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Abstract

The puzzle associated with the cost of sex, an old problem of evolutionary biology, is discussed
here from the point of view of nonequilibrium statistical mechanics. The results suggest, in a simpli-
fied model, that the prevalence of sexual species in nature can be a natural and necessary consequence
of the discrete character of the nonlinear interactions between couples and their pathogens/parasites.
Mapped into a field theory, the stochastic processes performed by the species are described by contin-
uous fields in space and time. The way that the model’s parameters scale with subsequent iterations
of the renormalization group gives us information about the stationary emergent properties of the
complex interacting systems modeled. We see that the combination of one aspect of the Red Queen
theory with the stochastic processes theory, including spatiotemporal interactions, provides interest-
ing insights into this old Darwinian dilemma.

1 Introduction

Sex is an evolutionary puzzle. In several ways, sexual reproduction is less efficient when compared with
the asexual method. All offspring produced by asexual individuals will be able to reproduce, whereas
sexual beings need to spend energy on creating males and females that do not reproduce separately. Hence
the resources spent on producing sons are a cost of sexual reproduction and asexual species economize
on males. John Maynard Smith [1] summarized this argument as follows:

“Suppose a population consists of a mixture of sexual and parthenogenetic females, the
former producing equal numbers of male and (sexual) female offspring, and the latter only
parthenogenetic females like themselves. If the two kinds of female lay equal numbers of
eggs, and if survival probabilities are equal, then the parthenogenetic type will have a twofold
selective advantage, and will increase in frequency very rapidly. Sexual reproduction means
that a female wastes half her energy producing males.”

He also noted that a sexual individual uses only half of its genetic material on its descendents, while
an asexual individual uses all his sexless genes. That is, in the evolutionary race where passing on
genes to the next generation is one of the greatest goals, sexual organisms starts with a disadvantage
of almost 50%, which is known as the cost of meiosis. There is also the risk of infection by sexually
transmitted diseases. In addition to these disadvantages, and perhaps more crucial, we should mention
the cost of having to find a mate. If insects are excluded, approximately one-third of animal species
are hermaphrodites [2]. Hermaphroditism is even more widespread in plants. The difficulty of finding
mates is widely implicated in the evolution of hermaphroditism, so its widespread occurrence suggests
that sexual organisms incur significant costs to locate mates [3]. Sex, therefore, seems to be a luxury
that should not exist. Consequently, many works about its evolution look for it’s compensatory benefits.

Since sexual reproduction exists, biologists try to find out what great benefit it brings to living beings.
Maynard Smith argued that sex could only have evolved if this mysterious benefit at least outweighed the
great cost of meiosis. But what, after all, could this benefit be? To answer this question, an audacious
theory about the origin and perpetuation of sex was proposed in [4]. According to this work, the parasites
are everywhere and will always seek, by their nature, to explore their hosts. As the generation time of
parasites is many times smaller than that of hosts, and their evolution rates therefore many times higher,
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the only way out for the hosts is to produce offspring with greater genetic variability through sexual
reproduction. Therefore, competition with parasites that develop very fast genetically, favors sexual
reproduction, which enables a more efficient genetic evolution.

The world in which this model is inserted became known as the Red Queen’s world, a name given
in [5] in reference to a passage in the fable Alice in the mirrors [6]. In this passage, Alice flees the army
(of cards) of the Red Queen, but can not distance herself from her pursuers. The Red Queen then says:
“Now, here, you see, it takes all the running you can do, to keep in the same place”. Alice would be
caught only if she stopped running. Things have to change to remain the same.

According to [4], an arms race has been underway between hosts and parasites since life appeared on
Earth. The parasites are always breaking the defensive barriers imposed by the host’s genotype, while
the host, with the help of sex, continually creates new defenses. In the absence of sex, the hosts would
remain essentially the same, while the parasites would accumulate adaptations that would enable them
to break all the defensive systems of the former. Sooner or later, the hosts would be virtually devoured
from the inside out. To escape the parasite army besieging them, the only remaining option is to just
keep running. The co-evolutive cycle of parasites and hosts reflects this eternal pursuit.

The aim of this paper is to investigate the prevalence of sexual reproduction observed in nature
through simple models of reaction-diffusion inspired by the Red Queen theory, but not fully equivalent
to it. The role of the parasite may be replaced by any pathogen which diffuses through space and fatally
harms the species. There is also no need for any aspect related to genetics.

We take into account the discrete nature of the species interactions with itself and with its pathogens
/parasites. We know that if we want information about the emergent aggregate macroscopic behavior
of complex systems, we’ll need to consider the corpuscular character of interacting species [7]. We will
achieve this goal by using the dynamic renormalization group (DRG) theory to obtain the renormalization
group (RG) flow in the parameter space, considering the population dynamics in a critical situation, i.e.,
populations close to extinction. Starting from the microscopic formulation of the model described by
reactions, this RG flow will allow us to understand how the model parameters scale in space and time.
In turn, this information will be helpful in determining the final equilibrium state of the aggregates of
interacting species.

The sections are distributed as follows: Section (2) describes the models formulated and their treat-
ments in mean field theory. Section (3) discusses in general terms the mapping of stochastic processes in
field theories via the Doi-Peliti theory. The study of the Doi-Peliti mapping and the corresponding RG
flows applied to the models themselves are made in sections (4) and (5) respectively. Conclusions are
drawn in section (6) and acknowledgments in section (7).

2 Models

In this section we present the two models used. They are simplified models that attempt to capture
only the essential aspects of population dynamics. The first refers to the competition between an asexual
species and a pathogen that can harm it, eventually inducing death. The second is the analogous model
for the sexual species. The incorporation of the pathogen in interactions was inspired by the Red Queen
theory regarding the host’s parasites. In principle, however, any other death-inducing agent can be
imagined. The models are as follows:

2.1 Asexual species model

The model for asexual species is described by the following reactions:

A
λ
⇀ 2A A+B

µ
⇀ B (1)



3

The first reaction on the left describes the reproduction of species A which occurs at rate λ per time
unit. The second reaction describes the attack that species A suffers from its pathogen B. In this attack,
species A will always be annihilated at a rate of µ per time unit per population size unit. Note that in a
model that takes the spatial character of the interactions in a d dimensional lattice, pathogen/parasites
only diffuse. They are not created or annihilated. This captures their essence of being everywhere and
always seeking, by their nature, to exploit their hosts, as mentioned above.

2.2 Sexual species model

The model for sexual species is described by the following reactions:

2A
λ
⇀ 3A A+B

µ
⇀ B (2)

The first reaction describes species A′s reproduction that occurs at rate λ per time unit per population
size unit. Because two agents are required to reproduce a third, this reaction captures the cost of finding
a mate. Everything else is as in the previous model. This is not the first time that is proposed a model
of this type for population dynamics incorporating Allee effect [8,9] on the lattice. For recent references,
see [10,11]. In the process known as quadratic contact process (QCP) [12], we also have similar reactions.
QCP is also sometimes called the process of sexual reproduction [13].

2.3 Mean field

2.3.1 Asexual model

Using the law of mass action, we obtain the differential equations for asexual species: Ȧ = DA∇2A+λA−
µAB and Ḃ = DB∇

2B with DA and DB being diffusion coefficients. The diffusion processes only tend
to homogenize populations in space and nabla operators will be neglected from now on in this subsection.
The B population is a constant on average denoted by 〈NB〉 and therefore Ȧ = (λ − µ〈NB〉)A ≡ mA,
which definesm = λ−µ〈NB〉.We see that if µ〈NB〉 < λ, m > 0 and the B population tends exponentially
to infinity. Otherwise, m < 0 and the B population becomes extinct. If m = 0, the A population remains
constant.

2.3.2 Sexual model

In this case, the equation for population dynamics already disregards diffusion terms and settings κ ≡
µ〈NB〉 is Ȧ = λA2 − κA ≡ −dV/dA with V ≡ −λA3/3+ κA2/2. V is an effective potential that allows a
pictorial view of the dynamics, as illustrated in Figure (1). The point P on the potential maximum has
coordinates (Amax, Vmax) = (κ/λ, κ3/6λ2). For any initial population A(0) < κ/λ, the population tends
to be extinct. This fact is illustrated in figure (1) by the tendency of the red ball to moves down the curve
to the origin. If A(0) > κ/λ, population tends to infinity, a fact represented by the tendency of the green
ball to get lost in the bottomless potential hole. In the critical condition of low population densities, the
mean field theory predicts the inevitable extinction of the sexual species due to the Allee effect [9].

In the next sections we will see how the κ, λ and µ parameters change with successive renormalization
group iterations, or, in other words, how the discrete nonlinear species interactions in space-time induce
variations in the numerical parameter values. These changes can transform very significantly the potential
barrier to be overcome (given by κ3/6λ2) by the population.

3 Field theory representation

We consider a stochastic implementation of the reactions (1) and (2) on a d−dimensional lattice of size
L, with N = LD sites. There are diffusion (nearest-neighbor hopping) of individuals or agents of species
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Figure 1: Effective potential V (A). The black point P has coordinates (Amax, Vmax) = (κ/λ, κ3/6λ2).

A and B at rates DA and DB respectively. The goal is to build a field theory in the continuous limit
able to incorporate emergent features of the stochastic processes under study.

The above mean field analysis in subsection (2.3) does not take into account the effects of the fluc-
tuations associated with the fact that the populations are really discrete and finite. As the number of
agents in the lattice at any time is always an integer, a state of the system may be characterized by a
time-dependent probability distribution P (n,m, t) of finding n agents A and m agents B at time t, where
n, m are integers. Such a probability is normalized as

∑

m,n P (n,m, t) = 1. For any given set of reaction

rules for two species,1 one may formulate an evolution equation, also known as a master equation, for
probabilities P (n,m, t). The master equation contains the full information about a stochastic process and
we will see that the inclusion of fluctuations can drastically change the fate of the populations. While
several options exist for analysis of the master equation, such as system size expansion [14], we analyze
the master equation by a mapping to field theory, because it is convenient for handling spatially extended
systems.

The fact that the number of agents on the lattice sites vary in discrete quantities allows us to draw
an analogy with methods of quantum mechanics. This analogy consists in describing the population
dynamics in the lattice sites with creation and annihilation operators. This is an intermediate step
needed in the mapping in a field theory.

In this paper we write the field theory representations via Doi-Peliti master equations mapping for
the proposed models and then we use perturbation theory to find their RG flows. Since it is a standard
method described in various places [15], here we only describe it briefly.

3.1 Doi-Peliti mapping

To analyze the master equation using the techniques of field theory, we introduce the operators for the
population A :

• a|m,n〉 = m|m− 1, n〉, a†|m,n〉 = |m+ 1, n〉, [a, a†] = 1,

and also for population B :

1Trivially generalized to an arbitrary number of species.
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• b|m,n〉 = n|m,n− 1〉, b†|m,n〉 = |m,n+ 1〉, [b, b†] = 1.

The operators a (b), a† (b†) are the annihilation and creation operators, respectively, of the species A
(B). Metaphorically, the equation aa† − a†a ≡ [a, a†] = 1 just says that there’s one more way to put a
“rabbit” in a cage of rabbits, and then take one out, than to take one out and then put one in.

It is also necessary to define the state |ψ〉 =
∑

m,n P (m,n)|m,n〉 to represent the probability distribu-
tion. These definitions allow the master equation to be mapped to a field theory. As an explicit example
of how to convert the master equation to a field theory, consider the master equation corresponding to

the reaction 2A
λ
⇀ 3A in equation (2) (without diffusion) [14]:

∂tP (n) = λ [(n− 1)(n− 2)P (n− 1)− n(n− 1)P (n)] . (3)

Multiply both sides by |n〉 and sum over n :

∑

n

∂tP (n)|n〉 = λ
∑

n

[(n− 1)(n− 2)P (n− 1)− n(n− 1)P (n)] |n〉. (4)

We next shift the sums, and manipulate the first term in the sum. Let n′ = n− 1 → n = n′ + 1 :

λ
∑

n′

n′(n′ − 1)P (n′)|n′ + 1〉 = λa†3a2
∑

n′

P (n′)|n′〉

= λa†3a2|ψ〉. (5)

We now work out the second term in the sum:

λ
∑

n

n(n− 1)P (n)|n〉 = λa†2a2|ψ〉. (6)

This yields
∂t|ψ〉 = λ

[

a†3 − a†2
]

a2|ψ〉. (7)

Similar analyses lead to second quantized forms for the reaction A + B
µ
⇀ B. We can now assemble the

entire Hamiltonian. We start by writing the master equation in second quantized form:

∂t|ψ〉 =
[

λ
(

a†3 − a†2
)

a2 + µ(a†ab− a†ab†b)
]

|ψ〉. (8)

Since the standard definition of the Hamiltonian H is

∂t|ψ〉 = −H|ψ〉, (9)

we have
−H = λ

(

a†3 − a†2
)

a2 + µ(a†ab− a†ab†b). (10)

The formal solution of (9) is
|ψ〉 = e−Ht|ψ(0)〉. (11)

From the solution (11), it is possible to derive all the statistical properties of the reaction-diffusion system
defined by equation (2) applying a projection technique [15], given the initial condition |ψ(0)〉.

For practical purposes such as performing perturbative calculations and to determine the renormaliza-
tion group flows, it is convenient to map this second-quantized form into a field theory, using a coherent
state representation. Performing a time-slicing of the evolution operator in Eq. (11), via the Trotter
formula [15], we can express the vector state |ψ(t)〉 as a path integral, weighted with the exponential of
an action S, over a set of classical fields a†, a, b† and b, which are related with the two types of particles.
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After taking the continuum limit, the vector state can be written as the path integral over space and
time dependent fields

|ψ(t)〉 =

∫

Da Da† Db Db† exp
{

−S
[

a, a†, b, b†
]}

|ψ(0)〉 (12)

where the action S has the form (now with diffusion, represented by the operator ∇2)

S
[

a, a†, b, b†
]

=

∫

ddx

∫

dt

{

a†
[

∂t −DA∇
2
]

a+ b†
[

∂t −DB∇
2
]

b

+ λ
(

a†3 − a†2
)

a2 + µ(a†ab− a†ab†b)

}

. (13)

Within this formalism, we can compute the average value of any observable A(n,m) performing the path
integral

〈A(t)〉 = C

∫

Da Da† Db Db† A(a, b) exp
{

−S
[

a, a†, b, b†
]}

(14)

where C is an appropriate normalization constant. The final step in the derivation of the field theory
consists in performing the Doi’s shift [15]

a† → 1 + ā, b† → 1 + b̄ (15)

and the change of variables b→ b+ 〈NB〉. With all these steps performed, we get the final equation (18)
below for the case of sexual reproduction model, with φ and ψ in place of a and b, respectively.

4 Asexual model

For the asexual model, Doi-Peliti action, already with the following Doi shifts φ̃ → 1 + φ̄, ψ̃ → 1 + ψ̄,
ψ → ψ + 〈NB〉, and φ→ φ, is

S[φ̄, φ, ψ̄, ψ] =

∫

ddx

∫

dt
[

φ̄(∂t −m−DA∇
2)φ

+ ψ̄(∂t −DB∇
2)ψ − λφ̄2φ+ µφ̄φψ

+ µ〈NB〉φ̄ψ̄φ+ µφ̄ψ̄φψ
]

(16)

where m ≡ λ− µ〈NB〉 is the bare mass. φ and ψ are fields associated with the populational densities of
A and B respectively, while φ̄ and ψ̄ are related to their statistical fluctuations. Let us assume that the
parameters µ and λ are sufficiently small so that we can use the perturbation theory. Feynman diagrams
associated with the action (16) are shown in Figure (2).

4.1 Dynamical renormalization group

We use the field theory techniques to find the renormalization group flow in the parameter space. The
system will be analyzed using the standard renormalization group technique, imposing the change of
scale x → sx, t → szt, φ → s−d−ηφ, ψ → s−d−ηψ (similarly to φ̄, ψ̄), and Λ → Λ/s, where s is the
renormalization group scale factor, η is a critical exponent, and Λ is a momentum cuttoff. Performing the
standard perturbation theory procedures [16], using the diagrams combinations II and III (propagator
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−λφφ̄2

I

µφψφ̄

II

µ〈NB〉φ̄ψ̄φ

III

µψψ̄φφ̄

IV

Figure 2: Feynman diagrams

renormalization, see Figure (3) left) and II and IV (vertice renormalization, see Figure (3) right), we
find the following flow equations for the model parameters in the limit of Λ → ∞ [7]:

dµ

dl
= ǫµ+

µ2

2πD̄
(17a)

dm

dl
= 2m−

〈NB〉µ2

2πD̄
, (17b)

where ǫ = 2 − d, l = ln (s), and D̄ ≡ (DA + DB)/2. Competition parameter µ increases indefinitely
with the renormalization group iterations, favoring the extinction of the asexual species. This fact is
interpreted in the last section using the re-entrant property of diffusive systems in low dimensions.

Figure 3: Propagator renormalization diagram II+III (left) and vertice renormalization diagram II+IV
(right).

Equations (17) are identical to those obtained in [7,17] for the reactions B
µ
⇀ ∅, A+B

λ
⇀ 2B+A, with

bare massmAB ≡ µ−λ〈NA〉, with 〈NA〉 representing the average number of A. This model is known as the
AB model [18]. It has been originally proposed in [7,17–20] to discuss the origin of life in terms of auto-
catalysis, and it has been applied in some research areas such as ecology and economy [21–23]. The spatial
version of this model shows that self-replication can be locally maintained with B growing exponentially,
even when average A concentration would not be sufficient to sustain growth in a homogeneous vessel.
This fact is a consequence of the tendency of µ to grow with the scale s, as shown by the equations (17),
and from the definition of mAB. Exactly the opposite will occur in the case of the model with asexual
population, since in this case m = λ− µ〈NB〉 and therefore µ is subtracted rather than added.

Figures (4a) and (4b) show the RG flow diagrams associated with equations (17) for µ ≥ 0. On
the left we have the case of ǫ < 0 (or d > 2). The black dot is the fixed point given by (µ∗,m∗) =
(2πD̄ǫ, D̄πǫ2〈NB〉). The diagonal line represents an eigenvector indicating two distinct behaviors of the
diagram near the fixed point. The horizontal dotted line represents m = 0. Above the straight line and
for m > 0, the RG flow tends to take m to infinity. In this case the asexual species population explodes.
This happens for a sufficiently small µ. The opposite occurs below the line (ie, for sufficiently large µ),
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with the RG flow inducing m to negative values, inducing the population to extinction, even with the
mean field theory indicating explosion. We may call this phenomenon Discreteness Inducing Extinction
(DIE).

More interesting is the figure on the right, where the DIE phenomenon is certain across the parameter
space (for µ > 0) for d ≤ 2 (or ǫ ≥ 0). On the surface, asexual species always die.

Μ

m

(a) RG flow for ǫ < 0.

Μ

m

(b) RG flow for ǫ ≥ 0.

Figure 4: RG flow asexual model

5 Sexual model

Let’s compare the effects caused by the discrete character of the interactions in asexual and sexual
reproduction. For this, we now need to consider Doi-Peliti effective action for the sexual reproduction
model:

S[φ̄, φ, ψ̄, ψ] =

∫

ddx

∫

dt
[

φ̄(∂t + κ−DA∇
2)φ

+ ψ̄(∂t −DB∇
2)ψ − λφ̄φ2 + µφ̄φψ

+ µ〈NB〉φ̄ψ̄φ+ µφ̄ψ̄φψ − 2λφ̄2φ2 − λφ̄3φ2
]

(18)

where κ ≡ µ〈NB〉. Field interpretations are as before.
An important feature of this model is the diagram V in figure (5). We also should replace the diagram

I in figure (2) with the diagram V I in figure (5).
Now, the crucial point is that the parameter λ can be explicitly renormalized using diagrams V and V I

(see Figure (6)). Performing the basic steps mentioned before, we have the following RG flow equations
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−λφ2φ̄

V I

−2λφ̄2φ2

V

Figure 5: Some Feynman diagrams in sexual model.

Figure 6: Vertice renormalization (Feynman diagram V + V I) for sexual model.

for the sexual species model:

dµ

dl
= ǫµ+

µ2

2πD̄
(19a)

dκ

dl
= 2κ−

〈NB〉µ2

2πD̄
(19b)

dλ

dl
= ǫλ+

λ2

πD̄
(19c)

where ǫ = 2 − d, l = ln (s), and D̄ ≡ (DA +DB)/2. The diagram in Figure (6) which renormalizes λ is
equal to the diagram in Figure (3) at right, which renormalizes µ, with the difference of a factor 2 in the
former. Associating this similarity to the fact that the propagators are also very similar,2 the results are
almost identical and we obtain an expression for the RG flow for λ very similar to the expression of µ.

The new λ RG flow does not influence κ and therefore RG flows involving κ and µ are as shown in
figures (4a) and (4b) by replacing m with κ in the vertical axes. We can now examine how the potential
barrier (given by Vmax = κ3/6λ2) in figure (1) varies when the parameters are renormalized. We see that
on the surface (or in smaller dimensions: ǫ ≥ 0), this potential barrier disappears quickly, favoring the
sexual species. This happens because of how quickly λ approaches infinity (with decreasing κ), making
Vmax → 0. The barrier that prevented the sexual population’s development is increasingly transposable
if there is enough space and time for the interactions to occur. And this fact arises from the interaction’s
discreteness. This is the importance of being discrete in sex. Furthermore, according to our simplified
models, the only chance for an asexual species to exist in nature, is in a three dimensional space. This
finding leads to the conjecture that most asexual species existing today, live either in the oceans or in
other “effective” three-dimensional media.

6 Conclusion

In this paper we propose a model that can shed some light on the question of the predominance of
sexual reproduction in nature despite all its costs. We do not infer anything about the origin of this
predominance, but only on how it happened. Sex is a reproductive ritual that is inherently more complex

2The propagator for the field φ in equation (18) is given by Gφφ[k,ω] = (Dk2 + κ − iτω)−1. Replacing κ by −m we
obtain the propagator for the field φ in equation (16). The propagators for the fields ψ, Gψψ[k,ω], are identical for both
models.
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than its rival asexual method. And this inherent complexity gives rise to some counterintuitive features.
The complexity aspect discussed here refers only to the nonlinear interactions between species and their
pathogens/parasites, and to the cost of finding a mate in the case of sexual selection. Mathematically,
this cost implies a nonlinearity (coming from the reaction 2A → 3A) which is absent in the asexual
reproduction model. And from this nonlinearity in the interactions, purely physical conditions emerge
that favor sexual reproduction. We need not consider anything about genetics for example.

Another important actor in this context of complexity, is the discrete character of the interactions.
This actor is solely responsible for the DIE phenomenon in asexual species, where the extinction is
possible for d < 2 and certain for d ≥ 2, even if the mean field theory indicates otherwise. The intrinsic
stochasticity induced by this discreteness is also responsible for effectively raising the λ parameter, as seen
through the RG flow for the sexual model. This fact allows for the development of sexual populations,
despite its considerable costs for finding a mate, even in situations not covered by the mean field theory. A
phenomenon able to induce this increase, is the aggregation in clusters of interacting agents. A well-known
property of diffusion is the re-entrancy of the visited sites in low space dimensions. In particular, for
d = 1 and d = 2, the probability that the diffusing particle will ever return (t→ ∞) to the starting point
is equal to 1. Physically, it means that the diffusing particle sweeps thoroughly its local neighbourhood
and thus it is highly probable that it will react with another particle in its vicinity. Hence, it is reasonable
to expect that after short period of time the system will be in a state where there is a lot of isolated
particles.3 The clustering of sexual agents favors a localized increase in the λ reproduction rate, allowing
their permanence and development. We must not forget that an individual cannot reproduce arbitrarily
fast. This imposes an upper limit for λ.
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