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The Morse molecular potential is used for the first time as an effective potential for the

overall interaction in charmonium. This procedure allows the calculation of the rota-
tional contributions of P states, the radii of some S states, and an absolute threshold for
bound states. The calculation of the latter provides important information on the char-
acter of the recently found levels χ(3940), Ψ(4040), χ(4050), χ(4140), Ψ(4160), Y (4260),

Y (4350), Ψ(4415), χ(4430), and χ(4660).
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1. Introduction

The pioneering work of Eichten et al.1, and many other subsequent works have

shown that the static potential plays an important role in the description of heavy

mesons. Despite the effort along the last 30 years, some important features of the

static interaction are not yet fully understood. And that is why several approxi-

mate methods and effective potentials have been proposed for the description of the

overall interaction of quarkonia. A partial list of the articles on these two subjects

is found in reference [2].

The literature has established that for heavy mesons non-relativistic quantum

mechanics with constituent masses for the quark and antiquark can be applied.

In this work we use the Morse molecular potential for describing some low energy

states of charmonium. This unique description allows to calculate the contribution

of the rotational energy of P states, and the radii of some S states. It also permits

the calculation of the absolute threshold for the bound states of charmonium that

sheds light on the character of the recently found levels3 χ(3940), Ψ(4040), χ(4050),

χ(4140), Ψ(4160), Y (4260), Y (4350), Ψ(4415), χ(4430), and χ(4660).

As it is well known, confinement is not well understood and there are models
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that do not consider it inside hadrons. For example, the original MIT bag model

treats confinement only at the wall by making the vector current null at it4. In the

case of the chiral bag model5, confinement is treated by means of the continuity of

the axial vector current at the wall. We do not need to worry about confinement

because we only deal with low energy levels.

All the experimental data used below for the energies of charmonium states were

taken from the Particle Data Group3. All energy values below are in MeV unless

noted otherwise. This work is based on the the recently published article by de

Souza6.

2. The Morse molecular potential

The Morse potential7

V (r) = D
(
e−2αx − 2e−αx

)
(1)

is widely used in the description of diatomic molecules. In the above equation −D

is the minimum of the well, a is the distance where V = −D, and x = (r − a)/a.

The leading term of the expansion for x � 1 is of the form −C/r and, thus, it is

a QCD-like term and its second term takes care of the well-known repulsion of the

strong force for small distances8.

For |x| < 1 this potential can be expanded about the minimum up to order 3 in

x and produces the expression

V (x) = −D +
1

2
ka2x2 − λka3x3 (2)

where λ = α/2a for the Morse potential.

The solution of the Schrödinger equation yields the expression7,9

EυL = ~ω
(
υ +

1

2

)
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L(L+ 1) + . . . (3)

for the vibrational and rotational levels above the minimum of the potential, where

υ, L = 0, 1, 2, 3, . . . . In this equation the first term describes harmonic vibrations,

the second term takes into account the anharmonicity of the potential, the third

term describes rotations with constant moment of inertia, the fourth term repre-

sents the centrifugal distortion and the fifth term represents the coupling between

vibration and rotation. This expression can also be written as9
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where m is the reduced mass of the constituent quark and antiquark, that is, mc2 =
1
2Mcc

2, where Mc is the mass of the c quark. The parameters ω and D are related

to α, a and m as

ω2 =
2α2D

ma2
(5)

The constant BL is given by BL = ~2/2ma2.

In the fitting below we disregarded the last term of Eqs. (3) and (4).

3. The fitting

The first two levels, ηc(1S) and J/Ψ(1S), are a hyperfine doublet because of the

spin-spin interaction, but since our Hamiltonian does not depend on spin, we can

use the S states J/Ψ(1S) and Ψ(2S) ≡ Ψ(3686) for the fitting. In the case of χc(1P )

states, we should take out the spin-orbit interaction contribution which is given by

∆ESL = ∆ [J(J + 1)− L(L+ 1)− S(S + 1)] (6)

where J =
∣∣∣ ~J ∣∣∣ =

∣∣∣~L+ ~S
∣∣∣ in which S = 1 for χc(P ) states. Applying Eq. (6)

to the states χc0(1P ), χc1(1P ) and χc2(1P ) we obtain the average values ∆1P =

27.7 ± 13.6, E1P = 3549.7 ± 37.9, where E1P is the energy of the degenerate level

χc(1P ).

The state Ψ(3770), which is assigned as 13D1, is a well established state, exper-

imentally found with an energy of 3778.1± 1.2. Table 1 presents a summary of the

levels used in the fitting with the corresponding values of υ and L.

Table 1. The levels considered in the
fitting of charmonium.

(υ, L) Particle Mass (MeV/c2)

(0, 0) J/Ψ(1S) 3096.916± 0.011

(0, 1) χc(1P ) 3549.7± 37.9
(1, 0) Ψ(3686) 3686.09± 0.04
(0, 2) Ψ(3770) 3778.1± 1.2

4. Results and discussion

Fitting the levels of Table 1 to Eq.(3) we obtain the following values for its param-

eters: ~ω = 8062.0 ± 0.1; A = 3736.4 ± 0.1; BL = 282.8 ± 58.3; DL = 28.3 ± 5.1.

The constant DL is a measure of the anharmonicity of the potential. In reference

[6] it is reported that for bottomonium DL = 25.9±4.5 MeV which is quite close to

the above value, 25.5± 5.1 MeV. Therefore, the Morse effective potentials for both

heavy mesons present the same anharmonicity.

From Eqs. (3) and (4) we obtain that A = (~ω)2/4D , and thusD = 4348.8±0.5.

This means that there is no charmonium bound state with energy above 4348±0.5.
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This is a very important result and shows that the recently found states Ψ(4415),

χ(4430), and χ(4660) are not bound states of charmonium. On the other hand this

result shows that the recently found states Ψ(4160), χ(4140), χ(4050), Ψ(4040),

χ(3940), Y (4260), and Y (4350) can be bound states of charmonium.

Using the values of D and ~ω above in Eq. (5) we obtain a/α = (13.15± 0.05)×
10−2 fm, and from the value of BL we find that a = (0.28± 0.05) fm which is a

very reasonable figure since the Compton wavelength of charmonium is about 0.69

fm if we use a constituent mass of 1.7 GeV/c2. Of course, we obtain a very similar

figure if we use the uncertainty principle. Using the above values of a and a/α we

obtain α = 2.15± 0.39.

As we showed above, a molecular potential is harmonic about its minimum, and

thus we can calculate the value for the constant k = mω2 which can be written as

k = mc2(~ω)2/(~c)2 . Using the above values we obtain k ≈ 1.44 × 103 GeV/fm2

≈ 2.31×1023 N/m which is a quite fair number. For a distance of 0.3 fm it produces

a force F ≈ 108 N. The following simple calculation shows that this is reasonable

figure. If we calculate the average force necessary for producing a work of 4 GeV in

0.3 fm we obtain a force of about 106 N. As it was shown above the Morse potential,

Table 2. Radii of two states of charmo-
nium calculated with the use of Eq. (7).
The numbers in the particle names refer

to the quantum number n of QCD mod-
els.

(υ, L) Particle Radius (fm)

(0, 0) J/Ψ(1S), ηc(1S) 0.35± 0.06
(1, 0) Ψ(3686), ηc(2S) 0.49± 0.09
(2, 0) Ψ(3S) 0.63± 0.11

when expanded about its minimum, yields Eq. (2). For such a potential Robinett10

obtained the following equation for the average value of position for S states

〈r〉υ = a+
3α~ω
2mω2a

(
υ +

1

2

)
= a+

3a~ω
4αD

(
υ +

1

2

)
(7)

where we have taken into account that λ = α/2a . We only calculate the radii of

the states J/Ψ(1S), ηc(1S), Ψ(3686), ηc(2S), and Ψ(3S) because the other upper

states are far from equilibrium. Using the above values for the constants, we obtain

the results shown in Table 2 for the radii of these states of charmonium.

5. Conclusion

The fitting of some energy levels of charmonium to the Morse potential makes

possible the calculation of parameters of the effective molecular potentia, predic-
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tion of the radii of two states and sheds some light on the character of the states

χ(3940), Ψ(4040), χ(4050), χ(4140), Ψ(4160), Y (4260), Y (4350), Ψ(4415), χ(4430),

and χ(4660). Therefore, the above result add important information for the under-

standing of charmonium.

References

1. E. Eichten et al., Phys. Rev. Lett. 34, 369 (1975).
2. http://inspirehep.net/record/129333/references.
3. J. Beringer et al. (Particle Data Group), Phys.Rev. D 86, 010001 (2012).
4. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, and V.F. Weiskopf, Phys. Rev. D 9,

3471 (1974).
5. A. Hosaka and H. Toki, Phys. Reports 277(2-3), 65 (1996).
6. M. E. de Souza, Nucl. Phys. B Proc.Suppl.00, 1 (2012).
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