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              Abstract 
 

 
This paper notes that the dispersion relation ∇px∇x ≥ ħ/2, when 
expressed as an equality, ∇px∇x = ħ/2, defines the relationship 
between the ground-state mean kinetic energy of a confined 
quantum, and its dimensions of containment.  The containment can 
occur in two ways: the first by an attractive potential, and the 
second by a repulsive potential.  If the quantum is bound by an 
attractive potential, the ground-state kinetic energy is balanced by 
the containing potential in a stable state where the kinetic energy 
remains within the bound system.  In the second type, which is only 
possible by compression, the quantum is contained by collisions 
with the bounding potential, which may result in a transfer of 
kinetic energy to the boundary.  If the boundary is sufficiently 
massive, then the energy transfer will have a negligible effect on the 
dimensions of containment, and therefore the ground-state kinetic 
energy of the contained quantum will not significantly change.  This 
energy transfer could be large.  An electron contained within the 
approximate diameter of an iron atom, 250 pm, for example, would 
have a minimum velocity very great compared to the dimension of 
containment, so that the number of collisions per second with the 
boundary would be very high, on the order of 1015.   An exchange of 
only 10-6 ev per collision would produce 109 ev per second of 
energy transmitted to the boundary. 
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The dispersion relation between the conjugate Fourier variables of 
position and momentum,  
 
 
         ∇px∇x ≥ ħ/2,          (1) 
 
 
as developed by [1,2], cannot be regarded as merely a statistical 
relationship expressing an uncertainty in repeated measurements of the 
same variable.  For a single quantum, represented by a wave function 
ψ(x), located with 100% probability within a region along the x-axis 
between x = 0 and x = d (that is, for 0 ≥ x ≥ d, ψ(x) = 0,  and for 0 < x < d, 
ψ(x) is normalized at 100%), then (1) expressed as an equality, 
 
 
                                       ∇px∇x = ħ/2,          (2)    
 
 
must represent the relationship between the ground-state rms momentum 
of the quantum, which defines its ground-state mean kinetic energy, 
(∇p)2/2m,  and the magnitude of the dimension of containment, d. 
 
The containment can occur in two ways.  The first is by an attractive 
potential, V(x), whose source is located at x=0, such that for x ≥ d, the 
value of ψ(x), is negligible.  The second is by repulsive potentials at x = 0 
and x = d, such that the probability of the quantum being in the region 0 < 
x < d is 100%, and outside of it zero.  In the first case, the total energy of 
the system, that is, the kinetic energy of the quantum plus the potential 
energy in the interval d, is given by the Schrödinger expression for the 
Hamiltonian: 
 
 



  EΨ(x) =  (- ħ/2m) d2Ψ(x)/dx2 - V(x)Ψ(x),  x > 0.     (3) 
 
 
In the second case, the Schrödinger equation gives  
 
 
  EΨ(x) =  (- ħ/2m) d2Ψ(x)/dx2,    0 < x < d,  (4) 
 
and  
 
   EΨ(x) = 0,     0 ≥ x ≥ d. 
 
 
Here the total energy eigenvalues are the kinetic energy eigenvalues, 
determined  by  the  magnitude  of the momentum,   
 
 
   p = h/λ,      λ = d/n   (n = 1,2,...)     (5) 
 
 
In this case, (2) is non-local and non-conservative.  That is, a change in the 
magnitude   of   the  containment   distance   from   d  to   d ± δd   changes  
the    energy   eigenvalue   spectrum,  and    in  particular  the ground-state  
mean    kinetic   energy    determined   by   (2)   from   K =  (ħ/2d)2/2m   to  
K’ = (ħ/2(d± δd))2/2m in the entire region of containment.  This change of 
energy values is solely a function of δd for a given d and m, and is 
independent of any energy from the region 0 > x > d required to change 
the position of the boundaries.  (It is interesting to note that the minimum 
rms momentum given by (1) is less than the minimum momentum allowed 
by the de Broglie relation (5) by a factor of 1/4π.) 
 
It seems to me that both types of containment coexist in nature, but one 
type will generally determine the greater degree of containment, and 
therefore predominate.  For example, in a normal solid, the atomic 
electrons are bound relatively strongly by the attractive potential of the 
nucleus, and relatively weakly by the repulsive potentials of the electron 



clouds of adjacent atoms.  Therefore the first type of containment 
dominates.  If however, the solid is compressed enough so that the 
interatomic dimensions shrink sufficiently for the adjacent electron clouds 
to impose a repulsive boundary less than the dimensions of the 
uncompressed atom, then at some point, the ground-state kinetic energy 
from the repulsive boundaries will exceed that from the attractive potential 
of the nucleus for some electrons, and one or more electrons will 
effectively act as free electrons bound by the adjacent electron clouds, and 
will begin colliding with them, thereby transmitting kinetic energy to the 
lattice.   
 
Consider  an electron bound  by two large, narrow  repulsive  potentials  at 
x = 0 and x = d, where d =  2.5 x 10-10 meter, the approximate diameter of 
an iron atom.   Since ∇p = mevrms, where me is the mass of the electron, 
and vrms is the rms velocity of the electron, then (2) would become 
 
 
                 mevrms d = ħ/2,      (6) 
 
 
so that  vrms =  ħ/2med.   Using ħ = 10-34 J-s, and me = 9x10-31 kg, we get 
vrms =  2.22 x 105 meters/sec.  Using d = 2.5 x 10-10 meters, this gives 
approximately 1015 per second for the number of transits of the bound 
interval, d, and therefore the rate of collision of the electron with the 
boundary.  Even a very small transfer of only 10-6 ev per collision would 
give a total transfer of energy to the boundaries of 109 ev per second.  
However, since the ground state mean kinetic energy of an electron 
contained within the dimensions of this size would only be approximately 
.14 ev, and since the binding energy of the outer iron electron is about 50 
ev, or even 10 ev for zinc, the amount of compression required to make 
the transition from the first type of containment to the second would seem 
very great, perhaps only occurring in the interior of very massive objects. 
 
But this suggests that the source of heat in the interior of such objects may 
not only be nuclear fusion, but also energy generated by the compression 
of the contained matter by the intense force at their centers.  If so, then one 



might speculate that at some size, the dimensions and composition of the 
object would produce an inability to transmit thermal energy sufficiently 
rapidly from its interior, resulting in instabilities that would produce a 
continual explosive ejection of surface layers from it. 
 
In this case, galaxies might represent not only a condensation of diffuse 
matter, but also an evolutionary stage reflecting matter constantly being 
ejected from the surface of a very massive core. Presumably then, very 
small, compact objects, whose ejection process had not yet begun and so 
had no surrounding cloud of relatively dense matter to mask their high 
gravitational red-shift, would represent precursors to this expansive stage-- 
that is, very young pre-galaxies. 
 
But even though the transition from the first type of containment to the 
second for atomic electrons only appears possible under compressions not 
achievable in the laboratory, nonetheless it seems to me that since the 
atom itself may act as a quantum within the lattice structure of a solid, 
such a transition of the atoms themselves may be possible under lower 
compressions.  
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