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Abstract

We extend the construction of Born’s Reciprocal Relativity theory
in ordinary phase spaces to an extended phase space based on Quater-
nions. The invariance symmetry group is the (pseudo) unitary quater-
nionic group U(N+, N−,H) which is isomorphic to the unitary symplec-
tic group USp(2N+, 2N−,C). It is explicitly shown that the quaternionic
group U(N+, N−,H) leaves invariant both the quadratic norm (corre-
sponding to the generalized Born-Green interval in the extended phase
space) and the tri-symplectic 2-form. The study of Octonionic, Jordan
and ternary algebraic structures associated with generalized spacetimes
(and their phase spaces) described by Gunaydin and collaborators is re-
viewed. A brief discussion on n-plectic manifolds whose Lie n-algebra
involves multi-brackets and n-ary algebraic structures follows. We con-
clude with an analysis on the role of higher-order Finsler geometry in
the construction of extended relativity theories with an upper and lower
bound to the higher order accelerations (associated with the higher order
tangent and cotangent spaces).

1 Introduction : Born’s Reciprocal Relativity
in Phase Spaces

Born’s Reciprocal Relativity [1] was an extension of Einstein’s special relativity
where in addition to a maximal light speed (derivative of the position coordi-
nates), by reciprocity (”duality”) , there was a maximal bound to the derivatives
of the momentum ( maximal force). Born’s Reciprocal Relativity incorporates
the principle of maximal proper force (related also to acceleration [2]) from the
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perspective of Phase Spaces. In the case of four spacetime dimensions one has an
8D phase space and the invariance U(1, 3) Group. The U(1, 3) = SU(1, 3)×U(1)
group transformations leave invariant the phase-space intervals under rotations,
velocity and acceleration boosts as shown by Low [3]. These transformations
can be simplified drastically when the velocity/acceleration boosts are taken
to lie in the z-direction, leaving the transverse directions x, y, px, py intact ;
i.e., the U(1, 1) = SU(1, 1)×U(1) subgroup transformations leave invariant the
phase-space interval given by (in units of h̄ = c = 1)

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2[1 +
(dE/dτ)2 − (dP/dτ)2

b2
] = (dτ)2[1− m2g2(τ)

m2
PA

2
max

]. (1.1)

where we have factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2

in eq-(1.1) and the maximal proper-force is set to be b ≡ mPAmax. mP is the
Planck mass 1/LP so that b = (1/LP )2, may also be interpreted as the maximal
string tension when LP is the Planck scale.

The quantity g(τ) is the proper four-acceleration of a particle of mass m in
the z-direction which we take to be defined by the X coordinate. The interval
(dω)2 described by Low [3] is U(1, 3)-invariant for the most general transfor-
mations in the 8D phase-space. The analog of the Lorentz relativistic factor
in eq-(1.1) involves the ratios of two proper forces. One variable force is given
by mg(τ) and the maximal proper force sustained by an elementary particle of
mass mP is assumed to be Fmax = mPlanckc

2/LP .
The transformations laws of the coordinates in that leave invariant the in-

terval (1.1) were given by [3]:

T ′ = Tcoshξ + (
ξvX

c2
+
ξaP

b2
)
sinhξ

ξ
. (1.2a)

E′ = Ecoshξ + (−ξaX + ξvP )
sinhξ

ξ
. (1.2b)

X ′ = Xcoshξ + (ξvT −
ξaE

b2
)
sinhξ

ξ
. (1.2c)

P ′ = Pcoshξ + (
ξvE

c2
+ ξaT )

sinhξ

ξ
. (1.2d)

The ξv is velocity-boost rapidity parameter and the ξa is the force/acceleration-
boost rapidity parameter of the primed-reference frame. They are defined re-
spectively :

tanh(
ξv
c

) =
v

c
. tanh(

ξa
b

) =
ma

mPAmax
. (1.3)

The effective boost parameter ξ of the U(1, 1) subgroup transformations ap-
pearing in eqs-(2-2a, 2-2d) is defined in terms of the velocity and acceleration
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boosts parameters ξv, ξa respectively as:

ξ ≡
√
ξ2v
c2

+
ξ2a
b2
. (1.4)

Straightforward algebra allows us to verify that these transformations leave
the interval of eq- (1.1) in classical phase space invariant. They are are fully con-
sistent with Born’s duality Relativity symmetry principle [1] (X,P )→ (P,−X).
By inspection we can see that under Born reciprocity, the transformations in
eqs-(1.2a-1.2d) are rotated into each other, up to numerical b factors in order to
match units. When on sets ξa = 0 in (1.2a-1.2d) one recovers automatically the
standard Lorentz transformations for the X,T and E,P variables separately,
leaving invariant the intervals dT 2−dX2 = (dτ)2 and (dE2−dP 2)/b2 separately.

Also the transformations leave invariant the symplectic two-form

dT ′ ∧ dE′ − dX ′ ∧ dP ′ = dT ∧ dE − dX ∧ dP (1.5)

For simplicity, unless otherwise indicated, we shall choose the natural units
h̄ = c = G = 1 so that b = mP = LP = 1.

The most general U(D−1, 1) transformations leaving invariant the quadratic
interval in phase space and the symplectic 2-form were given by [3], in units
h̄ = G = c = b = 1

T ′ = T coshξ + (ξivXi + ξiaPi)
sinhξ

ξ
. (1.6a)

E′ = E coshξ + (ξivPi − ξiaXi)
sinhξ

ξ
. (1.6b)

X ′i = Xi + Xj (ξivξ
j
v + ξiaξ

j
a)

coshξ − 1

ξ2
+ ( ξivT − ξiaE )

sinhξ

ξ
. (1.6c)

P ′i = P i + Pj (ξivξ
j
v + ξiaξ

j
a)

coshξ − 1

ξ2
+ ( ξivE + ξiaT )

sinhξ

ξ
. (1.6d)

where the effective boost parameter ξ is defined in terms of the velocity and
acceleration boosts parameters ξiv, ξ

i
a, respectively, as

ξ ≡
√

(ξiv)
2 + (ξia)2, i = 1, 2, 3, ....., D − 1 (1.7)

The Eddington-Dirac large numbers coincidence ( and an ultraviolet/infrared
entanglement ) can be easily implemented if one equates the upper bound on the
proper-four force sustained by a fundamental particle , (mg)bound = mP (c2/LP ),
with the proper-four force associated with the mass of the (observed ) universe
MU , and whose minimal acceleration c2/R is given in terms of an infrared-cutoff
R ( the Hubble horizon radius ). Equating these proper-four forces gives

mP c
2

LP
=
MUc

2

R
⇒ MU

mP
=

R

LP
∼ 1061. (1.8)
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from this equality of proper-four forces associated with a maximal/minimal
acceleration one infers MU ∼ 1061mPlanck ∼ 10611019mproton = 1080mproton

which agrees with observations and with the Eddington-Dirac number 1080 [4]

N = 1080 = (1040)2 ∼ (
Fe
FG

)2 ∼ (
R

re
)2. (1.9)

where Fe = e2/r2 is the electrostatic force between an electron and a proton ;
FG = Gmemproton/r

2 is the corresponding gravitational force and re = e2/me ∼
10−13cm is the classical electron radius ( in units h̄ = c = 1 ).

One may notice that the above equation (1.8) is also consistent with the
Machian postulate [4] that the rest mass of a particle is determined via the
gravitational potential energy due to the other masses in the universe. In par-
ticular, by equating

mic
2 = Gmi

∑
j

mj

|ri − rj |
=
GmiMU

R
⇒ c2

G
=
MU

R
. (1.10)

Due to the negative binding energy, the composite mass m12 of a system of
two objects of mass m1,m2 is not equal to the sum m1 + m2 > m12. We can
now arrive at the conclusion that the minimal acceleration c2/R is also the
same acceleration induced on a test particle of mass m by a spherical mass
distribution MU inside a radius R . The acceleration felt by a test particle of
mass m sitting at the edge of the observable Universe ( at the Hubble horizon
radius R ) is

|a| =
GMU

R2
(1.11)

From the last two equations one gets the same expression for the minimal ac-

celeration a = aminimal = c2

R and which is of the same order of magnitude as the
anomalous acceleration of the Pioneer and Galileo spacecrafts a ∼ 10−8cm/s2 .
Let us examine closer the equality between the proper-four forces

mP c
2

LP
=
MUc

2

R
⇒ mP

LP
=
MU

R
=
c2

G
. (1.12)

The last term in eq-(1.12) is directly obtained after implementing the Machian
principle. Thus, one concludes from eq-(1.12 ) that as the universe evolves in
time one must have the conserved ratio of the quantities MU/R = c2/G =
mP /LP . This interesting possibility, advocated by Dirac long ago, for the
fundamental constants h̄, c, G, ..... to vary over cosmological time is a plausible
idea with the provision that the above ratios satisfy the relations in eq-(1.12)
at any given moment of cosmological time. If the fundamental constants do not
vary over time then the ratio MU/R = c2/G must refer then to the asymptotic
values of the Hubble horizon radius R = Rasymptotic.

We provided in [5] six specific results stemming from Born’s reciprocal Rela-
tivity and which are not present in Special Relativity. These were : momentum-
dependent time delay in the emission and detection of photons; energy-dependent
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notion of locality; superluminal behavior; relative rotation of photon trajecto-
ries due to the aberration of light; invariance of areas-cells in phase-space and
modified dispersion relations. One of the most interesting conclusions was that
there are null hypersurfaces in a flat phase-spaces where points can have su-
perluminal v > c behavior in ordinary spacetime, despite corresponding to a
null hypersurface in a flat phase-space. Superluminal behavior in spacetime can
occur without having superluminal behavior in C-spaces [6].

In [8] we extend the construction of Born’s Reciprocal Phase Space Rela-
tivity to the case of Clifford Spaces and which involve the use of polyvectors
and a lower/upper length scale. A Clifford Phase-Space Gravitational The-
ory based in gauging the generalization of the Quaplectic group and invoking
Born’s reciprocity principle between coordinates and momenta (maximal speed
of light velocity and maximal force) was provided. The purpose of this work is
to continue this line of research and explore further generalizations.

2 Quaternions algebras and Extended Born’s
Reciprocal Relativity

Let us begin with the quaternionic-valued variable

Zµ = Z(0)
µ e0 + Z(1)

µ e1 + Z(2)
µ e2 + Z(3)

µ e3, eiej = −δijeo+εijkek, i, j, k = 1, 2, 3
(2.1)

Upon using the units h̄ = G = c = b = 1, the spacetime coordinates Xµ can be
regrouped with a triplet of momenta given by the triad of variables Pµ, Uµ, Vµ
(the imaginary quaternionic components) as follows

Z(0)
µ = Xµ, Z

(1)
µ = Pµ, Z

(2)
µ = Uµ, Z

(3)
µ = Vµ (2.2)

the indices µ, ν span the values 1, 2, 3, ....., D. If one has a different choice of
units one needs to introduce physical constants (length/mass scales) in order to
ensure that all quantities in eq-(2.1) have the same physical units.

The quaternionic conjugate is

Z̄µ = Z(0)
µ e0 − Z(1)

µ e1 − Z(2)
µ e2 − Z(3)

µ e3 (2.3)

and the norm squared is

|Z|2 ≡ Z̄µZµ = Zµ Z̄
µ = XµXµ + PµPµ + UµUµ + V µVµ (2.4)

for Minkowski signature one has

XµXµ = (X0)2 − (X1)2 − (X3)2 − ...... − (XD−1)2, etc .... (2.5)

5



To simplify the calculations, and without loss of generality, let us take the
underlying spacetime to have D = 2 dimensions, one spatial and one tempo-
ral. The generalized boost parameter involving velocity and acceleration boosts
along the spatial direction is encoded in the quaternionic-valued parameter

ξ ≡ ξ(m)em = ξv e0 + ξ(1)a e1 + ξ(2)a e2 + ξ(3)a e3 (2.6)

its conjugate is

ξ ≡ ξ(m)ēm = ξv e0 − ξ(1)a e1 − ξ(2)a e2 − ξ(3)a e3 (2.7)

and its norm is

|ξ| ≡
√
ξξ̄ =

√
(ξv)2 + (ξ

(1)
a )2 + (ξ

(2)
a )2 + (ξ

(3)
a )2 (2.8)

Let us propose the following transformations

(Z0)′ = Z0 cosh|ξ| + Z1 ξ
(m)em

sinh|ξ|
|ξ|

(2.9a)

(Z1)′ = Z1 cosh|ξ| + Z0 ξ
(m)ēm

sinh|ξ|
|ξ|

(2.9b)

their quaternionic conjugates are

Z̄ ′0 = Z̄0 cosh|ξ| + ξ(m)ēm Z̄1
sinh|ξ|
|ξ|

(2.10a)

Z̄ ′1 = Z̄1 cosh|ξ| + ξ(m)em Z̄0
sinh|ξ|
|ξ|

(2.10b)

where one has recurred to the relation (AB)∗ = B∗A∗ under quaternionic con-
jugation. Since quaternions are noncommutative one has to be very careful with
the ordering of factors. In the Appendix one can show, after some straightfor-
ward algebra, that

[ ξ(m)em, dZ1 dZ̄0 ] + [ dZ0 dZ̄1, ξ
(m)ēm ] = 0 (2.10c)

Therefore, from eqs-(2.9a, 2.9b, 2.10a, 2.10b, 2.10c), after using the condition
W̄ZZ̄W = WZZ̄W̄ = |Z|2|W |2 = |W |2|Z|2 for two quaternions Z,W due to
the associativity property, and to the identity cosh2|ξ| − sinh2|ξ| = 1, one can
finally deduce that the quadratic form below is indeed invariant under the
above transformations (2.9, 2.10)

(Z0)′ ¯(Z0)′ − (Z1)′ ¯(Z1)′ = Z0 Z̄0 − Z1 Z̄1 ⇒

(X ′0)2 + (P ′0)2 + (U ′0)2 + (V ′0)2 − (X ′1)2 − (P ′1)2 − (U ′1)2 − (V ′1)2 =

(X0)2 + (P0)2 + (U0)2 + (V0)2 − (X1)2 − (P1)2 − (U1)2 − (V1)2 (2.11)
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In component form the transformations (2.9a, 2.9b, 2.10a, 2.10b ) which
leave invariant the quadratic form (2.11) are given by

(X0)′ = X0 cosh|ξ| +
(
ξvX1 − ξ(1)a P1 − ξ(2)a U1 − ξ(3)a V1

) sinh|ξ|
|ξ|

(2.12a)

(P0)′ = P0 cosh|ξ| +
(
ξ(1)a X1 + ξvP1 + ξ(3)a U1 − ξ(2)a V1

) sinh|ξ|
|ξ|

(2.12b)

(U0)′ = U0 cosh|ξ| +
(
ξ(2)a X1 − ξ(3)a P1 + ξvU1 + ξ(1)a V1

) sinh|ξ|
|ξ|

(2.12c)

(V0)′ = V0 cosh|ξ| +
(
ξ(3)a X1 + ξ(2)a P1 − ξ(1)a U1 + ξvV1

) sinh|ξ|
|ξ|

(2.12d)

(X1)′ = X1 cosh|ξ| +
(
ξvX0 + ξ(1)a P0 + ξ(2)a U0 + ξ(3)a V0

) sinh|ξ|
|ξ|

(2.13a)

(P1)′ = P1 cosh|ξ| +
(
−ξ(1)a X0 + ξvP0 − ξ(3)a U0 + ξ(2)a V0

) sinh|ξ|
|ξ|

(2.13b)

(U1)′ = U1 cosh|ξ| +
(
−ξ(2)a X0 + ξ(3)a P0 + ξvU0 − ξ(1)a V0

) sinh|ξ|
|ξ|

(2.13c)

(V1)′ = V1 cosh|ξ| +
(
−ξ(3)a X0 − ξ(2)a P0 + ξ(1)a U0 + ξvV0

) sinh|ξ|
|ξ|

(2.13d)

Hence one can construct an extended relativity theory where the coordinates X
and the triad of momenta P,U, V all become mixed under the transformations
(2.12, 2.13) which leave invariant the interval (omitting indices for convenience)
(ds)2 = (dX)2 + (dP )2 + (dU)2 + (dV )2. In this respect we have constructed an
extension of Born’s reciprocal relativity to an extended phase space which can
be identified with a quaternionic space.

Using the units h̄ = G = c = b = 1, we can see that the transformations
for the X0, P0, X1, P1 coordinates in eqs-(2.12, 2.13) coincide with those given

by eqs-(1.2) after setting ξa = −ξ(1)a , and ξ
(2)
a = ξ

(3)
a = 0. Therefore, one can

conclude that the transformations (2.12, 2.13) are a natural extension of the
transformations (1.2) involving the coordinates X and momenta P . The trans-
formations (2.12, 2.13) involve both a quaternionic extension of the coordinates
and the rapidity parameters ξ = ξmem. One must not interpret the components
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of the quaternionic coordinates, respectively, with the spacetime coordinates,
momenta, second and third order momenta. And one must not interpret also
the components of the quaternionic rapidity parameters, respectively, with the
velocity boosts, acceleration boosts, second and third order acceleration boosts
along the spatial direction X1.

Instead of higher order momenta and higher order accelerations typical of
higher order (co)tangent spaces and Jet Spaces, rigorously speaking, one has a

triad of momenta Pµ, Uµ, Vµ, and a triad of acceleration boosts ξ
(i)
a , i = 1, 2, 3

which is more closely related to a tri-holomorphic and tri-symplectic structure
associated to hyper Kahler geometry. For references on higher order symplectic
geometry, multisymplectic, polysymplectic, and n-plectic geometry geometry
see [17], [16].

It is important also to emphasize that the transformations (2.12, 2.13) are
not obtained by naively replacing the coordinates X0, P0, X1, P1 in eqs-(1.2) for
their quaternionic extensions. A quaternionic extension of the rapidity param-
eters ξ = ξmem is also required in the transformations (2.12, 2.13).

Therefore, to conclude, one can be view the transformations (2.12, 2.13) as an
extension of the (pseudo) unitary group U(2), U(1, 1) symmetry transformations
in eqs-(1.2) to the quaternionic group U(2, H), U(1, 1, H) case. In general, for
D spacetime dimensions, one will have the quaternionic group U(D,H), U(D−
1, 1, H) extension of the (pseudo) unitary U(D), U(D−1, 1) group of symmetry
transformations in the 2D-dim phase space (cotangent space ) given by eqs-(1.6).

Let us study now what happens to the tri-symplectic forms under the quater-
nionic U(1, 1, H) transformations. For ordinary complex numbers zµ = Xµ +
iPµ, the pseudo-unitary U(1, 1) transformations are equivalent to those given

by eqs-(1.2) when the complex rapidity parameter is ξ = ξv
c − i

ξa
b (b = c = 1).

In the complex numbers case one does have for µ = 1, 2

(dz0)′ ∧ (dz̄0)′ − (dz1)′ ∧ (dz̄1)′ = dz0 ∧ dz̄0 − dz1 ∧ dz̄1 ⇒

(dX0)′ ∧ (dP0)′ − (dX1)′ ∧ (dP1)′ = dX0 ∧ dP0 − dX1 ∧ dP1 (2.14a)

To simplify matters, and without loss of generality, one can verify that when

the rapidity parameters ξv = ξ
(2)
a = ξ

(3)
a = 0 are set to zero, except ξ

(1)
a such

that |ξ(1)a | = |ξ| , one has an invariance of the following 2-form

(dZ0)′ ∧ (dZ̄0)′ − (dZ1)′ ∧ (dZ̄1)′ = dZ0 ∧ dZ̄0 − dZ1 ∧ dZ̄1 (2.14b)

under the quaternionic U(1, 1, H) transformations (2.9, 2.10). To verify this
one may first use the component-wise transformations (2.12, 2.13) to show that

when ξv = ξ
(2)
a = ξ

(3)
a = 0 are set to zero, except ξ

(1)
a , one has

( (dX0)′ ∧ (dP0)′ − (dX1)′ ∧ (dP1)′ ) e1 = ( dX0 ∧ dP0 − dX1 ∧ dP1 ) e1
(2.15a)
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( (dU0)′ ∧ (dV0)′ − (dU1)′ ∧ (dV1)′ ) e1 = (dU0 ∧ dV0 − dU1 ∧ dV1 ) e1
(2.15b)

due to the identity cosh2|ξ| − sinh2|ξ| = 1 and the antisymmetry property of
the wedge product dX ∧ dP = −dP ∧ dX, dU ∧ dV = −dV ∧ dU . We also have
the additional conditions on the other imaginary components, after lengthy but
straightforward algebra

( − (dX0)′ ∧ (dU0)′ + (dX1)′ ∧ (dU1)′ + (dP0)′ ∧ (dV0)′ − (dP1)′ ∧ (dV1)′ ) e2 =

( − dX0 ∧ dU0 + dX1 ∧ dU1 + dP0 ∧ dV0 − dP1 ∧ dV1 ) e2 (2.16)

( − (dX0)′ ∧ (dV0)′ + (dX1)′ ∧ (dV1)′ − (dP0)′ ∧ (dU0)′ + (dP1)′ ∧ (dU1)′ ) e3 =

( − dX0 ∧ dV0 + dX1 ∧ dV1 − dP0 ∧ dU0 + dP1 ∧ dU1 ) e3 (2.17)

finally, one can verify that upon adding eqs-(2.15a, 2.15b, 2.16, 2.17) one arrives
precisely at the equality

Ω′ =
1

2
(dZ0)′∧(dZ̄0)′ − 1

2
(dZ1)′∧(dZ̄1)′ = Ω =

1

2
dZ0∧dZ̄0 −

1

2
dZ1∧dZ̄1

(2.18)
after decomposing the quaternionic-valued variables into their respective compo-
nents. Therefore, one has invariance of the quaternionic-valued 2-form Ω′ = Ω

under pure acceleration boosts along the X1 directions such that ξ
(1)
a 6= 0;

ξv = ξ
(2)
a = ξ

(3)
a = 0. Under the most general U(1, 1, H) transformations

(2.9, 2.10, 2.12, 2.13), when all the rapidity parameters are included with-
out setting some of them to zero, one also has that Ω′ = Ω. In order to avoid
the extremely tedious and cumbersome algebra one may recur to group theory
[9]. The unitary-symplectic groups USp(2N+, 2N−) are the intersection of the
(pseudo) unitary groups U(2N+, 2N−, C) with the symplectic group Sp(2N,C),
where N = N+ +N−. All these USp(2N) groups are isomorphic to the unitary
groups in N -dimensional quaternionic space USp(2N+, 2N−) ' U(N+, N−, H).
Therefore one may ascertain that eq-(2.18) is satisfied under the U(1, 1, H)
transformations (2.9, 2.10).

3 On Octonions, Jordan and N-ary Algebraic
Extensions of Born’s Reciprocal Relativity

Based on the quaternionic extension of Born’s Reciprocal Relativity presented
in the prior section we would like to explore the extensions to octonions, Jor-
dan algebras and n-ary algebras. The symmetries of generalized spacetimes and
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their corresponding phase spaces defined by Jordan algebras of degree three
were studied by [14]. These generalized spacetimes were coordinatized by el-
ements of general Jordan algebras J whose rotation Rot(J), Lorentz Lor(J)
and conformal Conf(J) groups are identified with the automorphism Aut(J),
reduced structure Stro(J) and Mobius Mob(J) groups of the Jordan algebra J ,
respectively.

In particular, the automorphism, reduced structure and Mobius groups of
the Jordan algebras Γ(1,d) of gamma matrices (Clifford algebras) are simply the
rotation, Lorentz and conformal groups of d+ 1-dim Minkowski spacetime [14].
Furthermore, there exist the special isomorphisms between the Jordan algebras
of 2 × 2 Hermitian matrices over the four division algebras and the Jordan
algebras of gamma matrices [14]

JR2 ' Γ(1,2), JC2 ' Γ(1,3), JH2 ' Γ(1,5), JO2 ' Γ(1,9) (3.1)

The corresponding Minkwoski spacetimes have dimensions 3, 4, 6, 10 which are
precisely the dimensions for the existence of super-Yang-Mills and classical su-
perstring theories; i.e. the transverse dimensions to the world sheet of the
superstring are 1, 2, 4, 8, respectively, which coincide with the dimensions of the
four division algebras.

These Jordan algebras are all quadratic and their norm forms are the quadratic
invariants constructed from the Minkowski metric. For Jordan algebras JAn of
n×n matrices defined over a division algebra A, the norm N(J) is an n-th form
which is given by the determinant form, or its generalization to the quaternionic
and octonionic matrices [14]. For example, in the case of the Jordan algebra
of degree three over the octonions JO3 , the analog of determinant of an element
M ⊂ JO3 is given by the Freudenthal determinant (cubic form)

det M =
1

3
Trace ( M ∗J (M ×F M) ) (3.2)

where the commutative but nonassociative Jordan product of two Jordan ma-
trices is

X ∗J Y =
1

2
(X Y + Y X ) (3.3)

and the symmetric Freudenthal product is

X ×F Y = X ∗J Y − 1

2
[ Y TrX + XTrY ] +

1

2
[ TrX TrY − Tr(X ∗J Y ) ]

(3.4)
The cubic norms in Jordan algebras have been classified by Schafer [13] and

there are three cases. In particular the four ”magical” cases consisting of 3× 3
Hermitian matrices whose components take values in the four division algebras,
real, complex, quaternions and octonions. The four magical Jordan algebras
were key ingredients in the construction of magical supergravities [15].

The conformal group of the Jordan algebra J is generated by translations Ta,
special conformal generators Ka, dilatations and Lorentz Mab where a,b are
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Jordan algebra elements. Now is where the role of ternary structures becomes
relevant. The action of the conformal algebra conf(J) on the elements x of a
Jordan algebra J is [14]

Ta x = x, Mab x = { a b x }, Ka x = − 1

2
{ x a x } (3.5)

where { a b x } is the Jordan triple product given by

{ a b x } = a ∗J (b ∗J x) − b ∗J (a ∗J x) + (a ∗J b) ∗J x (3.6)

The commutation relations of those generators are given in [14]. The Freuden-
thal determinant expression given by the cubic norm in (3.3) is invariant under
the action of the reduced structure group Lor(JO3 ) and which is generated by
Mab. The analog of the exponentiation procedure of the adjoint action of Mab

on x and associated with the ternary structures is

exp(αabMab) x = x + αab{ a b x } +
1

2!
αab {a, b, αab{ a b x } } + ......

(3.7)
where αab are the suitable parameters associated with Mab.

The construction of the covariant phase spaces associated with these gen-
eralized spacetimes defined by cubic forms and based on Jordan algebras (and
ternary structures) requires the use of Freudenthal triple systems defined over
these Jordan algebras [14]. The conformal groups are now extended to quasi-
conformal groups like E8(−25), E7(−5), E6(2), F4(4) and SO(d+2, 4) [14]. The case
of d = 10 gives SO(12, 4) which is interesting because SO(12, 4) is the symmetry
group of the following quadratic form associated with a 16-dim extended phase
space given by

(ds)2 = dXµdX
µ + dP (1)

µ dP (1)µ + dP (2)
µ dP (2)µ + dP (3)

µ dP (3)µ, µ = 1, 2, 3, 4
(3.8)

where we have omitted the numerical constants to adjust physical units for

simplicity. P
(1)
µ is the first order momentum, P

(2)
µ , P

(3)
µ are the second and

third order momentum, respectively. A Born’s reciprocal relativity based on
the invariance of the quadratic form (3.8) requires the quasi-conformal SO(12, 4)
group.

If one wishes, further, to have an invariant four-form

ωµνρσ dX
µ ∧ dP (1)ν ∧ dP (2)ρ ∧ dP (3)σ (3.9)

one requires to introduce multi-symplectic ( 3-plectic ) transformations leaving
invariant the 4-form (3.9).

Born’s reciprocal relativity in an 8D phase space required the invariance
group to be provided by the intersection of SO(6, 2) with the symplectic group
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Sp(8). The intersection contains the pseudo-unitary group U(3, 1) and which
allowed Low [3] to write down the symmetry transformations under velocity and
force/acceleration boosts in (1.6). In general, the intersection of SO(2n) with
Sp(2n) contains the U(n) algebra. Therefore, the relevant group in question is
now given by the intersection of the group SO(12, 4) with the 3-plectic group
and which leaves invariant the four-form (3.9) and the quadratic interval (3.8).
In general n-spacetime dimensions, corresponding to an extended phase space of

4n dimensions associated to Xµ, P
(i)
µ ; i = 1, 2, 3, we should have the intersection

of SO(4n− 4, 4) and the 3-plectic group.
Just as a symplectic manifold gives a Poisson algebra of functions, any 2-

plectic manifold gives a Lie 2-algebra of 1-forms and functions. n-plectic man-
ifolds give Lie n-algebras and which are examples of strong homotopy algebras
L∞ equipped with a collection of skew-symmetric multi-brackets that satisfy
a generalized Jacobi identity [17]. This is where n-plectic geometry will be-
come relevant in the extensions of Born’s reciprocal relativity associated with
the extended phase spaces of the form described above. One must not confuse
n-plectic geometry with polysymplectic geometry. For an introduction of the
latter see [16].

Instead of writing the quadratic form (3.8) one could begin instead with a
cubic norm involving only the first and second order momentum

(ds)3 = dIJK dZI dZJ dZK , dZI ≡ (dXµ, dP (1)ν , dP (2)ρ), µ, ν, ρ = 1, 2, 3, ..., D
(3.10)

where dIJK is a symmetric rank three tensor whose indices span the values
of I, J,K = 1, 2, 3, ....., 3D. The first D values of ZI correspond to the Xµ

coordinates. The second set of D values correspond to the P (1)ν coordinates,
and the last set of D values correspond to the P (2)ρ coordinates.

The relevant form is now the 3-form associated with a 2-plectic geometry

ωµνρ dX
µ ∧ dP (1)ν ∧ dP (2)ρ (3.11)

Now one can ask the question : what is the ternary algebra resulting from
the intersection of the ternary algebras which leave invariant the 3-form (3.11)
and the cubic norm (3.10) ? . One can then extend this construction to the
n-ary algebra case by having the n-norm

(ds)n = dI1I2....In dZ
I1 dZI2 ....... dZIn (3.12a)

and the n-form

ω(n) = ωµ1µ2......µn
dXµ1 ∧ dP (1)µ2 ∧ ....... ∧ dP (n−1)µn (3.12b)

and then finding the intersection of the n-ary algebras which leave invariant the
n-norm (3.12a) and the n-form (3.12b). The indices I1, I2, .... in (3.12a) span
the values 1, 2, 3, ....., nD of the extended phase space, where D is the underlying
spacetime dimension.
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This intersection procedure of the n-ary algebras will allow us to find the n-
ary analog of the group transformations which will nowmix all theX,P (1), P (2), .......
coordinates of the higher order tangent (cotangent) spaces in this extended rel-
ativity theory based on Born’s reciprocal gravity and n-ary algebraic structures.
A proper place to begin is in the pioneering work on n-ary groups by [18].

4 Higher Order Finsler Spaces and Extended
Born Reciprocal Relativity

In this concluding section we shall examine extensions of Born’s reciprocal
relativity theory based on the geometry of higher-order Lagrange-Finsler and
Hamilton-Cartan Spaces [11], [10] and see whether or not one can set bounds
to the higher order accelerations, and secondly, to study the symmetry trans-
formation laws. The bundle of accelerations T kM of order k ≥ 1 involves the
coordinates

xi, y(1)i =
dxi

dτ
, y(2)i =

1

2!

d2xi

dτ2
, ......, y(k)i =

1

k!

dkxi

dτk
, i = 1, 2, 3, ......., n (4.1)

In (4.1) we use the proper time τ instead of t [11]. A change of local coordinates
compatible with the differentiable atlas on the manifold M and the higher order
tangent bundle T kM is of the form [11]

x̃i = x̃i(x1, x2, ...., xn), rank of Jacobian(
∂x̃i

∂xj
) = n

ỹ(1)i =
∂x̃i

∂xj
y(1)j

2ỹ(2)i =
∂ỹ(1)i

∂xj
y(1)j + 2

∂ỹ(1)i

∂y(1)j
y(2)j

...........................................

kỹ(k)i =
∂ỹ(k−1)i

∂xj
y(1)j + 2

∂ỹ(k−1)i

∂y(1)j
y(2)j + ....... k

∂ỹ(k−1)i

∂y(k−1)j
y(k)j (4.2)

A prolongation to the higher order tangent bundle T kM of the Riemannian and
Finsler structures was attained by Miron [11]. This allowed the introduction of a
metric on the space of total dimension (k+1)n. The coordinate transformations
(4.2) preserve the quadratic form defined by the metric. We may notice that
the coordinate transformations (4.2) mix the base manifold coordinates xi with
the vertical coordinates y(1)i, y(2)i, ......., y(k)i. However these transformations
differ from the ones described by the U(D − 1, 1) and U(D − 1, 1, H) group
transformations in this work.
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A Hamiltonian space of higher order k ≥ 1 was also studied by [11] and
references therein. It consists of local coordinates xi, pi, y

(1)i, y(2)i, ......., y(k−1)i.
The change of coordinates is similar to (2.20) with the addition of

p̃i =
∂xj

∂x̃i
pj (4.3)

Let us work in flat space and set all the nonlinear connection N coefficients
to zero so that the dual basis elements are in this special case given by

δxi = dxi, δy(1)i = dy(1)i, δy(2)i = dy(2)i, .........., δy(k)i = dy(k)i (4.4)

The metric on T kM is given by the lift of the metric on M [11]

(ds)2 = gij(x)dxidxj + gij(x)δy(1)iδy(1)j + ...... gij(x)δy(k)iδy(k)j →

(ds)2 = gij(x)dxidxj + gij(x)dy(1)idy(1)j + ...... gij(x)dy(k)idy(k)j (4.5)

Setting gij(x) = ηij and factoring out ηijdx
idxj = dτ2 in (4.5) gives

(ds)2 = (dτ)2

(
1 +

dy(1)i

dτ

dy
(1)
i

dτ
+ ...... +

dy(k)i

dτ

dy
(k)
i

dτ

)
(4.6)

Because now there are alternating signs , ±, in the values of the terms inside
the bracket in (4.6) there are no bounds on the first order and higher order
accelerations with the provision that (ds)2 ≥ 0 when (dτ)2 ≥ 0 (non-tachyonic

intervals). If the velocity is timelike ηij
dxi

dτ
dxj

dτ = 1 (positive), then by taking

derivatives it gives 2ηij
d2xi

dτ2
dxj

dτ = 0, and one can infer that the first order accel-

eration is spacelike ηij
dy(1)i

dτ
dy(1)j

dτ < 0, because it is orthogonal to the timelike
velocity. Iterating this procedure by taking further derivatives one infers that

the second order acceleration is timelike ηij
dy(2)i

dτ
dy(2)j

dτ > 0, because its inner

product with the timelike velocity y(1) is positive definite. And so forth. There-
fore, to conclude, there are no bounds to the accelerations in this case. This
was the underlying mechanism behind the possibility of having superluminal
velocities [5], [6], [7] in Phase and Clifford spaces.

APPENDIX

In this Appendix we will show that the relation in eq-(2.10c) is obeyed.
The latter equation has the same functional form of a commutator [, ] plus its
quaternionic conjugate [, ]∗, as follows

[ A, BC ] + [ C̄B̄, Ā ] = ABC − BCA + C̄B̄Ā − ĀC̄B̄ (A.1)
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Given the quaternionic valued quantities

A = Aoeo +Aiei, B = Boeo +Bjej , C = Coeo + Ckek, i, j, k = 1, 2, 3 (A.2)

one has

ABC =
(

(AoBo −AiBi)Co − (AoBi +AiBo)Ci − (AiBjCl)εijl
)
eo +(

(AoBo −AiBi)Ck + (AoBk +AkBo)Co + (AoBi +AiBo)Cjεijk +AiBjCoεijk
)
ek +

(AiBjCl) εijk εklm em (A.3)

BCA =
(

(BoCo −BiCi)Ao − (BoCi +BiCo)Ai − (BiCjAl)εijl
)
eo +(

(BoCo −BiCi)Ak + (BoCk +BkCo)Ao + (BoCi +BiCo)Ajεijk +BiCjAoεijk
)
ek +

(BiCjAl) εijk εklm em (A.4)

Under quaternionic conjugation one has eo → eo and ei → −ei, so only the real
parts of eq-(A.1) will contribute because the imaginary parts will cancel each
other. From eqs-(A.3), (A.4) one can verify by simple inspection 1 that the
real part of ABC is equal to the real part of BCA, therefore the real part of
(ABC −BCA) = 0. Taking the quaternionic conjugate of the latter expression
gives that the real part of (C̄B̄Ā− ĀC̄B̄) = 0. Therefore eq-(A.1) is identically
zero and eq-(2.10c) is satisfied, as announced.
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