a3 is repeated twice . Therefore  we take only one term , this becomes 

  a2(a3+b3+c3)+a3(b2+c2) 

The all terms containing true and false result of OR operation is given by expanding  a2a3 to  

            (a2+b2+c2)(a3+b3+c3)=a2(a3+b3+c3)+a3(b2+c2)+(b2+c2)(b3+c3) 

Now, we can express the function h for both true and false result of OR operation as  

           h=[a2(a3+b3+c3)+a3(b2+c2)]q + (b2+c2)(b3+c3)l    ……………..2) 

Here the function l contains logical test if(x4>d4). The comparison x4>d4 indicates a4. If a4 is true then 
the result is given by a4r. If the test fails then the logical test has two possibilities  either b4 or c4. But 
there is no logical test for both. Therefore if (x4>d4) is not true then the result is given by (b4+c4)s. Now, 
we can express the function l for both true and false result of the logical test is given by  

                                l=a4r+(b4+c4)s          ……………..3) 

Here the function s  does not contain logical test . Therefore, the program finally terminates. Substituting 
the function l in the equation 2) and then substituting  the function h in equation 1) The single 
mathematical statement of the  above  C program is given by  

Z=aa1p+[a(b1+c1)+a1(b+c)+(b+c)(b1+c1)]{[a2(a3+b3+c3)+a3(b2+c2)]q+(b2+c2)(b3+c3)(a4r+(b4+c4)s)} 

The above C program written in a single mathematical equation is given by  

         main() 

  { 

        float x, x1, x2, x3, x4, p, q, r, s,  Z; 

        printf(“Enter the numbers x, x1, x2, x3, x4”); 

        scanf(“%f%f%f%f%f”,  &x, &x1, &x2, &x3, &x4); 

    
Z=aa1p+[a(b1+c1)+a1(b+c)+(b+c)(b1+c1)]{[a2(a3+b3+c3)+a3(b2+c2)]q+(b2+c2)(b3+c3)(a4r+(b4+c4)s)}; 

        printf(“Z=%f”, Z); 



  } 

ii)Program is readable : 

Consider the formula     Z=af+bg+ch 

The fundamental logic function Yn(x, d)  depends on the variable x and constant d. The logic functions 
are a, b and c, which have value either 0 or 1. Here the comparison x>d, x=d and  x<d indicates a, b and 
c respectively. Therefore a1 indicates either x1>d1 or  x>d1. Similarly c1 indicates either x1<d1 or x<d1 In 
otherwords  the term a indicates greater than, the term b indicates equal to and the term c indicates less 
than. We can say in mathematical language  that if a is true then Z=f. Here a is true means  the logical 
test  x>d is true. Therefore the value of a becomes a=1 and Z becomes  Z=f 

A logical test containing simple if-else or if-else with AND and OR operation can be readable, if we are 
familiar with how to write in a mathematical statement. For example, if we are not familiar with elementary 
formulas of calculus  then we are unable to perform differentiation and integration. Therefore we should 
be familiar with the mathematical statement of simple if-else or if-else with AND and OR operation etc. 

Now  the question arises about how to read the program containing thousands of if-else written in a single 
mathematical statement. This can be resolved. It is known that if the program is readable then we can 
debug. To make the program readable written in a single mathematical statement, we have to divide the 
single math equation. The procedure is that, the mathematical statement of first logical test of the 
program is written in first line. The mathematical statement of second logical test is written in second line 
and so on. This makes the program readable. It can be explained clearly with the second example of C 
program containing AND and OR operation. Here, we write the C program in a readable format. 

         main() 

{ 

         float x, x1, x2, x3, x4, p, q, r, s,Z; 

         printf(“Enter the numbers x, x1, x2, x3, x4”); 

        scanf(“%f%f%f%f%f”,  &x, &x1, &x2, &x3, &x4); 

        Z=aa1p+[a(b1+c1)+a1(b+c)+(b+c)(b1+c1)]* 

        * {[a2(a3+b3+c3)+a3(b2+c2)]q+(b2+c2)(b3+c3)* 

        *{(a4r+(b4+c4)s)}}; 

         printf(“Z=%f”, Z); 

} 

 

Here the * sign indicates multiplication and also it connects mathematical statement of next logical test.   
The mathematical statement of the first logical test is AND operation and it is written in first line. The 
mathematical statement of second logical test is OR operation and it is written in second line.  The 
mathematical statement of third logical test is simple if-else and it is written in third line. In this way we 
can express a program containing many logical tests in a readable format. Therefore we can debug the 
program.     



 But the expression for single mathematical statement written in a readable format is not valid according 
to the rules of C programming. Therefore we have to change the rules of C programming for readable 
format of single mathematical statement. 

References: 

 

[1] Turing, A.M. 1936.‘On Computable Numbers, with an Application to the Entscheidungsproblem’. 
Proceedings of the London Mathematical Society , series 2, 42 (1936-37), 230-265. 

[2] Church, A. "A Note on the Entscheidungsproblem." J. Symb. Logic 1 , 1936. 

[3] Gödel, K. (1931), ‘On Formally Undecidable Propositions of Principia Mathematica and Related 
Systems I’, Monatschefte für Mathematik und Physik 38, pp. 173–198  

[4] R G Kulkarni, Expression for the Mathematical Constant e, viXra:1109.0054 
(see, http://vixra.org/abs/1109.0054 ) 

[5] B.J. Copeland, The Essential Turing, Publisher Clarendon Press, 2004 

[6] Mathematical Problems. Lecture delivered before the International Congress of Mathematicians at 
Paris in 1900, English translation of Hilbert (1900) by Mary W. Newson, Bull. Amer. Math. Soc. 8 (1902), 
437–479 

 
 

 

 

 

 

 

 
 

 

 

 


