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Abstract

Recently a model of intra- and interspecific competition between two species was proposed [Phys. Rev.

E 87 (2013) 010101], in which the scarcer species (i.e., with smaller stationary population size) can be more

resistant to extinction when it holds a competitive advantage. Here we verify this survival of the scarcer in

space (SSS) phenomenon in models with spatial structure, both analytically and numerically. We find that

the conditions for SSS, as obtained applying renormalization group analysis and Monte Carlo simulation to

a discrete-space model, differ significantly from those found in the spatially homogeneous case.

Keywords: Demographic stochasticity, Doi-Peliti mapping, Renormalization group, Monte Carlo simula-

tion.

1 Introduction

Recently, Gabel, Meerson, and Redner [1] proposed a stochastic model of two-species competition in which, for

stationary regimes such that the two species coexist, the scarcer species (i.e., with smaller population size), can,

under certain conditions, be less susceptible to extinction than the more populous species. This phenomenon,

dubbed survival of the scarcer (SS) in [1], is surprising since conventional wisdom on population dynamics

suggests that a smaller population is more susceptible to extinction due to demographic fluctuations. The

authors of [1] use a variant of the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation to obtain the

tails of the quasi-stationary probability distribution of the process [2, 3]. They show that a small asymmetry

in interspecific competition can induce survival of the scarcer species.
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While the analysis of [1] holds for well mixed (spatially uniform) populations, it is natural to inquire whether

the same conclusions apply for populations distributed in space. In this paper we study a stochastic model

similar to that of [1], but with organisms located on a d−dimensional lattice, and investigate the conditions

required for survival of the scarcer in space (SSS). On reproduction, a daughter organism appears at the same

site as the mother; competition only occurs between organisms at the same site. In addition to these reactions,

organisms also diffuse on the lattice. Starting from the master equation, we build a representation involving

creation and annihilation operators, taking advantage of the discrete nature of the stochastic process. This

representation allows us to obtain a full functional integral formulation, which can be regarded as a mapping

of the stochastic process to a field theory. This now standard procedure is known as the Doi-Peliti mapping

[4, 5, 6]. We consider the population dynamics in a critical situation, i.e., populations close to extinction. The

dynamic renormalization group (DRG) is used to study the nonequilibrium critical dynamics of the population

dynamics, specifically, to determine how the model parameters transform under changes in length and time

scales. The model is also studied via Monte Carlo simulation, which again confirms the existence of SSS when

the less populous species is more competitive.

The remainder of this paper is organized as follows. In section 2 we describe the model and write the

effective action associated with the stochastic process. A brief analysis of mean-field theory, valid in dimensions

greater than the critical dimension is performed. In section 3 we use some known results on multispecies

directed percolation to obtain the renormalization group flow in parameter space. This analysis, combined

with numerical simulations of the associated stochastic partial differential equations, allow us to determine the

regions in parameter space in which SSS occurs. Results of Monte Carlo simulations are presented in Section

4. Section 5 closes the paper with our conclusions.

2 Model

The model proposed in [1] may be described, with some minor modifications in the rates as specified below, by

the following set of reactions:



















A
α
⇀ A+A B

β
⇀ B +B

A+A
α′

⇀ ∅ (A) B +B
β′

⇀ ∅ (B)

A+B
ζ
⇀ B A+B

ξ
⇀ A

(1)

The reactions in the first line correspond to reproduction of species A and B. Those in the second line

describe intraspecific competition processes which may be of mutual annihilation (∅) or individual death (A

/ B), while the third line represents interspecific competition. α (β), α′ (β′) and ζ (ξ) are the rates of the

reactions associated with species A (B).

The relation between the rates in equation (1) and those of the original model [1] is (in the case of mutual

annihilation): α ↔ 1, β ↔ g, α′ ↔ 1/K, β′ ↔ 1/K, ζ ↔ ǫ/K, and ξ ↔ δǫ/K. δ < 1 implies an asymmetry in

competition between species that favors B at expense of A. In this case species B is more competitive than A;

the opposite occurs if δ > 1.

The authors of Ref. [1] constructed a phase diagram in the g-δ plane (shown schematically in Figure 1).

The phase diagram includes results of both mean-field theory (MFT) and analysis of the master equation for a
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Figure 1: Phase diagram of well mixed system in the g-δ plane, as furnished by the analysis of Ref. [1]. Dashed
blue curve: gmf = (1 + δǫ)/(1 + ǫ). Full red curve: gsw = (1 +mδǫ)/(1 +mǫ).

stochastic population model in a well mixed system, i.e., without spatial structure. In MFT, the populations of

the two species are equal when gmf(δ) = (1+δǫ)/(1+ǫ). Analysis of the master equation yields equal extinction

probabilities when gsw(δ) = (1 + mδǫ)/(1 + mǫ) with m ≡
[

(ln 2)−1 − 1
]

−1

. These conditions are plotted in

figure 1; they intersect at the point (g, δ) = (1, 1). The phase diagram includes two “normal” regions, in which

the more populous species is less likely to go extinct, and two “anomalous” regions, in which the scarcer species

is more likely to survive. Thus in region I (where δ < 1 and B is more competitive in the sense defined above),

species A is more numerous in the quasi-stationary state and simultaneously more susceptible to extinction,

while in region II (where δ > 1 and A is more competitive), species B is more numerous, yet more likely to

go extinct first. Regions I and II are anomalous since they correspond to an inversion of the usual dictum

that susceptibility to extinction grows with diminishing population size. Our goal in this work is to determine

whether a stochastic model of two-species competition with spatial structure, in which organisms diffuse in

d−dimensional space, exhibits a similar phenomenon. In the following subsection we develop a continuum

description for this spatial stochastic process.

2.1 Effective action

We consider a stochastic implementation of the reactions of equation (1) on a d-dimensional lattice, adding dif-

fusion (nearest-neighbor hopping) of individuals of species A and B at rates DA and DB respectively. Following

the standard Doi-Peliti procedure mentioned in the Introduction, ignoring irrelevant terms (in the renormal-

ization group sense) and with the so-called Doi shift [6] already performed, we obtain the following effective

action:

S(φ̄, φ, ψ̄, ψ) =

∫

ddx

∫

dt
{

φ̄[∂t +DA(σA −∇2)]φ− αφ̄2φ+ jα′φ̄φ2 + α′φ̄2φ2 + ζψφφ̄
}

+

∫

ddx

∫

dt
{

ψ̄[∂t +DB(σB −∇2)]ψ − βψ̄2ψ + jβ′ψ̄ψ2 + β′ψ̄2ψ2 + ξφψψ̄
}

, (2)

where σA ≡ −α/DA, σB ≡ −β/DB and j ≡ 1 (2) for individual death (mutual annihilation). Action S has

four fields. The expected values of the fields φ and ψ (evaluated by performing functional integrals over the

four fields, using the weight exp[−S]), represent the mean population densities of species A and B, respectively.

The fields with overbars have no immediate physical interpretation, but are related to intrinsic fluctuations of
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the stochastic dynamics.

Using the definitions of σA and σB and the change of variable φ̄→ θAφ̄, φ→ θ−1

A φ, ψ̄ → θBψ̄, and ψ → θ−1

B ψ,

where θA ≡
√

jα′

α , θB ≡
√

jβ′

β , we can write the effective action in the form:

S(φ̄, φ, ψ̄, ψ) =

∫

ddx

∫

dt
{

φ̄[∂t +DA(σA −∇2)]φ

+ ψ̄[∂t +DB(σB −∇2)]ψ

+ gAφφ̄(φ − φ̄) + gBψψ̄(ψ − ψ̄)

+ hBφψψ̄ + hAφψφ̄
}

, (3)

with






























gA ≡ √
jαα′

hA ≡ θ−1

A ζ

gB ≡ √
jββ′

hB ≡ θ−1

B ξ.

(4)

Dimensional analysis yields,

[hA] = [hB] = p2−
d

2 = [gA] = [gB],

where [X ] denotes the dimensions of X , and p has dimensions of momentum [6]. The upper critical dimension

is therefore dc = 4, as for single-species processes such as the contact process and directed percolation.

2.2 Mean-field approximation

For d ≥ dc, mean-field analysis, which ignores fluctuations in φ and ψ, yields the correct critical behavior.

Imposing the conditions δS
δφ = 0, δS

δφ̄
= 0, δSδψ = 0 and δS

δψ̄
= 0, we obtain the mean-field equations







∂φ
∂t = DA∇2φ+ αφ− gAφ

2 − hBφψ

∂ψ
∂t = DB∇2ψ + βψ − gBψ

2 − hAφψ.
(5)

Let L be a typical length scale and define X = gAφ/α, Y = gBψ/β, s = DAt/L
2, and define a rescaled

coordinate x′ = x/L. Then equation (5) can be written in dimensionless form as







∂X
∂s = ∇2X + γ

(

X −X2 − aXY
)

≡ ∇2X + f(X,Y )

∂Y
∂s = D∇2Y + γ

(

cY − cY 2 − bXY
)

≡ D∇2Y + g(X,Y )
(6)

with γ ≡ αL2/DA, a ≡ βhB/(αgB), b ≡ βhA/(αgB), c ≡ gAβ
2/(gBα

2), D ≡ DBβgA/(DAαgB), f(X,Y ) ≡
γ
(

X −X2 − aXY
)

and g(X,Y ) ≡ γ
(

cY − cY 2 − bXY
)

. Coexistence is possible in the stationary state if

the conditions c > b and a < 1 hold, implying hA < βgA/α and hB < αgB/β. These conditions depend

monotonically on parameters α, β, gA and gB, analogous to the coexistence conditions found in [1]. The same

is not true in spatial stochastic theory, as we shall see in the next section.
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3 Renormalization group (RG) flow

Some years ago, Janssen analyzed a class of reactions of the kind defined in equation (1) [7]. This work

considered multi-species reactions of the form

Xi ↔ 2Xi Xi → ∅ Xi +Xj → kXi + lXj, (7)

where i and j are species indices and k, l are either zero or unity; this process is called multicolored directed

percolation (MDP), with different colors referring to different species. The RG analysis of [7] shows that

knowledge of the directed percolation fixed points is sufficient to determine the fixed points of the full MDP.

As shown in that work, the parameter combinations gA/DB ≡ uA and gB/DA ≡ uB, related to intraspecific

competition, flow under renormalization group transformations to the stable DP fixed point u∗A = u∗B = u∗ =

2ǫ/3 with ǫ = 4 − d > 0.1 Therefore, regarding the renormalization of intraspecific competition parameters,

inclusion of other species behaving as in DP does not alter the fixed point.

Janssen’s analysis shows that there are four fixed points for interspecific competition parameters hA/DA ≡
vA and hB/DB ≡ vB, which from reactions (1) are related to ξ and ζ. The first two are (v∗A, v

∗

B) = (0, 0), which

is unstable, and

(v∗A, v
∗

B) =

(

DA +DB

DA

2

3
ǫ,
DA +DB

DB

2

3
ǫ

)

(8)

which is a hyperbolic fixed point if DA = DB.
2 For DA 6= DB, it was conjectured [7] that the stability of the

fixed points remains the same despite small changes in the renormalization group flow diagram topology. The

other two fixed points for DA = DB are stable; they are given by (v∗A, v
∗

B) = (0, 2u∗) and (v∗A, v
∗

B) = (2u∗, 0).

To summarize, for DA = DB ≡ D0, the interspecies competition parameters flow to one of the following four

d−dependent fixed points (denoted as O,F,G, and H below),

(vA, vB) =

(

θ−1

A ζ

D0

,
θ−1

B ξ

D0

)

→
{

O : (0, 0), F : (u∗, u∗),

G : (2u∗, 0), H : (0, 2u∗)
}

(9)

Figure 2 shows the renormalization group flow diagram. The unstable fixed point O corresponds to complete

decoupling between the two species, and the hyperbolic point F to symmetric coupling. In the symmetric

subspace, any nonzero initial value of v ≡ vA = vB, flows to F. For vB > vA (δ > 1), (vA, vB) flows to G, so

that species A is effectively unable to compete with B. Similarly, if vA > vB (δ < 1), the flow attains point H.

In the following subsection we discuss the stationary states associated with these fixed points.

1Not to be confused with parameter ǫ used in equation 1.
2In the nomenclature of [7], if species are of the same flavor.
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Figure 2: RG flow of the interspecific competition parameters vB and vA. Only the first quadrant is relevant
due to the requirement of positive rates. There is an unstable fixed point O at (vA, vB) = (0, 0) (black dot);
a hyperbolic fixed point F at (vA, vB) = (u∗, u∗) (red dot), and two stable fixed points G and H, located at
(vA, vB) = (0, 2u∗) and (vA, vB) = (2u∗, 0) respectively (blue dots). The separatrix vA = vB is the boundary
between the basins of attraction of G and H.

3.1 Steady state close to critical points

Population dynamics in the critical regime is governed by a pair of coupled stochastic partial differential equa-

tions (SPDE), which are readily deduced from the action of equation (3)[8]:

∂φ

∂t
= D0∇2φ+ αφ− gAφ

2 − hBφψ + η1 (10)

and

∂ψ

∂t
= D0∇2ψ + βψ − gBψ

2 − hAψφ+ η2 (11)

where the noise terms η1(x, t) and η2(x, t) satisfy 〈η1(x, t)〉 = 〈η2(x, t)〉 = 0, and

〈η1(x, t)η1(x, t)〉 = 2gAφ(x, t)δ
d(x− x′)δ(t− t′), (12)

〈η2(x, t)η2(x, t)〉 = 2gBψ(x, t)δ
d(x− x′)δ(t− t′). (13)

Note that these multiplicative noise terms depend on the square root of their respective fields, and were obtained

directly from the action, without any additional hypotheses.

3.1.1 SPDE in the vicinity of point F

In the symmetric subspace, δ = 1, the RG flow is to the fixed point F, and parameters gA/D0, gB/D0, hA/D0,

and hB/D0 take the associated values. Therefore the SPDEs in (10) and (11) can be written as [9]:

∂φ

∂t
= D0∇2φ+ φ−D0u

∗φ2 −D0u
∗φψ + η1, (14)
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∂ψ

∂t
= D0∇2ψ + gψ −D0u

∗ψ2 −D0u
∗ψφ+ η2 (15)

where we set α = 1 and β = g. With the rescaling φ→ φ/(D0u
∗), ψ → ψ/(D0u

∗) and x→ (1/D0)
1/2x, we can

write equations (14) and (15) in the form:

∂φ

∂t
= ∇2φ+ φ− φ2 − φψ + η1, (16)

∂ψ

∂t
= ∇2ψ + gψ − ψ2 − ψφ+ η2 (17)

with rescaled noise

〈η1(x, t)η1(x, t)〉 = 2 (D0)
2−

d

2 (u∗)2φ(x, t)δd(x− x′)δ(t− t′) (18)

〈η2(x, t)η2(x, t)〉 = 2 (D0)
2−

d

2 (u∗)2ψ(x, t)δd(x − x′)δ(t− t′). (19)

For d < 4, the rescaled noise intensity σ grows with diffusion rate D0; for d = 1 we have σ2 = 2D
3

2

0
u∗2 with

u∗2 ≈ 2. Figures 3(a) and 3(b) show results of numerical simulations of equations (16) and (17) in d = 1 with

g = 1. They show, for a one-dimensional lattice of L = 128 sites in the interval (−1, 1), the population densities

averaged over 1000 Monte Carlo realizations for two different values of the noise intensity. The time interval

T is T = 400, partitioned into N = 40000 steps so that ∆t ≡ T/N = 400/40000 = 0.01. Initial conditions

are φ(x, 0) = 0.4 and ψ(x, 0) = 0.6. For σ = 0, population densities are almost time-independent as shown in

Figure 3(a). This is not the case for larger noise values. In this case, the two populations tend to the same

value (see figure 3(b)). Although Figs. 3(a) and 3(b) represent averages over many realizations, we have verified

coexistence in individual runs.

These simulations were performed using standard integration techniques for the Langevin equation with

the XMDS2 software [10]. Since we are interested in showing only the initial temporal trends of the two

population densities in the vicinity of fixed points, the use of standard techniques of integrating the Langevin

equations is sufficient to reveal the qualitative nature of the solutions. Near a phase transition to an absorbing

state, one of the population densities tends to zero and the standard numerical integration scheme fails. This

standard algorithm is not suitable for extracting the more accurate results associated with critical exponents or

asymptotic decays. In this case we would have to use more sophisticated algorithms such as those proposed in

[11, 12, 13].

3.1.2 SPDE in the vicinity of a stable fixed point

Now consider the case δ 6= 0. With δ > 1, the parameters flow to point G and Eqs. (10) and (11) become

∂φ

∂t
= D0∇2φ+ φ− u∗φ2 + η1, (20)

∂ψ

∂t
= D0∇2ψ + gψ − u∗ψ2 − 2u∗ψφ+ η2, (21)

where we put α = 1 and β = g. With a rescaling similar to that used above, we have
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(a) Symmetric case with σ = 0.0 and g = 1. Initial popu-
lations are φ(x, 0) = 0.4 and ψ(x, 0) = 0.6.
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(b) Symmetric case with σ = 0.03 and g = 1. Initial popu-
lations are φ(x, 0) = 0.4 and ψ(x, 0) = 0.6.

Figure 3: Numerical simulations symmetric SPDE.

∂φ

∂t
= ∇2φ+ φ− φ2 + η1, (22)

∂ψ

∂t
= ∇2ψ + gψ − ψ2 − 2φψ + η2 (23)

with η1 and η2 satisfying (18) and (19), respectively. For δ < 1 the situation is completely analogous to the

case δ > 1, and the resulting equations are as above with the exchange of φ and ψ and changing the position of

the factor g accordingly.

If we neglect diffusion and noise terms, we have a system of ordinary differential equations having a fixed

point associated with the stable coexistence state given by (φ∗, ψ∗) = (1, g − 2).3 Therefore, the condition for

coexistence is g > 2. If g < 2, only species A survives for δ > 1. Figure (4) shows the result of a simulation

with g = 2.2 in which the equations are integrated including both diffusion and noise. Numerical experiments

indicate that the effect of these terms is to increase the value of g ' 2 for coexistence. Higher noise values imply

higher thresholds g for coexistence.
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Figure 4: Asymmetric case (δ = 1.5) with σ = 0.03 and g = 2.2. Initial populations for A and B species are
φ(x, 0) = 0.1 and ψ(x, 0) = 0.9, respectively.

For δ < 1 similar reasoning applies. The results are summarized in the phase diagram of Fig. 5. There are

four stationary phases: a pure-A phase for δ > 1 and g < 2, a symmetric pure-B phase for δ < 1 and g < 1/2,

and two (disjoint) coexistence phases. The latter arise when the less competitive species proliferates sufficiently

faster than the more competitive one.

3For the case δ < 1, fixed points are (φ∗, ψ∗) = (1 − 2g, g), and coexistence condition is 0 < g < 1/2.
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Figure 5: Stationary phase diagram in the g-δ plane for stochastic model with spatial structure. The reference
points have coordinates: b = (1, 0), p = (0, 1/2), r = (3, 2). For δ > 1, when g < 2 only species A is present,
while for g > 2 there is coexistence. Similarly, for δ < 1, when g > 1/2 only species B is present, and for g < 1/2
there is coexistence. The diagonal line connecting points p and r is the equal-population criterion furnished by
mean-field theory, gmf (δ) = (1 + ǫδ)/(1 + ǫ), with ǫ = 1. In regions I and II, the more populous species (A
or B, respectively), as predicted by mean-field theory, in fact goes extinct. The thick, dashed, blue and black
curves represent gmf and gsw for the value of ǫ that maximizes the area between them, i.e., ǫ = 1/

√
m ≈ 0.66.

3.1.3 Nature of phase transitions

From the equations that omit the diffusion and noise terms, one may infer the nature of the phase transitions in

the diagram of Fig. (5). From Table 1, which shows the fixed points of the equations for different values of δ, we

see that in general the values in the final column do not match for δ 6= 1. This fact indicates that the vertical blue

Table 1: Simplified equations and their fixed points for different values of δ

δ Equation Fixed Point

= 1 φ̇ = φ− φ2 − φψ and ψ̇ = gψ − ψ2 − φψ (φ∗, ψ∗) = (0, g)

> 1 φ̇ = φ− φ2 and ψ̇ = gψ − ψ2 − 2φψ (φ∗, ψ∗) = (1, 2− g)

< 1 φ̇ = gφ− φ2 and ψ̇ = ψ − ψ2 − 2φψ (φ∗, ψ∗) = (g, 1− 2g)

line in the diagram (5), i.e., the line δ = 1, is a line of discontinuous phase transitions. Similarly, examining the

expressions in the final column of Table 1, we infer the nature of phase transitions along the horizontal lines at

g = 1/2 and g = 2. In regions of coexistence, the densities of the minority species grow continuously from zero;

thus these transitions are continuous. One should of course recognize that the predictions for the phase diagram

are essentially qualitative; quantitative predictions for nonuniversal properties such as phase boundaries are

not possible once irrelevant terms have been discarded. Regarding the nature of the transitions, we expect the

continuous ones, as furnished by this mean-field-like analysis, to in fact belong to the DP universality class

[7]. The line of discontinuous transitions contains a portion (between levels p and r) that is between absorbing

subspaces (only on species present in each phase), and other portions that separate (from the viewpoint of the

species undergoing extinction) an active and an absorbing phase. Discontinuous transitions of this nature are

not expected to occur in one dimension [14].

According to mean-field theory, a point in region II corresponds to ρB > ρA. If we increase the competi-

tiveness of species A, increasing δ while maintaining g fixed, there will be a point beyond which species B no
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longer has the greater population density. Improvement of the competitiveness of species A will make it the

more populous species if organisms are well mixed. In the case of a spatially structured population, by contrast,

any competitive advantage of species A, no matter how small, is sufficient to dominate the B population (if

the latter does not proliferate very rapidly) when the population densities are very low, as is the case near

criticality. Thus in a situation in which mean-field theory predicts species B to be the majority, we can have

species A exclusively. This can be seen as a strong version of the survival of the scarcer phenomenon.

To compare the predictions of the mean-field and spatially structured descriptions, a pair of dashed lines

are plotted in Fig. 5, representing equations for gmf and gsw as defined previously, for parameters such that

the area between them is maximum, thereby maximizing the region in which SS occurs. [The maximum area

is obtained using ǫ = 1/
√
m with m = [(ln 2)−1 − 1]−1, in Eq. (1)]. Given the much larger area of the region

exhibiting SS in the spatial model, compared with that in the mean-field analysis (i.e., the area between the two

dashed lines for 1 < δ < 3,) we see that the SS phenomenon can be greatly intensified when spatial structure

is included. Analogous reasoning applies for region I (green). (For the parameter values used, however, this

reasoning does not apply for δ > 3, since in this case the area between the dashed lines can be arbitrarily large.

Also we no longer have a region analogous to region II with species A only.) In this way we see that the phase

diagram for the spatial stochastic model is rather different from that found in [1]. Moreover, under certain

conditions, the survival of the scarcer phenomenon is strengthened.

4 Simulations

Since the preceding analysis involves approximations whose reliability is difficult to assess, we perform simula-

tions of a simple lattice model to verify SSS. We consider the following spatial stochastic process, defined on a

lattice of Ld sites. Each site i is characterized by nonnegative occupation numbers ai and bi for the two species.

The organisms (hereafter “particles”) of the two species evolve according to the following rates:

• Particles of either species hop to a neighboring site at rate D.

• Particles of species A(B) reproduce at rate λA(λB).

• At sites with two or more A particles, mutual annihilation occurs at rate αAai(ai − 1), and similarly for

B particles, at rate αBbi(bi − 1).

• At sites having both A and B particles, the competitive reaction B → 0 occurs at rate ζAaibi and the

reaction A → 0 occurs at rate ζBaibi.

The model is implemented in the following manner. In each time step, of duration ∆t, each process is

realized, at all sites, in the sequence: hopping, reproduction, annihilation, competition.

In the hopping substep, each site is visited, and the probability of an A particle hopping to the right (under

periodic boundaries) is set to ph = Dai∆t/(2d). A random number z, uniform on [0, 1) is generated, and if

z < ph the site is marked to transfer a particle to the right. Once all sites have been visited, the transfers are

realized. The same procedure is applied, in parallel, for B particles hopping to the right. Subsequently, hopping

in the other 2d− 1 directions is realized in the same manner.
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In the reproduction substep, the A particle reproduction probability at each site i is taken as pc = λAai∆t.

A random number z is generated and a new A particle created at this site if z < pc. An analogous procedure

is applied for reproduction of B particles.

In the annihilation substep, a probability pa = αAai(ai−1)∆t is defined at each site, and mutual annihilation

(ai → ai − 2) occurs if a random number is < pa. Again, an analogous procedure is applied for annihilation of

B particles.

Finally, at sites harboring both A and B particles, probabilities pA = ζAaibi∆t and pB = ζBaibi∆t are

defined. The process B → 0 occurs if a random number z < pA, while the complementary process A → 0 occurs

if pA ≤ z < pA + pB. Note that at most one of the processes (A → 0 and B → 0) can occur at a given site in

this substep.

The time step ∆t is chosen to render the reaction probabilities relatively small. To do this, before each

step we scan the lattice and determine the maximum, over all sites, of ai, bi, and aibi. With this information

we can determine the maximum reaction rate over all sites and all reactions. Then ∆t is taken such that the

maximum reaction probability (again, over sites and reactions) be 1/5. In this way, the probability of multiple

reactions (e.g., two A particles hopping from i to i + 1, etc.) is at most 1/25, and can be neglected to good

approximation, particularly in the regime in which occupation numbers are typically small.

We simulate of the process on a ring (d = 1) using quasistationary (QS) simulations, intended to sample

the QS probability distribution [15, 16]. In these studies the system is initialized with one A and one B

particle at each site. When either species goes extinct (an absorbing subspace for the process), the simulation

is reinitialized with one of the active configurations (having nonzero populations for both species) saved during

the run. Following a brief transient, the particle densities fluctuate around steady values. We search for

parameter values such that species A is more numerous, despite being much less competitive than species B

(i.e., ζB >> ζA).

Given the large parameter space, certain rates are kept fixed in the study: We set D = αA = αB = 1/4.

We use QS simulations as well as spreading simulations [17] to estimate the critical value of λ for single-species

survival. In spreading simulations the initial configuration is that of a single site with one particle, and all

other sites empty. We search for the value of λ associated with a power-law behavior of the survival probability

P (t) and the mean population size n(t). These studies yield λc = 1.267(1) as the critical point for survival of

a single species, i.e., without competition. (Here and in the following, figures in parentheses denote statistical

uncertainties in the final digit.) The phase transition is clearly continuous; details on scaling behavior will be

reported elsewhere.

In the two-species studies we set λA = 1.6 and ζA = 0.005, so that species A is well above criticality but

weakly competitive. We then vary λB and ζB , monitoring the QS population densities ρA and ρB of the two

species, as well as their QS lifetimes, τA and τB. The latter are estimated by counting the number of times, in

a long QS simulation, that one or the other species goes extinct. Survival of the scarcer is then characterized

by the conditions ρA > ρB and τA < τB. For the parameter values studied, we observe SSS for λB ≈ λc and

ζB ≫ ζA. Figure 6 illustrates the variation of the population densities and of the ratio τA/τB as ζB is varied

for fixed λB = 1.25, on a ring of 200 sites. In this case, ρA > ρB throughout the range of interest; the scarcer

species, B, survives longer than A for ζB ≥ 0.25. Figure 7 shows a sample evolution, for ζB = 2 and other
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parameters as in Fig. 6, illustrating that sites bearing both species are quite rare, occurring at the frontiers

between regions dominated by a single species.

Figure 6: Quasistationary population densities ρA (blue) and ρB (red), and lifetime ratio τA/τB (black) versus
ζB, for parameters as specified in text.

Figure 8 shows the result of a systematic search in the ζB-λB plane on a ring of L = 200 sites. These data

represent averages of 200 realizations, each lasting 105 time units. SSS is observed in the region bounded by

the two curves; the lower curve corresponds to τA = τB while on the upper we have ρA = ρB. Thus SSS is

found in a small but significant region of parameter space. Although we use a rather small system to facilitate

the search, SSS is not restricted to this system size. For L = 800 for example, the range of λB values admitting

SSS is more restricted (from about 1.24 to 1.27) but at the same time the effect can be more dramatic. For

λB = 1.27 and ζB = 0.2, for example, we find ρA = 0.74, ρB = 0.49, and τB ≈ 100τA. Thus SSS is observed in

simulations of the lattice model. Studies using λA = 1.35 and ζA = 0.01 yield a qualitatively similar diagram,

leading us to conjecture that the form of the region exhibiting SSS in one dimension is generically that shown

in Fig. 5.

In the inset of Fig. 8 the data are plotted in the δ-λB plane, for comparison with the theoretical predictions

shown in Fig. 5. The region exhibiting SSS is rather different from the predictions of both MFT and stochastic
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Figure 7: A sample evolution on a ring of 200 sites, of duration 4000 time units (with time increasing downward).
Blue: sites with ai > 0 and bi = 0; red: sites with ai = 0 and bi > 0; black: sites with both species present.

field theory. In particular the lower boundary in the δ-λB plane is not horizontal and it is unclear whether

the SSS region extends to δ = 1. (As λB is increased, SSS is observed in an ever more limited range of ζB

values, making numerical work quite time-consuming.) Here it is important to recall that irrelevant terms (in

the renormalization group sense) are discarded in the theoretical analysis, so that predictions for the phase

diagram are only qualitative. More detailed simulations, including other parameter sets, larger systems, and

simulations on the square lattice, are planned for future work.

5 Conclusion

We study a spatial stochastic model of two-species competition, inspired by the spatially uniform system ana-

lyzed in Ref. [1]. Based on Janssen’s results of for multicolored directed percolation [7], we find that the flow of

parameters under the renormalization group is such that a small competitive advantage may be amplified to the

point of excluding the less competitive species, unless the latter reproduces rapidly. Thus the less competitive

population can go extinct, regardless of its size as given by mean-field theory. These effects tend to be stronger,

the smaller the dimensionality d of the system. Our result shows that the survival of the scarcer phenomenon

observed in [1] persists, in some cases in a stronger form, in the presence of spatial structure. These differences

are evident when comparing Figs. (1) and (5).

Monte Carlo simulations of a one-dimensional lattice model verify the existence of SSS when the more

competitive species has a reproduction rate near the critical value, while that of the less competitive one is
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Figure 8: Simulations in one dimension: SSS is observed in the region bounded by the two curves; see text for
parameters. Inset: the same data plotted using δ = ζA/ζB instead of ζB on the horizontal axis.

above criticality.
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