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Abstract

We consider a model of special relativity in which standard simul-
taneity is replaced by an alternative defined per observer by the direct
appearance of simultaneity. The postulates of special relativity are inter-
preted to permit it, using a corresponding measure of distance chosen so
that the measurement of light’s speed remains invariant with a value of
c. The relativistic Doppler effect and Lorentz transformation of time are
derived from direct observations without consideration of a delay of light.
Correspondence of the model with SR is further shown by finding a dis-
placed observer whose measure of apparent simultaneity is identical to a
given observer’s measure of standard simultaneity. The advantages of ap-
parent simultaneity include unifying apparent delay of light with relative
simultaneity, and unifying changes to relative simultaneity with change in
observer position. With speculative interpretation the model implies an
equivalence of time and distance.

Introduction

In the definitive work [1] on special relativity (SR), Albert Einstein acknowledges
that an assumption is required in order to define a common time between two
separated clocks. The assumption used—which defines standard simultaneity—
is that the time required for a light signal to travel from an observer O to an
observer P is the same as the time required for a signal to travel from P to
O. While it is generally acknowledged that this remains an assumption, it is
consistent with observation and is used in the physical representation of time
throughout modern physics. Einstein justifies the assumption by its practical
benefit of independence of observer standpoint with the clock, but it is tempting
to presume that the assumption has a fundamental physical basis, since it is
consistent with observations of an invariant speed of light and with a classical
interpretation thereof.

This paper hypothesizes that the delay of observed light inherent in stan-
dard simultaneity is an unnecessary classical assumption, and it is possible to
avoid it while maintaining an assumption of an invariant speed of light. We
define apparent simultaneity such that events are simultaneous according to a
particular observer if they appear simultaneous in direct observation. Apparent
simultaneity is defined in [2] equivalently as “backward light cone simultaneity”.

Two models of SR will be considered: The classical model of SR as described
by Einstein, including the assumption of standard simultaneity, and the appar-
ent model with standard simultaneity replaced by an assumption of apparent
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simultaneity. SR alone will then refer to aspects that do not assume a particular
simultaneity.

Assuming equivalence of all inertial frames and constant speed of light, it is
classically absurd that a fixed transmission of light could take a different time
depending on how it is observed. However, it is by the very nature of relativity
that mutually consistent observers may disagree on the timing of events, and
this will allow us to circumvent classical reasoning. It may also be argued that
since the transmission and reception of a direct signal appear simultaneous to
the receiver, the duration of the signal appears instantaneous, thus constitut-
ing “action at a distance.” There is however only relative instantaneity—no
single observer sees signals between O and P appearing instantaneous in both
directions—without any two-way instantaneous interaction, and without im-
plied violation of causality.

In the context of an argument in favour of conventionality of simultaneity,
the apparent model corresponds with a Reichenbach ε-value of 1. Rather than
arguing in favour of a choice of valid simultaneities for a given observer, let us
assume a fixed simultaneity per observer in each model considered, but allow
that different observers can measure simultaneity differently. Conventionality
becomes superfluous as it can be expressed entirely in terms of relativity of
simultaneity and a choice of observer.

Our development of apparent simultaneity differs from that of [2], in which
a variant speed of light is assumed.

Assumptions and Conventions Used

Assume that SR and the classical model are precisely consistent with reality,
without assuming that standard simultaneity is the only consistent definition of
simultaneity.

The first postulate of relativity—that all physical laws are the same regard-
less of inertial reference frame—is assumed without interpretation. The second
postulate—that the speed of light is c as measured in all inertial frames of ref-
erence regardless of the motion of the light’s source—is assumed to be true on
condition that any measurement of velocity which assumes a specific simultane-
ity is only considered valid for models that employ that simultaneity. Without
yet defining a measure of velocity for apparent simultaneity, let us assume that
any such measure is valid if it is functionally equivalent to classical model ve-
locity for all physically possible velocities.

Proper times are assumed to be valid regardless of choice of simultaneity.
Velocity of an observer moving relative to some reference, as measured by the
observer using its ruler and local proper time, is assumed to not depend on a
choice of simultaneity.

It is not assumed that different observers in an inertial frame must agree
on the simultaneity of events. This paper considers only observations of di-
rect straight-line light signals through a vacuum in flat Minkowski spacetime.
Velocity is restricted to the x-axis.

The prototypical physical system used throughout this paper involves two
observers named O and P . Observer P ’s coordinate system is analogous to the
typical primed frame as per [3], except that the coordinate systems are con-
figured symmetrically, with each observer’s positive x-axis pointing toward the

2



other’s location. The x coordinate then corresponds to a measure of separa-
tion distance; positive velocity corresponds with increasing separation. Unless
otherwise specified, all measurements are assumed to be according to O.

Two proper times measured by different clocks are simultaneous according
to a given observer and definition of simultaneity if they start simultaneously
and end simultaneously.

The variable t refers to a local proper time at O, and τ refers to a proper
time at P , defined such that the two times are classically simultaneous.

1 Definition of Apparent Time

Definition 1.1. The apparent time τA(t) at P according to observer O, is the
proper time at P that is apparently simultaneous with local duration t.

This is the time that can be seen to elapse on P ’s remote clock while directly
observed for a local duration of t. If P ’s clock appears to be zero when O’s clock
is zero, then the apparent time at P coincides with the time that appears on a
directly observed image of its clock.

1.1 Apparent Distance

Because distance in SR is measured at a given instant that is defined by stan-
dard simultaneity, the apparent model requires an alternative measure of dis-
tance that uses apparent simultaneity. To correspond with measurements of
apparent time, this metric is given the following corresponding features: a) it
is a measurement made at P using P ’s measuring devices, and b) the measure-
ment event and its observation at O appear simultaneous to O. The following
definition achieves these features:

Definition 1.2. The apparent distance xA(t) between O and P , according to O
at time t, is the location on O’s x-axis at which P appears at time t, measured
using a ruler in P ’s inertial frame.

Both apparent time and distance can be thought of as observations of a
remote measurement. Note that apparent distance does not refer to appearance
using O’s measuring devices alone, independent of any motion of P , as might
be classically intuited. Instead, it makes use of a moving object’s moving ruler,
which will appear distorted by relativistic effects.

Consider a location on O’s ruler at a distance of x. If P coincides with
this location while moving, with its own measure of distance length-contracted
relative to O’s by a factor of ε, then

xA = εx. (1)

According to SR, ε equals the reciprocal of the Lorentz factor. Extending P ’s
ruler along its x-axis through O, the ruler will locally appear length-contracted
by ε.

Apparent distance is completely determined in the single instant of obser-
vation. Due to the invariance of c and the uniformity of flat spacetime at the
moment of observation, the classical distance of an event is also completely de-
termined in the single instant of observation, in agreement with SR. Classically,
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according to O, the entire distance to P is length-contracted by the same factor
that P ’s standard ruler is length-contracted, at every moment, including the
instant of observation. Even as P ’s ruler may change with relative acceleration
during the flight time of incoming photons, the change in length contraction
is accompanied by a change in relative classical simultaneity that ensures the
consistency of P ’s ruler along the entire length of separation at any given in-
stant. Regardless of simultaneity, both apparent and classical distance traveled
by an incoming photon depends on only the instant of observation rather than
on what happens over any extended duration of inbound travel.

1.2 Conversion Between Classical and Apparent Time

For a given time t, we can convert between τ and τA simply by compensating for
the classical travel time of incoming light.

Proposition 1.3. If P is moving at a fixed velocity relative to O, and is observed
at time t0, then the time that appears on P ’s clock is

τA0 = τ0 −
xA(t0)

c
, (2)

where an event at P at time τ0 is classically simultaneous with an event at O
at time t0.

Proof. Suppose that P appeared to be at a distance of x on O’s ruler, in ob-
servations arriving at time t0. Then according to the classical model, light has
traveled a lightlike interval with spatial distance x according to O. This interval
is has a spatial distance of xA when measured by P , by definition of apparent
time. According to O, while P measures light traveling a distance of xA, a time
of xA/c will pass according to P ’s clocks. Therefore the classical time τ0 must
be that much later than the time that appears in direct observations.

Proposition 1.4. If P is moving at a fixed velocity relative to O, the apparent
time τA at P corresponding to a local time t is given by:

τA = τ − dA
c
, (3)

where dA is the change in apparent distance to P that occurs during time t.

Proof. Let τA0 be the time that appears on P ’s clock in observations made by
O at time 0, and let τA1 be the time that appears at time t. Then the time τA
that appears to elapse during time t is equal to τA1 − τA0. Using Eqn (2), with
additional variables set accordingly,

τA(t) =
(
τ1 −

xA1
c

)
−
(
τ0 −

xA0
c

)
, (4)

and Eqn (3) follows, where dA equals xA1 − xA0 and τ equals τ1 − τ0.

It might be possible to relax the condition of fixed velocity, but the restriction
is fine for this paper.
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2 Relativity

The first measurement of the finite speed of light, by Ole Rømer in 1676, was not
a direct measurement of the timing of light signals, but rather an interpretation
of observations of a clock appearing to tick at different rates [4]. The clock in this
case is the orbit of Io, whose period appears from Earth to respectively decrease
or increase depending on whether we are moving toward or away from it. As
universal time was assumed in Rømer’s era, the appearance of a modified rate
of time would naturally be considered illusory, and attributing it to a changing
delay of light is reasonable.

Since SR established the relativity of time, the appearance of modified rates
of time is partially attributed to delay of light, and partially to relativistic
effects, depending on velocity. We will calculate the appearance of relativistic
time dilation while not making any assumptions regarding delay of light.

Io demonstrates the principle of relativity in that there is no physical rea-
son to prefer either Earth or Jupiter’s exclusive motion relative to the other.
However, it makes a poor prototype for understanding relativistic mechanics
because there is no easily inspected mechanical connection between the two
moving bodies. We can consider an ideal clock which appears to behave exactly
as Io does at a given velocity, and construct a mechanical coupling between time
and distance at that velocity. The validity of the following thought experiments
can be verified in accordance with SR.

Consider a clock at remote observer P , which includes a hand that rotates
once per unit of time. Let P and its clock move at a proper velocity of w
along O’s ruler, which spans O’s x-axis. The clock and ruler can be physically
connected using a rack and pinion, fixing the rack to the ruler and the pinion to
the clock hand. With cogs spaced one unit apart, and a pinion chosen with |w|
cogs on it, then the clock can move freely at proper velocity w with the gears
meshing properly (assuming appropriate clock orientation and choice of units).
Assume that this measuring apparatus is available in all descriptions of P in
this section.

Lemma 2.1. Neglecting the passage of proper time, a change in apparent dis-
tance of dA will correspond to a change in apparent time of −dA/c.
Proof. This follows from Eqn (3) with a neglected duration τ of zero, and is
consistent with any directly observed difference in time between a remote and
local clock, such as between Io and a clock on Earth.

The Lemma holds for both models, regardless of whether the effect is at-
tributed to a changing delay of light or left unexplained. While it is verified by
assuming that the classical model is valid, the apparent model requires accep-
tance that the Lemma could be based on experimental observation alone.

Lemma 2.2. Neglecting classical relativistic effects, an apparent time τA of a
clock that is moving at a fixed velocity of v relative to the observer, will corre-
spond to a change in apparent distance of vτA.

Proof. By neglecting relativistic effects, we have that O’s ruler and P ’s ruler
share a unit length, and the proper velocity of P is equal to its velocity. If the
gear attached to P ’s clock hand appears to turn τA times, then the gear must
also appear to traverse vτA cogs along O’s ruler, which is the same if measured
using P ’s ruler.
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The second postulate is implicit in the lemmas, because they apply to any
change of apparent time or distance, and do not depend on whether any other
effect of relative velocity has already been considered.

In isolation, the lemmas describe the appearance of a clock at non-relativistic
speeds. Relativistic effects emerge when the lemmas are recursively applied to
each other, which we now consider. Given some finite time t which elapses at
O, let τAn equal the apparent time associated with the nth recursive application
of Lemma 2.1, and similarly let dAn represent the apparent distance associated
with the nth application of Lemma 2.2. Letting τA0 equal the apparent time
that elapses at P excluding any application of Lemma 2.1, define

τA0 = εt, (5)

such that the unknown factor ε includes any other possible relativistic effect
that is not accounted for by the lemmas applied to P ’s clock.

Applying Lemma 2.2, we have

dA0 = vτA0 = vεt. (6)

Applying Lemma 2.1, there is a corresponding change in apparent time which
has not been accounted for in τA0:

τA1 = −dA0
c

= −v
c
εt, (7)

to which we apply Lemma 2.2, and so on. By induction,

τAn =

(
−v
c

)n
εt, (8)

Taking τA to be the sum of the sequence {τAn}, we have

τA =

∞∑
n=0

(
−v
c

)n
εt, (9)

τA =
1

1 + v
c

εt. (10)

Similarly the sum of the sequence {dAn} is

dA =

∞∑
n=0

v

(
−v
c

)n
εt (11)

= vτA. (12)

Since dA/τA equals v, it is a valid measure of velocity. Consistent with SR
and the preceding analysis, dA/τA is not measurable at a velocity of c, but in
limit form it approaches c as v approaches c.

We proceed despite the unknown relativistic factor, by similarly analyzing a
geared clock at O, configured symmetrically to the one at P . In accordance with
SR and the principle of relativity, movement of P relative to O is equivalent to
movement of O relative to P , with differences in appearance or measurements
depending on choice of observer. Converse to the preceding analysis, we now
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consider a fixed apparent time τA that is observed to pass, and construct a
sequence of partial times tn that add up to t. Again let us use an unknown factor
ε′ to take care of any appearance of relativistic effects that are not accounted
by applying the lemmas to O’s clock, defining

t0 = ε′τA (13)

such that we may use the lemmas while assuming an absence of length contrac-
tion and time dilation, setting ε′ to account for all neglected effects. With the
entirety of τA already associated with t0, but the apparent times associated with
the lemmas not yet counted, we can construct {tn} as corrections to t0 that
ensure that the total apparent time observed remains τA.

Considering only the geared clock at O, while a time of t0 elapses, O moves a
distance of vt0 relative to P . Equivalently, P moves the same distance relative to
O, which by Lemma 2.1 corresponds to an apparent time of −vt0/c. Including
this, the total apparent time considered becomes τA − vt0/c. We can correct
this by letting both clocks run for a duration of vt0/c (which may be negative;
letting the clocks run to the correct time must be considered only an abstract
calculation, as the clock doesn’t actually oscillate to settle on a proper time).
Assuming no apparent time dilation, we have a correction of

t1 =
v

c
ε′τA. (14)

Repeating this reasoning for each of tn, the sum of {tn} is

t =

∞∑
n=0

(v
c

)n
ε′τA (15)

=
1

1− v
c

ε′τA. (16)

Combining Eqns (10) and (16), we have

(
τA
t

)2 =
ε

1 + v
c

1− v
c

ε′
. (17)

Here we have two unknown relativistic factors, one representing the con-
tribution of relativistic effects not measured by P ’s clock in accordance with
the lemmas, and the other representing the contribution of effects similarly not
measured by O’s clock. Proposing that there are no additional or hidden rela-
tivistic effects not measured by the combination of both observer’s clocks, and
that the difference in appearance of relativistic effects is completely described
by the lemmas and their recursive application, let us hypothesize that the yet
unknown effects of each observer relative to the other are the same and that ε
and ε′ are equal. Defining εA as the rate at which an observed clock appears to
tick relative to a local clock, we get

εA =
τA
t

=

√
1− v

c

1 + v
c

. (18)

This equals the expected reciprocal relativistic Doppler factor. Thus the rela-
tivistic Doppler effect is deduced from direct observations and recursive appli-
cation of Lemmas 2.1 and 2.2.
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2.1 Correspondence With the Lorentz Transformation

Solving Eqn (9) for ε, using Eqn (18), produces the reciprocal Lorentz factor:

ε =

√
1− v2

c2
. (19)

Using the variables of the Lorentz transformation given in [3], the time t′

corresponds to the proper time τ at x when

x = tv. (20)

Limiting ourselves to this case, with τA = εAt and dA = τAv = εAx , Eqn (3)
gives

τ = εA

(
t+

x

c

)
. (21)

Incorporating Eqns (9), (18), and (20), we get

τ =
1

ε

(
t− v

c

x

c

)
, (22)

which is the Lorentz transformation of time.
It is enough to show correspondence with the Lorentz transformation in the

case of proper time, as we can define the time of a clock at any other location
using any means desired, since we have not assumed any specific coordination
among clocks. Thus we may use Einstein synchronization to define a clock at any
location, and use its proper time, to establish correspondence with the Lorentz
transformation at that location. We need not admit that the coordination of the
clocks according to standard simultaneity has any important physical meaning,
as the apparent time of uncoordinated or alternatively coordinated clocks can
be modelled equally well. Therefore the physical meaningfulness of the Lorentz
transformation, for time at locations remote from its reference clock, depends
entirely on the physical meaningfulness of standard simultaneity.

Using this derivation, the “mixing of time and space” inherent in the Lorentz
transformation only emerges in the conversion from apparent time to classical
time, indicating that it is a strictly interpretation-dependent aspect of SR.

2.2 Composition of Velocities

Consider an intermediary observer P ′ moving along its x-axis, which is also
aligned with those of O and P . It has a velocity vP ′ relative to O, while P has
a velocity of vP relative to P ′ and v relative to O. While a time of t passes
at O, let it observe τ ′A (t) appear to pass at P ′, while τA(τ ′A (t)) appears to P ′

to pass at P . Both O and P ′ see the same proper time appear to pass at P
relative to proper time τ ′A (t) at P ′. This can be confirmed by considering that
a signal from an event at P sent to O will arrive at the same time as a similar
signal that is relayed through P ′ without additional delay, regardless of choice
of simultaneity. Applying Eqn (18) to the new variables, let

εA(vP ′) =
τ ′A (t)

t
(23)
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be the ratio of apparent time to local time at velocity vP ′ (as is observed by O),
and let

ε′A(vP ) =
τA(τ ′A (t))

τ ′A (t)
(24)

be the ratio at velocity vP (as is observed by P ′). Then the ratio at the com-
posite velocity v of P relative to O is

εA =
τ ′A (τA(t))

t
= εA(vP ′)ε′A(vP ). (25)

Solving Eqn (18) for v gives

v = c
1− ε2A
1 + ε2A

. (26)

Substituting Eqn (25), then using Eqn (18), results in

v =
vP ′ + vP

1 + vP ′vP /c2
, (27)

which is the correct composition of velocities, according to [1].

2.3 Interpretation

All of the preceding calculations of relativistic apparent time are consistent with
SR, and with both models. Whether they are meaningful, and directly repre-
sents relativistic effects, or simply calculate their appearance, depends on the
interpretation of the effects described in Lemma 2.1. If we assume standard
simultaneity and that a delay of incoming light causes the effect, then the pre-
ceding analysis describes the appearance of clocks in SR, while the delay of light
is hidden in the lemmas. However, there is no need to assume this interpreta-
tion, or any interpretational explanation of Lemma 2.1 for that matter, for we
still properly derive SR’s relativistic effects and transformations.

Considering Eqn (10) with respect to the classical model, the effects mea-
sured by the lemmas can be entirely attributed to delay of light, while relativistic
effects can be entirely separated and contained in ε. The disadvantage of this
is that the relativistic effect is measured only in conjunction with the delay of
light, and there is no visible distinction between the two. The separation comes
only from the assumption of standard simultaneity. The fact that the correct
relativistic effects can be derived by treating them the same might need to be
considered coincidental.

Conversely, by not separately considering delay of light and time dilation,
all appearance of relativistic effects of time can consistently be treated as real
relativistic effects, with any directly apparent delay between events handled by
relativity of simultaneity (while a receiver sees transmission and reception events
appearing simultaneous, generally other observers see a delay).

The convoluted nature of apparent distance is demonstrated by two observers
P and P ′, that pass each other at different velocities, and have different appar-
ent distances according to O, yet appear to be at the same location and at the
same rest distance. On the other hand, apparent distance conveys the under-
standing that the two observers’ rulers appear to have different unit lengths. It

9



copes with strictly relativistic distances while abandoning the notion of rest dis-
tances to moving objects. Informally, in this sense the classical model emerges
from measuring the movement of an object relative to a stationary observer,
while the apparent model emerges from considering the movement of both ob-
ject and observer relative to each other, inseparably. Considering Eqns (10)
and (16) separately, in the apparent model each effectively expresses relativity
incompletely.

Considering that P ’s clock gear turns εA times for every turn of O’s identical
gear, P ’s position on O’s ruler must be a factor of εA times O’s position on P ’s
ruler. This ratio could define an alternative measure of distance, that relates
the two moving lengths, instead of defining distance relative to O’s rest ruler.
In this case the ε factor disappears. This alternative of distance would require
an alternative measure of speed as well. While other measures of distance may
be more naturally suitable for the apparent model, the current definition—
chosen for correspondence with the classical model—suffices for this paper. The
physical significance of the different measures, and of the factors ε and εA, is
seemingly somewhat interpretational anyway.

3 Reduction to the Classical Model of SR

The previous section showed that the apparent model follows from an assump-
tion of the classical model’s validity. This section shows that the classical model
also follows from the apparent model.

Suppose that the adjustment made to the immediate observations by ob-
server O to correct for a classical delay of light is equivalent to the adjustment
needed to translate what O sees into what some other observer S sees. Then
what is apparent to S is classically measured by O, and S could be used as a
substitute measurement reference for O. Then it need not be a law of nature
that multiple different definitions of simultaneity are consistent, nor a mere co-
incidence, but rather a consequence of the relativity of simultaneity measured
by different observers, and the mutual consistency of multiple observers.

We will show that the above hypothesis holds, by finding for different cases
a specially located observer S which directly observes the appearance of simul-
taneity of events as classically modelled for O. The apparent model reduces to
the classical model, if for any observation by O, there is an observer S whose
immediate observations can be substituted for O’s classically delayed observa-
tions.

Lemma 3.1 (Local equivalence of classical and apparent models). In the case
that O and P remain at a common location, τ is classically simultaneous with t
if τ is apparently simultaneous with t.

Proof. Let P be collocated with O. Then the apparent distance xA between O
and P is zero. By Proposition 1.3, τA and τ are equal.

Lemma 3.2 (Rest frame correspondence of classical and apparent models). In
case O and P are relatively at rest, and τ and t are classically simultaneous
according to O, then τ and t are apparently simultaneous according to S, where
S is located exactly midway between O and P .
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Proof. Let S be at rest relative to O and P and midway between them, equidis-
tant to each. According to classical SR, a pair of signals that leave P and O
simultaneously will each take the same amount of time to reach S, thus appear-
ing to occur simultaneously at S.

For the following Lemma, velocities are expressed as ratios of c.

Lemma 3.3 (Inertial motion correspondence of classical and apparent models).
Given P moving at a constant finite velocity β relative to O, where τ and t are
classically simultaneous according to O, there is a reference point S such that τ
and t are apparently simultaneous from S.

Proof. Let P be moving inertially at a velocity β relative to observer O. We
will construct S in such a way that the Lemma is satisfied.

First, we may assume that O and P are coincident at some instant, since P
is moving collinear with O at a fixed non-zero velocity. Let S also coincide with
O at the same instant and set its clock to zero then. By Lemma 3.1, S would
observe events at P and O as simultaneous at that instant.

Let ε be the reciprocal of the Lorentz factor, i.e.

ε =
√

1− β2 =
τ

t
. (28)

A satisfactory S must observe that the apparent rate of time seen passing at
P relative to that seen passing at O equals the classical rate of time, according
to O, passing at P relative to that at O. Letting τ ′A be the apparent time at P
observed by S, and letting t′A be the apparent time at O also observed by S, we
must have that

τ ′A
t′A

= ε. (29)

From S’s perspective, S remains stationary while O and P move at fixed
velocities. Let βO and βP be the respective velocities of O and P relative to
S. Since β is the velocity of P relative to O, it must equal the composition of
velocities of βO and βP .

Since we’re using a symmetrical configuration, the velocity of O relative to
S is the same as the velocity of S relative to O, which is given by the equation
for composition of velocities. From Eqn (27) modified for velocities as ratios of
c, this is

β =
βO + βP

1 + βOβP

. (30)

Let εP equal
√

1− β2
P and εO equal

√
1− β2

O. Expanding Eqn (29) using
Eqn (10), we have

ε =
εP

(
1

1+βP

)
tS

εO

(
1

1+βO

)
tS
. (31)

Combining Eqns (30) and (31) gives a solution for βO as a function of β.
Discarding the solution where |βO| > 1, we have

βO =
β

2 + β
. (32)
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Substituting Eqn (32) into Eqn (30), we also have

βP =
β

2− β
. (33)

We now know the physically possible respective velocities with which S must
travel relative to O and P in order to keep P ’s clocks appearing to tick at a rate
equal to a factor of ε times O’s clock rate. Given that we have a location for S
when its clock is zero, and a constant velocity at which S moves relative to O,
we now have S’s location relative to O at any time. Observer S will see that τ
and t appear simultaneous.

For any valid |β| < 1, |βO| will be less than |β|. Thus S will always be
located between O and P . Specifically, S will be closer to O when β is positive,
and closer to P when β is negative.

The means of setting the clocks described in the proof does not apply if O
and P are separated and at rest. However, as β approaches zero, βO and βP

approach equality (at zero), and S approaches equidistance to each of O and P .
Thus Lemma 3.2 and Lemma 3.3 together provide a formula for the location of
S that is a continuous function of β.

Lemma 3.4 (A change in relative simultaneity corresponds to a change in
observer coordinates). Let events EO1 and EO2 be events at O, occurring re-
spectively before and after an instantaneous change in relative simultaneity with
respect to P , and with a negligible proper time between the two events. Assume
that O and P are inertial before the change in simultaneity, and are likewise af-
ter. Let EP1 and EP2 be events at P that are classically simultaneous according
to O with EO1 and EO2 respectively. Let τ be the proper time from EP1 to EP2

(allowing that τ may be negative). Let event ES at some observer S appear to
S to be simultaneous with both EO1 and EP1, and event ES′ at some observer
S′ appear to S′ to be simultaneous with both EO2 and EP2.

The change in classical simultaneity measured by O as a change in coordinate
time of τ at P is equivalent to the change in apparent time at P measured by
an abstract observer undergoing a change of coordinates from ES to E′

S.

Proof. Suppose that the premise’s variables and conditions hold. The preceding
lemmas ensure that there are valid values for S and S′.

Let EP1 occur at time τ1, and EP2 at time τ2. In accordance with SR, any
observers coincident with ES will observe P appearing as it does to S, i.e. that
the time that appears on P ’s clock is τ1. Similarly any observer at E′

S will
observe that the time that appears on P ’s clock is τ2. Then any observer that
passes through EP1 and EP2 agrees that P ’s clock appears to change by a total
of τ2 − τ1 between the two respective events.

Note that the clocks of S and S′ are irrelevant, and there is no requirement
that a real observer can physically move between ES to E′

S . If a real observer
is able to, it will observe an apparent time of τ appear to elapse at P . A change
in relative classical simultaneity is equivalent to switching from observation at
S to that at S′. Since a change in classical simultaneity causes no real physical
effect independent of O, there is no expectation that another real observer is
physically able to measure its equivalent.
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Theorem 3.5 (The apparent model reduces to the classical). Given a set of
pairs of events, where each pair consists of one event at P and another at O
which are classically simultaneous according to O, each pair will be apparently
simultaneous according to some observer S, where S an abstract observer that
is not limited to physically possible motion.

Proof. This follows for any case of discrete velocities and instantaneous changes
between them, from repeated application of Lemmas 3.1 through 3.4. The
continuous case can be made by integration of the discrete case.

Each of the observers labelled S in this section act as a substituted observer
for O, directly observing what O is said to measure after compensating for a
classical delay of light. For each event or object that O observes, a separate
substitute observer can be defined.

Theorem 3.6. A measurement of the classical speed of any light signal measured
from any inertial frame, is equivalent to an apparent measurement of the signal
from some location in the inertial frame, at which it appears to propagate at a
rate of c.

Proof. Consider the inertial frame of an arbitrary observer Q, and a light signal
from P to O, as indirectly measured by Q.

Let points P ′ and O′ share the inertial frame of Q, and let P ′ be coincident
with P at the time of transmission, and O′ be coincident with O at the time
of reception. According to SR, the signal from P to O is equivalent to an
identically measured signal from P ′ to O′.

Considering this equivalent signal, there is by Lemma 3.2 a point S from
which the signal appears to have propagated at a rate of c, and which is also at
rest relative to Q. Thus the classical speed of the signal, measured by Q to be
c, is the same as the apparent rate of the signal measured by S.

In any given inertial frame of reference, for any set of m observations of
photons, there is a set {S1, ..., Sm}, where each Sn observes the corresponding
nth signal appear to propagate at c. This set of observers can be used by
all observers in the inertial frame, as substitute measurement references, since
all observers’ measurements are mutually consistent. The adjustment required
to modify O’s direct measurements to match those of an appropriate Sn are
equivalent to O compensating for a delay of incoming light equal to the distance
to S divided by c. Finally, because the set {S1, ..., Sm} is specifically chosen to
agree with the classical speed of light, any observer which uses a measurement
reference equivalent to one from that set will measure the corresponding signal
as having a speed of c.

Thus standard simultaneity and a constant observed speed of light remain
valid in the apparent model, both mathematically and intuitively, because there
is always a location from which they can be directly measured. The predictions
of the Lorentz transformation in the case of inertial motion are real in the appar-
ent model to the extent that a suitable inertial S is always physically possible.
Conversely, changes to relative simultaneity that correspond to physically im-
possible changes to the location of S must be merely abstract. The property of
Einstein synchronization of two clocks is apparent according to an appropriate
observer S, but not to each of two observers located at the respective clocks,
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which have symmetrical viewpoints yet observe an apparent error in synchro-
nization.

4 Interpretation

With relative apparent delay of light considered a relativistic effect, apparent
relativity is location dependent. Using natural units, the conversion between
the classical model and the apparent model is a conversion between time and
distance in equal measure, and is equivalent to translating between measure-
ments at different locations. Any change in relative distance corresponds with
a change in apparent time. Including an axiom that any elapse of time can be
measured by light traveling a set distance, the result is that time and distance
can be measured as equivalent.

If we consider time and distance as little more than relations between events,
and consider the paths of information traveling at the speed of light between
events, then lengths can be understood as straight-line displacements between
events, while times can be understood as cumulative distances traveled by some
information. This interpretation correlates effectively with humanity’s experi-
ence of time and distance. Velocity can then be treated as a measure of direct-
ness of information, with light traveling a direct route. If mass can be broken
down into components that travel at the speed of light, those components travel
an indirect route, meandering or curved according to an observer.

Equivalence of time and distance is easier to conceive if the sign of stan-
dard time is reversed. An observer can be considered to be at its origin both
spatially and temporally, with the time of past events at an ever-increasing pos-
itive relative temporal distance. Then the time of a point event is meaningless
except relative to another event, and a clock simply measures the elapsed time
since some particular reference event. This concept is compatible with accepted
interpretation of SR. However, it also implies that local time, and functioning
clocks, require some external location in order to be defined.

The classical model implies that a photon travels progressively through all
intervening space between its source and destination, which is no longer required
or reasonable in the apparent model. Considering that the effects of a photon
are only apparent at its source and destination, it consistently behaves as though
leaping across the intervening space.

Conclusions

The apparent model and apparent simultaneity are consistent with the postu-
lates and predictions of SR. The assumption of standard simultaneity defined
per inertial frame with a delay of light defined per observer is equivalent to an
assumption of apparent simultaneity defined per observer. Neither of the two
models disprove the other. The differences between the models might represent
little more than differences in respective observers’ experience of reality.

The classical model’s practical benefit of independence of observer location
remains available in the apparent model, because a substituted observer S can
represent the measurements of multiple observers in an inertial reference frame.
The convenience of standard simultaneity in observer-independent systems also
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remains, because the predictions of such an observer S can be made abstractly,
employing the Lorentz transformation without needing to specify the location
or existence of S. Where standard simultaneity is inconvenient, such as in
describing astronomical observations from Earth’s particular vantage point, or
in interpreting observer effects in quantum mechanics, the apparent model is
beneficial.

Several practical benefits and simplifications of SR are provided by the ap-
parent model, including a) use of direct measurements without modification
for unobserved delays of light, b) unification of measurable delays of light and
relative simultaneity, and c) lack of modifiable relative simultaneity of events.
With this model, there is no need to distinguish between what is real and what
is seen. There is no need for the notion of events which have happened but are
yet to have any possibly measurable effect. There is no notion of slow inbound
photons, or the unintuitive and unmeasurable action of reverting those photons
via a change in relative simultaneity.

Ultimately, both the classical model and the apparent model emerge from
observations as they appear. The apparent model requires less interpretation of
those observations.
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