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Abstract

In a Majorana basis, the Dirac equation for a free spin one-half particle is a 4x4
real matrix differential equation. When including the effects of the electromagnetic
interaction, the Dirac equation is a complex equation due to the presence of an
imaginary connection in the covariant derivative, related with the phase of the
spinor.

In this paper we study the solutions of the Dirac equation with the null and
Coulomb potentials and notice that there is a real matrix that squares to -1, relating
the imaginary and real components of these solutions. We show that these solutions
can be obtained from the solutions of two non-linear 4x4 real matrix differential
equations with a real matrix as the connection of the covariant derivative.
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1 Introduction

Ever since the publication of the Schrodinger equation in 1926, it is broadly accepted
that the wave functions in non-relativistic Quantum Mechanics must be complex. The
phase of the complex number is identified with the phase of the oscillation of the wave.

Ever since the publication of the Dirac equation in 1928 and the prediction of the
positron in 1929, it is broadly accepted that the wave functions in relativistic Quantum
Mechanics must also be complex. The phase of the complex number is also identified
with the phase of the oscillation of the wave. Unlike in the non-relativistic case, there
are both positive and negative energy solutions that can only be fully understood in the
context of Quantum Field Theory.

In 1937, Majorana noticed that the Dirac equation for free particles is a real equation
and it’s solutions can be real wave functions, as long as, in the context of Quantum Field
Theory, there is no difference between particles and anti-particles.

If a wave function is real, then the phase of the complex number is null and cannot
be identified with the phase of the oscillation of the wave. This motivates us to study
the phase of oscillation of the solutions of the Dirac equation.

2 Real Connection

The equations for the classical Majorana spinor fields ψ and χ and for the electro-
magnetic potential Aµ in Quantum Electrodynamics, can be written as:

(i/∂ −m)ψ = ei /Aχ (2.1)

(i/∂ −m)χ = −ei /Aψ (2.2)

∂2Aµ − ∂µ∂ · A = eηµν(ψ
†γ0γνψ + χ†γ0γνχ) (2.3)

These equations are invariant under the global Lorentz transformations S ∈ Pin(1, 3):

x→ Λ(S)x (2.4)

ψ(x)→ Sψ(Λ(S)x) (2.5)

χ(x)→ γ0S−1†γ0χ(Λ(S)x) (2.6)

Aµ(x)→ eΛ ν
µ (S)Aν(x)(γ0S−1†γ0S−1) (2.7)

Usually the Dirac field Ψ ≡ ψ + iχ is defined and the equations are written as:

(i/∂ − /A−m)Ψ = 0 (2.8)

∂2Aµ − ∂µ∂ · A = eηµνΨ
†γ0γνΨ (2.9)

Now we can easily see that these equations are also invariant under the local transforma-
tion:

Ψ→ eiθΨ (2.10)

eAµ → eAµ − ∂µθ (2.11)
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The electromagnetic potential is then identified with an imaginary connection, that is,
the covariant derivative is written as:

∂µ + iAµ (2.12)

Now we make the question: is there another way of obtaining the same solutions but
using a real (that is, real in a Majorana basis) connection? If we drop the linearity
requirement, then the answer is yes. We need to assume that there is a real, space-time
dependent, matrix J verifying ((iγ0)J)2 = −1. Note that these conditions are invariant
under the transform J → S†JS for S ∈ Pin(1, 3), that is:

((iγ0)J)2 → (iγ0S†JS)2 = (±S−1iγ0JS)2 = S−1(±iγ0J)2S = −1 (2.13)

Now we have the following equations:

(iγµ(∂µ − eAµ(x)iγ0J(x)−m)ψ(x) = 0 (2.14)

(iγµ(∂µ − eAµ(x)iγ0J(x))−m)iγ0J(x)ψ(x) = 0 (2.15)

The equation for Aµ can be written as:

∂2Aµ − ∂µ∂νAν = eψ†γ0γµψ + eψ†J†γµγ0Jψ (2.16)

We can see that for a global S ∈ Pin(1, 3) we have:

x→ Λ(S)x (2.17)

ψ(x)→ Sψ(Λ(S)x) (2.18)

J(x)→ S−1†J(Λx)S−1 (2.19)

eAµ(x)iγ0J(x)→ eΛ ν
µ (S)Aν(x)Siγ0J(Λx)S−1 (2.20)

We can write the previous two real equations as one complex equation as:

(iγµ(∂µ − eAµ(x)i−m)(1 + γ0J(x))ψ(x) = 0 (2.21)

Now we can see that there is another transform that leaves the equations invariant:

ψ → eiγ
0Jθψ (2.22)

(1 + γ0J)ψ → eiθ(1 + γ0J)ψ (2.23)

eAµ → eAµ + ∂µθ (2.24)

Where θ is a real function of the space-time. Although we get a very similar equation with
QED, there is a fundamental difference: the connection is real, the equations are non-
linear and as a consequence we get, from the start a projector in the complex equation.
In QED, this projector appears only in the final solutions, not in the equations.

3 Free particle

When the electromagnetic potential is null, we have:

ψp(x) = e−i
/p

m
p·xψp(0) (3.1)

Jp(x) =
/pγ0

m
(3.2)

We can check that Jp(x) is hermitian and that ψp(x)→ Sψp(Λ(S)x), Jp(x)→ S−1†Jp(Λ(S)x)S−1†
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4 Hydrogen Atom

The Dirac equation for the Hydrogen atom is:

iγ0(i/∂ − e /A−m)Ψ = 0 (4.1)

With Ai = 0, A0 = − e
r
. The term with the potential is imaginary, therefore, the equation

is complex.
We define the matrix:

Λnlmε =
(fnlε(r)

r
+
gnlε(r)

r
iγr

)
Ωlm

1 + εσ3

2
(4.2)

Where ε = ±1. If f and g are such that the following equations hold:

(Enl +
e2

r
−m)

fnlε(r)

r
+ (∂r +

1− εl
r

)
gnlε(r)

r
= 0 (4.3)

(−Enl −
e2

r
−m)

gnlε(r)

r
+ (∂r +

1 + εl

r
)
fnlε(r)

r
= 0 (4.4)

We will not solve these equations here, the solution can be seen in [1].
Then Λ verifies:

iγ0(i~/∂ −m)Λnlmε
1 + γ0

2
= i(Enl +

e2

r
)Λnlmε

1 + γ0

2
(4.5)

The solution to Dirac equation is:

Ψ = Λnlmεe
−iγ0Enlx

0 1 + γ0

2
ψ (4.6)

Where ψ is a fixed Majorana spinor. We can now check that

Ψ =
1 + γ0J(x)

2
Λnlmεe

−iγ0Enlx
0

ψ (4.7)

Where

J(x) =

(
fnlε(r)− gnlε(r)iγr

)2

f 2
nlε(r)− g2nlε(r)

(4.8)

And we can check that (iγ0J)2 = −1.
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