Gravitons push fundamental particles together, since particles have a graviton scatter cross-section that intercepts gravitons from large distant masses. The observed isotropic cosmological acceleration is:
\[
\sigma_{\text{gravity}} = \sigma_{\text{weak}} \left(\frac{G_{\text{Newton}}}{G_{\text{Fermi}}} \right)^2 = \pi \left(\frac{2GM}{c^2} \right)^2
\]

The gravity cross section of a fundamental particle of mass M in the planet earth below an observer intercepts the fraction of the graviton force coming upwards behind that area, so that the downward force from above that same area of sky is uncancelled. This "asymmetry" pushes things down with acceleration g (distinct from cosmological acceleration). The fraction of the inward force screened by a fundamental particle of mass M at distance R from an observer is its gravity cross-section area, divided into the total area at that distance, \(4\pi R^2\). See: http://vixra.org/abs/1302.0004