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        Abstract 
 
 
The dispersion relation between the conjugate Fourier variables of position and 
momentum, ∇px∇x ≥ ħ/2, when expressed as an equality, ∇px∇x = ħ/2, defines the 
relationship between the ground-state mean kinetic energy of a confined quantum, 
and its degree of containment.  This containment can occur in two ways: the first is 
by an attractive potential, and the second by a repulsive potential.  These two cases 
behave very differently.  If the quantum is bound by an attractive potential, the 
ground-state kinetic energy is balanced by the containing potential in a stable state 
where the kinetic energy remains within the bound system.  In the second type of 
containment, which is only possible by compression, this is not so.  In this case, the 
quantum is contained by collisions with the bounding potential, which must result 
in a transfer of kinetic energy to the boundary.  If the boundary is sufficiently 
massive, then the energy transfer will have a negligible effect on the dimensions of 
containment, and therefore the ground-state kinetic energy of the contained 
quantum will not significantly change.   An electron contained within the 
approximate diameter of an iron atom, 250 nm, for example, if contained by the 
attractive potential of the atomic nucleus, would transmit no energy from the atom.  
The same electron, however, contained in the same volume by a repulsive 
potential, would transmit energy to the boundary at each collision.  Because the 
minimum velocity of the electron determined by the dispersion relation is very 
great compared to the dimension of containment, the number of collisions per 
second with the boundary would be very high, on the order of 1015.  For even a 
small energy exchange per collision, this would result in a very large rate of energy 
transfer.  An exchange of only 10-6 ev per collision, for example, would produce 
109 ev per second of energy transmitted to the boundary. 
 
     ______________ 
 
 
 
The dispersion relation between the conjugate Fourier variables of position and 
momentum,  
 



       ∇px∇x ≥ ħ/2,          (1) 
 
 
as developed by [1,2], cannot be regarded as merely a statistical relationship 
expressing an uncertainty in repeated measurements of the same variable.  For a 
single quantum, represented by a wave function ψ(x), located with 100% 
probability within a region along the x-axis between x = 0 and x = d (that is, for  
0 ≥ x ≥ d, ψ(x) = 0,  and for 0 < x < d, ψ(x) is normalized at 100%), then (1) 
expressed as an equality, 
 
 
                                                   ∇px∇x = ħ/2,          (2)    
 
 
must represent the relationship between the ground-state rms momentum of the 
quantum, which defines its ground-state mean kinetic energy, (∇p)2/2m,  and the 
magnitude of the dimension of containment, d. 
 
The containment can occur in two ways.  The first is by an attractive potential, 
V(x), whose source is located at x=0, such that for x ≥ d, the value of ψ(x), is 
negligible.  The second is by repulsive potentials at x = 0 and x = d, such that the 
probability of the quantum being in the region 0 < x < d is 100%, and outside of it 
zero.  In the first case, the total energy of the system, that is, the kinetic energy of 
the quantum plus the potential energy in the interval d, is given by the Schrödinger 
expression for the Hamiltonian: 
 
 
  EΨ(x) =  (- ħ/2m) d2Ψ(x)/dx2 + V(x)Ψ(x),  x > 0.     (3) 
 
 
But in the second case, the Schrödinger equation gives  
 
 
   EΨ(x) =  (- ħ/2m) d2Ψ(x)/dx2,    0 < x < d,  (4) 
 
and  
 
   EΨ(x) = 0,     0 ≥ x ≥ d. 
 



Here the total energy eigenvalues are the kinetic energy eigenvalues, determined 
by the magnitude of the momentum, p = h/λ, where λ = d/n   (n = 1,2,...)   In this 
case, (1) and (2) are non-local and non-conservative.  That is, a change in the 
magnitude of the containment distance from d to d ± δd changes the energy 
eigenvalue spectrum, and in particular the ground-state mean kinetic energy 
determined by (1) from K = (ħ/2d)2/2m to K’ = (ħ/2(d± δd))2/2m in the entire 
region of containment.  This change of energy eigenvalues is solely a function of 
δd for a given d and m, and is independent of any energy from the region 0 > x > d 
required to change the position of the boundaries. 
 
Clearly, both types of containment coexist in nature, but it seems to me that one 
type will generally determine the greater degree of containment, and therefore 
predominate.  For example, in a normal solid, the atomic electrons are bound 
relatively strongly by the attractive potential of the nucleus, and relatively weakly 
by the repulsive potentials of the electron clouds of adjacent atoms.  Therefore the 
first type of containment dominates.  If however, the solid is compressed enough 
so that the interatomic dimensions shrink sufficiently for the adjacent electron 
clouds to impose a repulsive boundary less than the dimensions of the 
uncompressed atom, then at some point, the ground-state kinetic energy from the 
repulsive boundaries will exceed that from the attractive potential of the nucleus 
for some electrons, and one or more electrons will effectively act as free electrons 
bound by the adjacent electron clouds, and will begin colliding with them, thereby 
transmitting kinetic energy to the lattice. 
 
It seems to me that a theoretical determination of the point of transition between 
the two types of containment would require a sufficiently accurate computer model 
in order to determine the effect of the compression on the electron clouds, and their 
relation to individual electrons.  But let us examine an idealized example to try to 
see what the possible energy production might be after a transition from the first to 
the second type of containment.  Consider an electron bound by two large, narrow 
repulsive potentials at x = 0 and x = d, where d = 250 nm, or 2.5 x 10-10 meter, the 
approximate diameter of an iron atom.   Since ∇p = mevrms, where me is the mass of 
the electron, and vrms is the rms velocity of the electron, then (2) would become 
 
 
             mevrms d = ħ/2,      (3) 
 
 
so that  vrms =  ħ/2med.   Using ħ = 10-34 J-s, and me = 9x10-31 kg, we get vrms =  
2.22 x 105 meters/sec.  Using d = 2.5 x 10-10 meters, this gives approximately 1015 



per second for the number of transits of the bound interval, d, and therefore the rate 
of collision of the electron with the boundary.   If the repulsive potentials were 
massive single objects, then the boundary would have to absorb the entire kinetic 
energy of the electron in order to contain it, but for a complex mass such as an 
atom, which is capable of transferring kinetic energy back to the electron, this is 
not necessarily so.  But even if we assume a very small net transfer of only 10-6 ev 
per collision, this gives a total transfer of energy to the boundaries of 109 ev per 
second. 
 
The compression needed for the transition from attractive to repulsive containment 
for an atomic electron would seem to be very great, probably only occurring in 
nature under extreme conditions, such as intense gravitational compression.  One 
can conjecture that the thermal energy transmitted to the structure of the contained 
matter would be a major source of heat in the interior of massive objects.  One can 
also speculate that at some point, the compression would be great enough so that 
the nuclei would act under the second type of containment, and that eventually 
individual quanta could attain sufficient kinetic energy for pair-production to 
occur.  Although the anti-particles would be re-absorbed by the surrounding 
matter, this would result in an accretion of mass in the interior of sufficiently 
massive objects because of the constant conversion of energy to matter.  It seems 
to me, however, that there may be an additional, not yet known process by which 
there is a permanent conversion of energy to mass.  In this case, and perhaps in 
either case, galaxies would represent not only a condensation of diffuse matter, but 
also a stage in the creation of matter from a very massive core, where the inability 
of the core to transmit thermal energy sufficiently rapidly from its interior would 
produce a continual explosive ejection of surface layers from it.  Presumably, very 
massive, compact, and therefore highly red-shifted objects would represent 
precursors to this expansive process-- that is, very young pre-galaxies where this 
ejection process had not yet begun. 
 
Although such free-electron energy production would probably be impossible to 
achieve in laboratory conditions, it seems to me that when an atom can act 
effectively as a quantum, then its transition from the first type of containment to 
the second might be accessible.  In this case the atom would have to act as both the 
contained quantum and as a boundary, but if the energy transmitted per collision 
were sufficiently small, this would appear possible. There seem to me two main 
requirements.  The first is that the compression must be sufficient to produce a 
dominant interval of repulsive bounding of the atom by adjacent atoms’ electron 
clouds.  The second is that the stability of the interatomic structure of the 
compressed material must be sufficient to adequately maintain the interval. For a 



solid or liquid, the compression would have to be enough to free the atom from the 
attractive containment of the atomic structure in the substance, but for a gas this 
would not be necessary.  On the other hand, the gas would have a less stable inter-
atomic structure, so it seems to me difficult to see what could achieve a suitable 
balance between the two requirements without some testing.  But even with the 
larger mass of an atom compared to an electron, the number of collisions at inter-
atomic distances would still be high.  This suggests that another significant 
requirement for maintaining a stable structure would be transmitting thermal 
energy away from the contained matter sufficiently rapidly. 
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