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Abstract

We propose a modification of proper time, which is dependent on vierbein and
spin connection. It explicitly breaks local Lorentz gauge symmetry, while preserving
diffeomorphism invariance. In the non-relativistic limit, the geodesics are consistent
with galactic rotation curves without invoking dark matter.
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1 Introduction

Astronomical evidence indicates[1, 2] that observable mass can not provide sufficient
gravitational attraction within galaxies and galaxy clusters. The dark matter hypothesis
states that there is a vast amount of unseen mass in the universe. An alternative to dark
matter is the modification of Newtonian dynamics[3] (MOND). It is a classical dynamics
theory, which explains the mass discrepancies in galactic systems without resorting to
dark matter.

We propose a relativistic theory with modified proper time. In the non-relativistic
limit, the circular motion of test body is congruent with Tully-Fisher law[4] of galactic
rotation curves. The dynamics is different from MOND in general.

This paper is structured as follows: Section 2 introduces local gauge transformation
properties of vierbein and spin connection. In section 3, proper time interval with Lorentz
violation is defined. In section 4, we discuss the motion of test body in the non-relativistic
limit. In the last section we draw our conclusions.

2 Gauge Symmetry

The similarity between gravity field and non-Abelian Yang-Mills field inspired gauge
theory of gravity[5, 6, 7]. Gravity and Yang-Mills actions can be formulated as different
order terms in a generalized action[8, 9]. They show disparate dynamics, due to sym-
metry breaking via Higgs fields and non-degenerate vacuum expectation value (VEV) of
gravity field.

In de Sitter gauge theory of gravity[7], gravity field can be written as a Clifford-valued
1-form[8, 9] on 4-dimensional space-time manifold

A =
1

l
e+ ω, (1)

e = eµdx
µ = eaµγadx

µ, (2)

ω = ωµdx
µ =

1

2
ωabµ γabdx

µ, (3)

where e is vierbein, ω is spin connection, l is a constant related to Minkowskian VEV
magnitude of gravity gauge field Ā = 1

l
δaµγadx

µ, µ, a, b = 0, 1, 2, 3, ωabµ = −ωbaµ , and γab =
γaγb. Here we adopt the summation convention for repeated indices. Clifford algebra
vetors γa observe anticommutation relations

{γa, γb} ≡
1

2
(γaγb + γbγa) = ηab, (4)

where ηab is of signature (+,−,−,−).
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Local de Sitter gauge transformation is characterized by1

RdS(x) = e
1
2
[εa(x)γa+εab(x)γab], (5)

where εab(x) = −εba(x), and (γa, γab) are generators of de Sitter algebra.
Gauge field A obeys local de Sitter gauge transformation law

A(x) → RdS(x)A(x)RdS(x)−1 − dRdS(x)RdS(x)−1. (6)

One can write down an action for general relativity using gauge field A for de Sitter
group, but invariant only under Lorentz group[7]. Under Lorentz gauge transformation

RL(x) = e
1
2
[εab(x)γab], (7)

gauge fields transform as

e(x) → RL(x)e(x)RL(x)−1, (8)

ω(x) → RL(x)ω(x)RL(x)−1 − dRL(x)RL(x)−1. (9)

The standard proper time interval is defined as

dτ 2 = 〈eµeν〉 dxµdxν = gµνdx
µdxν , (10)

where 〈· · · 〉 means Clifford scalar part of enclosed expression, and gµν is metric. The
proper time interval is invariant under local Lorentz gauge transformation, thanks to the
transform property of vierbein (8).

3 Lorentz Violation

In the absence of Lorentz symmetry, we study the remaining symmetry under local gauge
transformation

RS(x) = e
1
2
εij(x)γij , (11)

where i, j = 1, 2, 3. Gravity gauge fields

A =
1

l
e+ ω =

1

l
(eT + eS + ωT + ωS), (12)

eT = eTµdx
µ = e0µγ0dx

µ, (13)

eS = eSµdx
µ = eiµγidx

µ, (14)

ωT = ωTµdx
µ =

l

2
(ω0i

µ γ0i + ωi0µ γi0)dx
µ = lω0i

µ γ0idx
µ, (15)

ωS = ωSµdx
µ =

l

2
ωijµ γijdx

µ, (16)

1See e.g. chapter 2.1.3 of [10] for discussions about local gravity(Lorentz) gauge transformations in
addition to diffeomorphism transformations.
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transform as

eT (x) → RS(x)eT (x)RS(x)−1, (17)

eS(x) → RS(x)eS(x)RS(x)−1, (18)

ωT (x) → RS(x)ωT (x)RS(x)−1, (19)

ωS(x) → RS(x)ωS(x)RS(x)−1 − dRS(x)RS(x)−1. (20)

Spin conections ωT and ωS are defined to be dimensionless in the same way as vierbeins
e = eT + eS , via rescaling factor 1

l
in (12).

Now one has the freedom to define gauge (11) and diffeomorphism invariant proper
time interval as dependent on eT (x), eS(x) and ωT (x), respectively. Specifically we pro-
pose2

dτ 2 = {〈eTµeTν〉+ 〈eSµeSν〉 f([〈ωTαωTβ〉
dxα

dτ

dxβ

dτ
]
1
4 )}dxµdxν , (21)

with interpolation function

f(z) → 1 for z � 1, (22)
f(z) → c1z − c2z2 for z � 1, (23)

where c1 and c2 are dimensionless positive coefficients. In the limit 〈ωTαωTβ〉 dx
α

dτ
dxβ

dτ
� 1,

the proper time interval is reduced to the standard one (10), restoring local Lorentz gauge
invariance.

4 Modified Geodesics

Geodesics are obtained by minimizing action

S = −mc
∫
dτ , (24)

where m is the mass of test body, and c is the speed of light.
In the non-relativistic (dx0 = cdt � dxi) and weak field (gravity gauge field almost

Minkowskian A ≈ Ā = 1
l
ē = 1

l
δaµγadx

µ) limit , the action is approximated by

S ≈ −mc
∫ √

(1 + 2∆e00)dx
0dx0 − f([lω0j

0 lω
0j
0 ]

1
4 )dxidxi (25)

≈
∫
dtL, (26)

L = −mc2 −mV +
1

2
mẋiẋif([lω0j

0 lω
0j
0 ]

1
4 ), (27)

2In this paper, we are assuming that gravity fields are not changed (or rather not changed much) by
Lorentz violation. Thus they satisfy the standard Einstein equations(or Einstein-Cartan equations in the
presence of spin currents).
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where V
c2

= ∆e00 = e00 − ē00 = e00 − 1, and ẋi = dxi/dt.
When spin current is negligible, spin connection is determined by zero torsion condi-

tion

T = de+ ω ∧ e+ e ∧ ω = 0, (28)

where ∧ denotes exterior product of forms. For static and weak gravity field, one has

ω0i
0 ≈

1

2
∂ie

0
0. (29)

Thus we can write the lagrangian as

L = −mc2 −mV +
1

2
mv2f([

l

2c2
|∇V |]

1
2 ), (30)

where |∇V | =
√
∂iV ∂iV and v2 = ẋiẋi. The Euler-Lagrange equation reads

ẍif = −∂iV −
1

2
v2∂if. (31)

Newtonian dynamics is recovered in the limit |∇V | � 2c2

l
.

For spherically symmetric potential V (r), the lagrangian admits two constants of mo-
tion as angular momentum and energy (rescaled by m)

L = r2φ̇f, (32)

E =
1

2
(ṙ2 + r2φ̇2)f + V + c2 (33)

=
1

2
ṙ2f + (V +

1

2

L2

r2f
) + c2 (34)

=
1

2
ṙ2f + Veff + c2, (35)

where effective potential Veff = V + 1
2
L2

r2f
, r and φ are spherical coordinates, and θ = π/2

is assumed. Circular orbit is determined by the condition

∂rVeff |r=r0 = 0. (36)

For Newtonian potential

V = −GM
r
, (37)

one can calculate rotation velocity as

v2|r=r0 = r2φ̇2|r=r0 =
GM

∂r(
1
2
r2f)
|r=r0 . (38)
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In the limit |∇V | = GM
r2
� 2c2

l
, one has

v4|r=r0 =
8c2

c21l
GM = a0GM. (39)

It is r0 independent, which is congruent with Tully-Fisher law[4] of galactic rotation
curves where constant a0 = 8c2

c21l
is estimated as

a0 ≈ 10−8cm/s2 ≈ c2

6
(
Λ

3
)

1
2 . (40)

Here Λ is cosmological constant. Thus we have

c21 ≈
48

l
(
Λ

3
)−

1
2 . (41)

We know that 1
l

is of order Λ
1
2 [8, 9]. Therefore, coefficient c1 is close to order 1.

The coefficient c2 in the interpolation function (23) does not appear in rotation velocity
(39). The coefficient c2 is essential for ensuring

∂2
rVeff |r=r0 > 0, (42)

so that the circular orbit is stable.

5 Conclusion

We propose a modification of proper time interval (21), which is dependent on vierbein as
well as spin connection. In the non-relativistic limit, the modified geodesics are consistent
with galactic rotation curves without invoking dark matter.

In the case of galaxy clusters, further data analysis is needed to validate our theory.
Since the modified proper time interval is relativistic in nature, one can potentially apply
it in cosmological settings as well.
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