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Abstract. The Morse molecular potential is used for the first time as an effective potential for
the overall interaction in charmonium. This procedure allows the calculation of the rotational
contributions of P states, the radii of five S states, and an absolute threshold for bound states.
The calculation of the latter provides important information on the character of the recently
found levels X(3915), X(3940), Ψ(4040), X(4050), X(4140), Ψ(4160), X(4160), X(4250),
X(4260), X(4350), Ψ(4415), X(4430), and X(4660).

1. Introduction
The pioneering work of Eichten et al. [1], and many other subsequent works, have shown that
the static potential plays an important role in the description of heavy mesons. Despite efforts
lasting more than three decades, some important features of the static interaction are not yet
fully understood. That is why several approximate methods and effective potentials have been
proposed for the description of the overall interaction in quarkonia. A partial list of the articles
on these two subjects is found in reference [2].

It has been established in the literature that for heavy mesons non-relativistic quantum
mechanics with constituent masses for the quark and antiquark can be applied. In this work
we use the Morse molecular potential for the first time to describe some low energy states of
charmonium and to find its effective potential parameters. This unique description allows us to
calculate the contribution of the rotational energy of P states, and the radii of five S states. It
also permits the calculation of the absolute threshold for the bound states of charmonium that
sheds light on the character of the recently found levels [3] X(3915), X(3940), Ψ(4040), X(4050),
X(4140), Ψ(4160), X(4160), X(4250), X(4260), X(4350), Ψ(4415), X(4430), and X(4660).

It is not necessary to consider confinement because we only deal with low energy levels.
Confinement is not well understood and there are models of hadrons that do not take it into
account. For example, the original MIT bag model treats confinement only at the wall by making
the vector current null at it [4]. In the case of the chiral bag model [5], confinement is treated
by means of the continuity of the axial vector current at the wall. All the experimental data
used below for the energies of charmonium states and the quark c mass were taken from the
Particle Data Group [3]. This work is based on the recently published article by de Souza [6]
on bottomonium.



2. The Morse Molecular Potential
The Morse molecular potential [7]

V (x) = D
(
e−2αx − 2e−αx

)
(1)

is widely used in the description of diatomic molecules where x = (r − a) /a, and α is a parameter
to be found from the fitting. For r = a the potential has its minimum value, −D. The first term
in the above expression takes care of the well-known repulsion of the strong force for very small
distances [8] and the second term takes care of the overall attraction due to QCD forces. For
|x| < 1 this potential can be expanded about the minimum up to order 3 in x and the expression

V (x) = −D +
1

2
ka2x2 − λka3x3 (2)

is produced, where λ = α/2a, and k = mω2, in which m is the reduced mass of the constituent
quark and antiquark. That is, m = (1/2)Mc in which Mc is the mass of the c quark. The
constant ω is defined below and is found from the fitting. For this potential the solution of the
Schrödinger equation yields the expression [7, 9]
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for the vibrational and rotational levels above the minimum of the potential, where the quantum
numbers υ and L are equal to 0, 1, 2, 3, ... and A, BL, CL, DL and CυL are constants to be found
from the fitting. In this last equation the first term describes harmonic vibrations, the second
term takes into account the anharmonicity of the potential, the third term describes rotations
with constant moment of inertia, the fourth term represents the centrifugal distortion and the
fifth term represents the coupling between vibration and rotation. This expression can also be
written as [9]
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where ω and D are related to α, a and m by

ω2 =
2α2D

ma2
. (5)

The constant BL is given by BL = h̄2/2ma2. In the fitting below we disregarded the last term
of Eqs. (3) and (4).

3. The Fitting
The first two levels, ηc(1S) and J/Ψ(1S), are a hyperfine doublet due to the spin-spin interaction,
but as our Hamiltonian does not depend on spin, we can use the S states J/Ψ(1S) and
Ψ(2S) ≡ Ψ(3686) for the fitting. We consider now the P states χc0(1P ), χc1(1P ) and χc2(1P )
which is a triplet due to the spin-orbit interaction whose contribution is given by

∆ESL = ∆ [J(J + 1)− L(L+ 1)− S(S + 1)] , (6)



Table 1. The levels considered in the fitting of charmonium.

(υ, L) Particle Mass (MeV/c2)

(0, 0) J/Ψ(1S) 3096.916± 0.011
(0, 1) χc(1P ) 3549.7± 37.9
(1, 0) Ψ(3686) 3686.09± 0.04
(0, 2) Ψ(3770) 3778.1± 1.2

where J =
∣∣∣J⃗ ∣∣∣ = ∣∣∣L⃗+ S⃗

∣∣∣. For the states χc0(1P ), χc1(1P ) and χc2(1P ) we have S = 1 and L = 1,

and thus, J = 0, 1 and 2, respectively. Using these values in Eq. (6) we obtain the average
values ∆1P = (27.7± 13.6) Mev/c2, and E1P = (3549.7± 37.9) Mev/c2 for the degenerate
level, χc(1P ). The state Ψ(3770), which is classified as 13D1, is a very well established state,
experimentally found with a mass of (3778.1± 1.2) Mev/c2. Table 1 presents a summary of the
levels used in the fitting with the corresponding values of υ and L.

4. Results and discussion
4.1. Results for the potential parameters
Fitting the levels of table 1 to Eq. (3) gives the following values for its parameters:
h̄ω = (8062.0± 0.1) Mev/c2, A = (3736.4± 0.1) Mev/c2, BL = (282.8± 58.3) Mev/c2,
DL = (28.3± 5.1) Mev/c2. From Eqs. (3) and (4) we obtain that A = (h̄ω)2/4D, and thus
D = (4348± 0.5) Mev/c2.

Using the values of D and h̄ω above in Eq. (5) we obtain a/α = (13.15± 0.05) × 10−2 fm,
and from the value of BL we find that a = (0.28 ± 0.05) fm which is a very reasonable figure
since the Compton wavelength of charmonium is about 0.69 fm if we use a constituent mass of
1.7 GeV/c2 . Using the above values of a and a/α we obtain α = 2.15± 0.39.

As we showed above, a molecular potential is harmonic about its minimum, and thus we
can calculate the value for the constant k = mω2 which can be written as k = mc2(h̄ω)2/(h̄c)2.
Using the above values we obtain k ≈ 1.44×103 GeV/fm2 ≈ 2.31×1023N/m which is a quite fair
number. For a distance of 0.3 fm it produces a force F ≈ 108N. The following simple calculation
shows that this is a reasonable number. If we calculate the average force necessary for producing
a work of 4 GeV in 0.3 fm we obtain a force of about 106N.

4.2. Number of S and P states
As we see in table 1 the quantum number n of QCD models corresponds to υ+1 in the present
model. The maximum number of υ can be calculated for a molecular potential by using the
simple following reasoning. In Eq.(3) the second term is always smaller than the first term, and
thus we obtain υ < h̄ω

A − 1
2 = 1.65792± 0.00004 and thus the possible values of υ are only 0 and

1. Therefore, the possible values for n are only 1 and 2.
We do a similar reasoning for calculating the maximum number of L. In Eq.(3) the fourth

term is always smaller than the third term, and so we obtain L(L+1) < BL
DL

= 9.99±2.06 which
is satisfied for L = 0, 1, 2, 3. This means, respectively, S, P,D and F states.

4.3. Discussion on the recently found levels
We found above that D = (4348± 0.5) Mev/c2 which is a very important result and states
that there is no charmonium bound state above (4348.8± 0.5) Mev/c2. Therefore, the states
Ψ(4415), X(4430), and X(4660) are not bound states of charmonium. On the other hand this



Table 2. Radii of five states of charmonium calculated with the use of Eq. (7).

(υ, L) Particle Radius (fm)

(0, 0) J/Ψ(1S), ηc(1S) 0.35± 0.06
(1, 0) Ψ(3686), ηc(2S) 0.49± 0.09
(2, 0) Ψ(3S) 0.63± 0.11

result shows that the recently found states X(3915), X(3940), Ψ(4040), X(4050), X(4140),
Ψ(4160), X(4160), X(4250), X(4260), X(4350) may be bound states of charmonium. But as
we saw in section 4.2 above the maxium number of n is two and, thus, if they are charmonium
states, none of them is a 3S state. They have to be 2P , 2D, and 2F states.

4.4. Radii of some S states
As it was shown above the Morse potential, when expanded about its minimum, yields Eq.
(2). For such a potential Robinett [10] obtained the following equation for the average value of
position for S states
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where we have taken into account Eq. (5). We can identify these average values with the radii of
charmonium states. We only calculate the radii of the states J/Ψ(1S), ηc(1S), Ψ(3686), ηc(2S),
and Ψ(3S) because the other upper states are far from the bottom of the potential. Using the
above values for the constants we obtain the results shown in table 2 for the radii of these five
states of charmonium.

5. Conclusion
The fitting of some energy levels of charmonium to the Morse molecular potential makes possible
the calculation of parameters of the effective molecular potential, prediction of the radii of five
states and sheds some light on the character of the states X(3915), X(3940), Ψ(4040), X(4050),
X(4140), Ψ(4160), X(4160), X(4250), X(4260), X(4350), Ψ(4415), X(4430), and X(4660).
Therefore, the above results add important information for the understanding of charmonium
and complement information obtained from QCD models.
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