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Abstract

An interpretation of special relativity is presented with alternative
principles that treat an appearance of simultaneity as physically real. This
implies instantaneous propagation of incoming light, but maintains light’s
invariable propagation rate of c by using an alternative measure of speed.

The relativistic Doppler effect is derived from physical principles based
on the direct appearance of moving clocks, without relying on a delay of
light. Predictions of the Lorentz transformation for time are demonstrated
to be equivalent to what is apparent to a differently located observer.
Changes to relative simultaneity are equivalent to a change in observer lo-
cation. The second postulate of relativity is derived from a less restrictive
alternative postulate.

Under this interpretation, simultaneity depends on observer location,
time and distance are found to be equivalent, and measured delay of light
is unified with time dilation.

Introduction

In the standard classical interpretation of special relativity (SR), as presented by
Albert Einstein in [1], the observed timing of distant events must be adjusted to
account for the travel time of incoming observed light. The hypothesis presented
here is that the adjustment is unnecessary, and that it is physically reasonable to
measure timing of events as they immediately appear. This alternative, apparent
interpretation of the physics of SR, treats events that appear simultaneous to
a given observer, as physically simultaneous for the observer. Notably, the
transmission and reception of a light signal appear simultaneous to the receiver
of the signal, but not to the transmitter.

The motivation for considering an alternative interpretation is the relativistic
idea that time and distance have little meaning beyond their measurements by
observers, and might be ideally described exactly as they are observed. The main
reason to dismiss this interpretation is the physically founded principle that
light propagates at a constant rate c, whether incoming or outgoing. However,
if we may drop the requirement that the speed of a light signal may be validly
measured using the timing measurements of any given clock, then an alternative
measure of the propagation rate of light allows an invariant rate of c without
requiring symmetrical timing of incoming and outgoing light, as will be shown.

Our strategy is to use the existing interpretation of SR to establish the
meaning and validity of the alternative interpretation, and to then show that
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the exclusively classical aspects are interpretive, unnecessary, or derivable. The
classical interpretation is not invalidated, and neither interpretation is treated
as exclusively real or as unreal; one may choose to consider the apparent inter-
pretation as only a description of what SR already predicts will be seen.

Assumptions

Essentially we are assuming the results of SR without its definition of simul-
taneity for spacelike separated events. Measurable predictions of events in SR
are assumed to be accurate, including their causal relationships, observations,
and proper times. These aspects of SR are considered to be independent of
interpretation. The first postulate of relativity—that all physical laws are the
same regardless of inertial reference frame—is also assumed.

The classical interpretation of SR is assumed to be valid and consistent
with reality, but not exclusively so. The fundamental assumption of SR that
is disputed in order to allow reinterpretation, is that incoming light objectively
propagates over a given distance in the same amount of time as outgoing light,
when measured using the observer’s local measuring devices. This assumption
and any derived results—including the Lorentz transformations, the specifics of
relativistic effects, and the property of synchronization of separated clocks—are
proposed to be particular to the classical interpretation.

Only proper times, and speed measured using proper times, are assumed
to be valid measurements independent of interpretation. Specifically, one-way
propagation of incoming or outgoing light measured by a stationary observer is
not presumed to represent a meaningful measure of speed except by interpreta-
tion. The second postulate—that the speed of light is c in all inertial frames of
reference—then depends on interpretation. Consistent with SR, no proper time
is assumed to be defined for light, leaving no immediate meaning that applies
to non-classical interpretations. It may suffice as an alternative postulate that
applies to all interpretations, to assume that any observer which approaches the
speed of light will approach a velocity of c, measured using proper time.

The scope of this paper is limited to flat Minkowski spacetime, and to direct
light transmissions in vacuum. Relative velocities are restricted to movement
along the observer’s x-axis. The term apparent refers only to the appearance
of direct observations in agreement with SR. The term classical is used only in
reference to and in accordance with Einstein’s interpretation of SR.

1 Formulation of Apparent Simultaneity

The prototypical physical system used throughout this paper involves observers
O and P . Observer P ’s coordinate system is analogous to the primed frame of
the Lorentz transformation, except that the coordinate systems are configured
symmetrically, with each observer’s positive x-axis pointing toward the other’s
location. The x-axis then corresponds to a measure of separation distance; posi-
tive velocity corresponds with increasing separation. Unless otherwise specified,
all measurements are assumed to be according to O.

Generally the variable τ is used for proper times at P , and t is used for
local proper times at O. Any relation between the two times, or interpretation
thereof, will depend on context and will be explicitly stated.
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Letting t be the proper time between some events EO1 and EO2, and τ be
the proper time between EP1 and EP2, durations t and τ are simultaneous if
EO1 is simultaneous with EP1, and EO2 is simultaneous with EP2, with respect
to a given definition of simultaneity.

A pair of events are apparently simultaneous for a given observer if they
appear simultaneous in direct observations of light from the events.

1.1 Apparent Time

The following variables define the two main interpretations of simultaneity of
distant events relative to local events:

Definition 1.1. The classical time τC(t) at P is the proper time at P that is
classically simultaneous, according to observer O, with local duration t.

Definition 1.2. The apparent time τA(t) at P is the proper time at P that is
apparently simultaneous, according to observer O, with local duration t.

This is the time that can be seen to elapse on P ’s clock while directly ob-
served for a local duration of t.

If and only if P ’s clock appears to be zero when O’s clock is zero, then at
the time of an observation by O, the apparent time at P coincides with the time
that appears on the directly observed image of its clock. Since separated clocks
are not typically set up to appear synchronized to zero this way, we define a
measure of time that has this property:

Definition 1.3. The apparent local time tA is the local time that elapses at O
while a time of τA appears to elapse at P .

1.2 Coapparent Distance

Because distance in SR applies to a given instant defined by classical simul-
taneity, the apparent interpretation requires an alternative measure of distance
using apparent simultaneity. To correspond with measurements of apparent
time, this metric is given the following corresponding features: a) it is a mea-
surement made at P using P ’s measuring devices, and b) the measurement event
and its observation at O appear simultaneous to O. The following definition
achieves these features:

Definition 1.4. The coapparent distance xA to P , according to O at time t,
is the location on O’s x-axis that P appears to be when observed at time t,
measured using P ’s ruler in P ’s inertial frame.

The term coapparent is used because the measurement doesn’t fit any in-
tuitive meaning of the word apparent to observer O, and attempts to convey
that the measurement is not simply based on appearances at a single location,
but a combination of what both locations observe. Conversely, apparent time
is intuitively synonymous with the appearance of a clock, which implies proper
time—a measurement of time made at the observed location.

Consider a physical object at rest relative to O and marking a distance of
x. If an event occurs at P as it coincides with this location, even if P is only
passing, all observers will agree that the event occurred a distance of x according
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to O’s ruler. If P is moving, and the distance to O is length contracted by a
factor of ε, then the distance to O as measured by P is

xA = εx (1)

According to SR, ε equals the reciprocal of the Lorentz factor.
Coapparent distance is completely determined in the single instant of ob-

servation. Due to the invariance of c and the uniformity of flat space at the
moment of observation, the classical distance of an event is also completely de-
termined in the single instant of observation, in agreement with SR. Classically,
according to O, the entire distance to P is length-contracted by the same factor
that P ’s standard ruler is length-contracted, at every moment, including the in-
stant of observation. Even if P ’s ruler changes (i.e. due to relative acceleration)
during the flight time of incoming photons, the change in length contraction
is accompanied by a change in relative classical simultaneity that ensures the
consistency of P ’s ruler along the entire length of separation at any given in-
stant. This suggests reasoning in support of the apparent interpretation; even
the classical distance traveled by an incoming photon depends on only the in-
stant of observation rather than on what happens over any extended duration
of inbound travel.

1.3 Transformation Between Classical and Apparent Time

For a given time t, we can convert between τC and τA simply by compensating
for the classical travel time of incoming light.

Lemma 1.5. If P is moving at a fixed velocity relative to O, the apparent time
τA at P corresponding to an apparent local time tA is given by:

τA = τC(tA)− xA(tA)

c
(2)

Proof. At time tA, observer P appears a distance of xA, measured using P ’s
ruler. Light from P now reaching O has traveled a distance of xA according
to the ruler, taking a time of xA/c according to P ’s clock and the classical
interpretation. Therefore, P ’s clock must have ticked an additional time of xA/c
during the light’s journey, and the classical time τC must be that much later
than the time τA that appears to have elapsed in direct observations.

Lemma 1.6. If P is moving at a fixed velocity relative to O, the apparent time
τA at P corresponding to a local time t is given by:

τA = τC(t)− dA

c
(3)

where dA is the change in coapparent distance to P that occurs during time t.

Proof. Let τA0 be the time that appears on P ’s clock in observations made by
O at time 0, and let τA1 be the time that appears at time t. Then the time τA
that appears to elapse during time t is equal to τA1 − τA0. Using Eqn (2), with
additional variables set accordingly,

τA(t) =
(
τC(tA1)− xA1

c

)
−
(
τC(tA0)− xA0

c

)
(4)

and the proof follows, where dA equals xA1 − xA0.
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The condition of fixed velocity might not be necessary, however the restric-
tive Lemmas are sufficient for this paper.

2 Relativity

Using the preceding definitions and a prototypical observation of a moving clock,
relativistic effects will now be derived, corresponding with the Lorentz trans-
formation in the case of proper time. In order to derive the effects from first
principles, we’ll pretend that the Lorentz transformations and factor are un-
known.

2.1 Apparent Changes in Time and Distance

The first measurement of light’s finite speed, by Ole Rømer in 1676, was not a
direct measurement of the timing of light signals, but rather an interpretation
of observations of a clock appearing to tick at different rates.[2] The clock in this
case is Io, whose orbital period appears from Earth to respectively decrease or
increase depending on whether we are moving toward or away from it. This was
interpreted as a changing delay of light proportional to the changing distance;
the prevailing assumption of the universality of time precluded the consideration
of a physical variation in the rate of time.

Letting these observations be representative of any moving clock, the follow-
ing Lemmas establish principles based on how clocks directly appear, without
interpreting the observations.

Lemma 2.1. Neglecting change in proper time, a change in coapparent distance
of dA will correspond to a change in apparent time of −dA/c.

Proof. This follows directly from Eqn (3) when neglected duration τC is zero.

Lemma 2.2. Neglecting induced relativistic effects, a change in apparent time
τA of a clock that is moving at a fixed velocity of v relative to the observer, will
correspond to a change in coapparent distance of vτA.

Proof. We will prove this with a thought experiment involving a physical cou-
pling between measurements of time and distance. The experiment employs a
rack and pinion, with the pinion gear attached to the axle of P ’s clock hand,
and the rack fixed to observer O’s x-axis as a ruler, such that when the clock
hand turns, the gear and clock are moved along the ruler. Letting the cogs of
the rack be spaced one unit of length apart, and letting the clock hand turn
one revolution in one unit of proper time, then a gear with |v| cogs will move
a distance of v units along the ruler per unit of time, with the clock oriented
appropriately depending on the sign of v. Assume a choice of units to make v
whole, and that the clock is essentially weightless, and ignore relativistic effects
which may deform the gear.

As the teeth of the rack and pinion will mesh properly, clearly they will also
appear to mesh properly. Now, if we suppose that the gear appears to rotate
τA times, we must concede that the clock must also appear to move vτA units
along O’s ruler.

By neglecting relativistic effects, we have that P ’s ruler is the same as O’s,
and so the clock is moving at a velocity of v according to P ’s measurements.
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Generally, any system where P moves at a fixed velocity v will behave identically
to the experiment, regardless of how the fixed velocity is maintained.

The preceding Lemmas illustrate that for an object P with finite velocity v,
it may not appear to change distance without a corresponding change in time,
and vice versa. This suggests a real physical basis to apparent time rather than
an illusive one.

2.2 Relativistic Apparent Time

According to Lemma 2.1 and Lemma 2.2, a change in coapparent distance results
in a change in apparent time, which while velocity is maintained is matched by
additional change in distance, which must correspond to additional change in
apparent time, and so on. It is therefore unrealistic to neglect secondary effects
as we have. Fortunately, the Lemmas can be used to calculate these effects.

Let us suppose that the previously described device is continuously running
for some period, sufficiently long that we may avoid start and stop events or
their observation. Assume also that O and P remain sufficiently separated to
avoid collision. While the device is running, let O observe it for a duration of t.
Classically, the device’s clock rotates τC times during that period, but appears
to O to rotate τA times.

If the gear is disengaged from the rack, such that the velocity of P relative
to O is zero, then τA will equal τC. Only when there is an apparent change in
distance to the observer do the two differ. So let us consider τA to be the sum
of the apparent change in time when no change in distance is considered, plus
the change in apparent time due to movement. Letting τA0 be the change in
apparent time when movement is ignored:

τA0 = τC (5)

Considering now the motion of the device when the gear is engaged, the de-
vice will appear to move during the partial apparent duration τA0. By Lemma 2.2,
the corresponding change in coapparent distance is:

dA0 = vτA0 = vτC (6)

By Lemma 2.1, the change in coapparent distance will correspond to an
additional change in apparent time:

τA1 = −dA0

c
= −v

c
τC (7)

Which again corresponds to an additional change in coapparent distance,
which corresponds to additional apparent time, and so on.

dA1 = vτA1 = −v
2

c
τC (8)

τA2 = −dA1

c
=
v2

c2
τC (9)
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Each successive τA term is a factor of −v/c times the previous term. Taking
τA to be the sum of all the individual terms, we have

τA =

∞∑
n=0

τAn (10)

=

∞∑
n=0

(
−v
c

)n
τC (11)

which is a geometric series[3] that evaluates to

τA =
1

1− −vc
τC (12)

Similarly,

dA =

∞∑
n=0

dAn (13)

=

∞∑
n=0

v

(
−v
c

)n
τC (14)

= vτA (15)

Defining coapparent velocity as dA/τA, and taking it to be an appropriate
measure of speed in the interpretation, we find that it is equal to v. Thus
the conversion between interpretations preserves velocity, and suggests that the
coapparent speed of light will be equal to c, which we will confirm later.

2.3 Principle of Relativity in the Apparent Interpretation

In order to express τA in terms of t without using τC, let us define

ε =
τC
t

(16)

which is the reciprocal of the Lorentz factor defined in [4].
We will also define

εA =
τA
t

(17)

which is the ratio of the rate of apparent time of a remote clock relative to an
observer’s local clock.

With τC = εt from Eqn (16), Eqn (12) becomes

τA =
1

1 + v
c

εt (18)

and Eqn (17) gives

εA =
1

1 + v
c

ε (19)
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Note that while time-dilation effects in SR are identical for v as for −v,
they don’t appear as identical; receding clocks appear to tick slower, while
approaching clocks appear to tick faster.

We can calculate ε via the following thought experiment, in which we’ll have
two objects O and P execute an identical manoeuvre relative to a third observer
Q, and consider how O and P appear to each other. Assume negligible duration
of acceleration.

Let O, P , and Q initially be coincident, with clocks synchronized to zero.
In the first phase of the experiment, P moves with a velocity of v to a location
of Q+ x, then stops. Object P ’s movement occurs during a proper time of tm.

In the second phase, O begins to move at local time t1, coincident with the
observation of P reaching the destination. Let O also travel at velocity v to
Q + x, then stop, ending the experiment. This movement phase also occurs
during a proper time equal to tm.

We know that since O and P begin and end the experiment at shared lo-
cations, and since their movement phases are symmetrical, their clocks will be
synchronized at the end of the experiment. However, they will each observe the
other’s clock behaving differently. Specifically, O will observe P ’s clock visually
appearing to run slowly during the latter’s receding journey, while P will ob-
serve O’s clock visually appearing to run fast during the latter’s approaching
journey.

The apparent times of P according to O for two phases are respectively
labeled τA1 and τA2, while the apparent times of O as observed by P for the
same phases are τ ′A1 and τ ′A2.

What O sees:

Object P recedes and appears to reach its destination at proper (and apparent)
time tm. The corresponding local time atO, as P appears to stop, is by definition
t1. The relationship between these two values is given by Eqn (18), as

τA1 = tm =
1

1 + v
c

εt1 (20)

Then as O moves to join P , the latter appears to approach at −v. Again by
Eqn (18), we know that the approaching phase appears to take

τA2 =
1

1− v
c

εtm (21)

where tm is the local time of O’s journey, and ε is known to be the same for −v
as for v. This is an assumption that is taken from SR, without an alternative
explanation provided herein, and may be considered an unresolved problem with
the apparent interpretation.

What P sees:

Object P completes its journey and stops, and it experiences a delay between
its own stopping and the starting of O’s approach. We can ignore the length of
the delay by including it in the timing of the first phase, noting that O must
appear to start its journey at proper time t1. Then O will appear to approach,
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with a proper duration of tm. The durations that appears to elapse on O’s clock
over the two phases of the experiment are thus

τ ′A1 = t1 (22)

τ ′A2 = tm (23)

On what they agree:

Since the two clocks end synchronized, we know that the total time that O sees
passing at P must equal the total time that P sees passing at O. By combining
values from Eqns (20) through (23), this equality is expressed as

tm +
1

1− v
c

εtm = t1 + tm (24)

Solving for the ratio εA (of P ’s movement phase according to O), we get

tm
t1

=
1− v

c

ε
(25)

We also have from Eqn (20) that

tm
t1

=
ε

1 + v
c

(26)

Equating Eqns (25) and (26), and solving for positive ε, we have

ε =

√
1− v2

c2
(27)

This is of course the correct reciprocal of the Lorentz factor, defined by
Eqn (16), according to [4].

We now have a solution for εA by substituting Eqn (27) into Eqn (19).

εA =

√
1− v

c

1 + v
c

(28)

This corresponds to the apparent change in observed clock frequencies pre-
dicted by SR, which is the reciprocal relativistic Doppler factor given in [5].

Although we have used knowledge of SR to establish the value of classical time
τC, we now have an equation for τA from which the variable is removed. Note
that τC does not span any specific events that are referenced in any of these
equations. Effectively, it has become only an intermediate variable with no
independent physical meaning. The appearance of relativistic effects is thus
explained without the need for hidden relativistic effects (notwithstanding the
unjustified assumption that ε is the same for v and −v).

Relativistic Doppler effects can thus be interpreted as direct consequences
of observations in accordance with the principles of relativity, without needing
delayed incoming light as an explanation.
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2.4 Correspondence With the Lorentz Transformation

The classical simultaneity of t and τC is applicable throughout the inertial frame
of O, while the apparent simultaneity of t and τA is location-dependent. Cor-
respondence with the Lorentz transformation is demonstrated here, limited to
location P , i.e. only in the case of proper time.

In the Lorentz transformation given in [6], the time t′ corresponds to the
proper time at x when

x = tv (29)

In this case, Eqn (3), with τA = εAt and letting dA = εAx by definition of
coapparent velocity, gives us

τC = εA

(
t+

x

c

)
(30)

Incorporating Eqns (27) and (28) we get

τC =
1

ε

(
1− v

c

)(
t+

x

c

)
(31)

which, given Eqn (29), simplifies to

τC =
1

ε

(
t− v

c

x

c

)
(32)

which is the Lorentz transformation of time.
Since we do not require any specifically coordinated clocks, and in fact have

been using clocks that may have been set in agreement with classical SR, we
can assert correspondence with the Lorentz transformation at any location P ′

on O’s x-axis, by defining in accordance with SR a proper clock at P ′ that is
classically synchronized with P ’s clock.

With an acceptance of a physical reality of apparent time, the Lorentz trans-
formation for time becomes a consequence of the conversion to classical time.
The “mixing of space and time” inherent in the Lorentz transformation is not
apparent in the Doppler equations, but only emerges from the conversion, indi-
cating that it is only an interpretation-dependent aspect of SR.

2.5 Composition of Velocities

Velocities along the x-axis do not change when converting between interpreta-
tions, so we should expect that the composition of velocities defined in [1] would
apply here. We can show this is true for velocities along a common x-axis.

Suppose that P is moving at velocity vP relative to an observer Q which
is moving collinearly at velocity vQ relative to O, with Q in between the other
two. Let v be the velocity of P relative to O. While a time of t passes at O,
let a time of τA(t) appear to pass at Q, and let τ ′A(τA(t)) appear to pass at P .
Both O and Q see the same proper time appear to pass at P relative to a given
proper time at Q. This can be confirmed by considering that a signal from an
event at P sent to O must arrive at the same time as a similar signal that is
relayed through Q without additional delay. Let

εA(vQ) =
τA(t)

t
(33)
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and

ε′A(vP ) =
τ ′A(τA(t))

τA(t)
(34)

in accordance with Eqn (28). Then

εA(v) =
τ ′A(τA(t))

t
= εA(vQ)ε′A(vP ) (35)

Solving Eqn (28) for v yields

v = c
1− εA(v)2

1 + εA(v)2
(36)

Substituting Eqn (35), then using Eqn (28), and simplifying results in

v =
vP + vQ

1 + vP vQ/c2
(37)

which is the correct composition of velocities, according to [1].

2.6 Coapparent Speed of Light

Measuring from O’s frame, incoming light appears to arrive instantly while
outgoing light appears to propagate at a rate of c/2. However, this involves
comparing the timing of one event at the location of the clock, with one that is
remote.

Coapparent velocity dA/τA is based on the proper time of a moving object.
Though proper time is not defined for light, in limit form we find

lim
v→±c

|dA|
τA

= lim
v→±c

|εAd|
εAt

= c (38)

Thus, measuring the speed of light as it appears, while also using coapparent
distance and proper times, allows a coapparent speed of light equal to c, adhering
in essence to the intention of the second postulate of relativity.

2.7 Significance of the Lorentz Factor

Relativity of simultaneity is an aspect of both interpretations, and requires that
a pair of events that one observer measures as simultaneous, another observer
may measure as separated by a delay. While it is classically more intuitive
to attribute apparent delays to the propagation light, relativistic effects are
needed whether or not this is done. Conversely, the apparent interpretation
shows that all measured delay can be treated as a relativistic effect alone. The
classical delay of light can be treated as a first-order apparent relativistic effect,
and time dilation as higher-order effects. Taken together, the separate classical
effects of delayed light and the Lorentz transformation for time are unified as
the Doppler effect, an apparent effect.

The reciprocal Lorentz factor ε still shows up in the apparent interpretation
as the ratio of rest distance measured by O to coapparent distance, and in the
proper velocity of P . For example, when P appears to O to reach a distance
of x measured in O’s rest frame, the apparent distance dA equals εx. Note that
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ε here is a ratio of a length measured at P to one measured at O, involving
two different inertial frames. An alternative measure is the ratio of where P
appears on O’s ruler, to where O appears on P ’s ruler, with both measurements
made in the inertial frame of O. In this case the ratio is εA. The ratio of εA
to ε, equivalent to compensating for movement at velocity v for the classical
duration that light takes to cross a change in distance between O and P , may
in the apparent interpretation represent a translation of different observers’
experiences, namely from that of P to that of O.

3 Equivalence With the Classical Interpretation

Lorentz and Doppler equations give different results, and though they corre-
spond, they seem to be fundamentally different descriptions of reality. How-
ever, they can produce identical results if used to describe the same events from
different observer locations; a pair of events which are classically simultaneous
at O appear simultaneous at another location S. Without a privileged frame
of reference in SR, the measurements of events by either observer are equally
valid. The transformation between the interpretations is then equivalent to a
transformation between observer coordinates.

We will determine, for different cases, the location of a “special observer” S
for which pairs of events classically simultaneous according to O, are apparently
simultaneous. Specifically, if t and τ are classically simultaneous according to
O, they will appear simultaneous to some observer S.

For the following Lemmas, let t refer to the time of an event at O, and
τ refer to the time of an event at P , or equivalently the proper times since
appropriately set clocks.

Lemma 3.1 (Local equivalence of classical and apparent interpretation). In
the case that O is collocated with P , τ is classically simultaneous with t if and
only if τ is apparently simultaneous with t.

Proof. Let P be collocated with O. Then the coapparent distance xA between
O and P is zero. By Lemma 1.5, τA and τ are equal.

Lemma 3.2 (Rest frame correspondence of classical and apparent interpreta-
tion). Let O and P be relatively at rest. If τ and t are classically simultaneous
according to O, τ and t are apparently simultaneous according to S, where S is
located at (O + P )/2.

Proof. Let S equal (O+P )/2. Location S is then equidistant to O and P , and
shares their inertial frame. According to classical SR, a pair of signals that leave
P and O simultaneously will each take the same amount of time to reach S,
thus appearing to occur simultaneously at S.

For the following Lemma, velocities are expressed as ratios of c.

Lemma 3.3 (Inertial motion correspondence of classical and apparent inter-
pretation). Given P moving at a constant finite velocity β relative to O, where
τ and t are classically simultaneous according to O, there is a reference point S
such that τ and t are apparently simultaneous from S.
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Proof. Let P be moving inertially at a velocity β relative to observer O. We
will construct S in such a way that the Lemma is satisfied.

First, we may assume that O and P are coincident at some instant, since P
is moving collinear with O at a fixed non-zero velocity. Let us set both of their
clocks to zero at that instant. Let us also choose to coincide S with O at the
same instant and set its to zero then as well. By Lemma 3.1, S would observe
events at P and O as simultaneous at that instant.

Let ε be the reciprocal of the Lorentz factor, i.e.

ε =
√

1− β2 =
τ

t
(39)

If S is satisfactory, it will have the following properties:

1. S observes P and O consistent with what O observes.

2. By Property (1), S observes that P is moving with a relative velocity β
relative to O.

3. The apparent rate of time passing at P relative to that at O, according to
S, is equal to the classical rate of time at P relative to that at O, according
to O. Letting τ ′A(τ) be apparent time at P , and τ ′A(t) the apparent time
at O, each as observed by S, we must have that

τ ′A(τ)

τ ′A(t)
= ε (40)

From S’s perspective, S remains stationary while O and P move at fixed
velocities. Let βO and βP be the respective velocities of O and P relative to S.
By Property (2), we know that the composition of velocities of βO and βP will
equal β.

Since we’re using a symmetrical configuration, the velocity of O relative to
S is the same as the velocity of S relative to O, which is given by the equation
for composition of velocities. This value, from Eqn (37) modified for velocities
as ratios of c, is

β =
βO + βP

1 + βOβP

(41)

Solving for βP , we get

βP =
β − βO

1− ββO

(42)

Let εP equal
√

1− β2
P and εO equal

√
1− β2

O. Then, expanding Eqn (40)
using Eqn (18), we have

ε =
εP

(
1

1+βP

)
tS

εO

(
1

1+βO

)
tS

(43)

√
1− β2 =

√
1− β2

P (1 + βO)√
1− β2

O (1 + βP )
(44)
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Solving Eqn (44) for βP , we have

βP =
βO + β2

2−β2

β2

2−β2 βO + 1
(45)

We then equate Eqns (45) and (42), and solve for βO.[7] Discarding the
solution which gives |βO| > 1, we have

βO =
β

β + 2
(46)

For the sake of completeness: Substituting Eqn (46) into Eqn (42) and
simplifying,[8] we have

βP = − β

β − 2
(47)

We now know the velocity with which S must travel relative to O and P in
order to keep P ’s clocks appearing to tick at a rate equal to a factor of ε times
O’s clock rate. Given that we have a location for S when its clock is reset to
zero, and a constant velocity at which O moves relative to S, which is equal to
the velocity that S moves relative to O, we now have a means of determining
S’s location at any time relative to O.

In accordance with SR, we know that the observer S configured as above
will observe that τ and t appear simultaneous.

We see that for |β| < 1, |βO| will be less than |β|. Thus S will always be
located between O and P . Specifically, S will be closer to O when β is positive,
and closer to P when β is negative.

As β approaches zero, βO and βP approach equality (at zero). This means
that a location S will approach equidistance to each of O and P as β approaches
zero, so that Lemma 3.2 and Lemma 3.3 together provide a formula for location
S as a continuous function of β.

Lemma 3.3 on its own does not work when P and O are separated but
relatively at rest, because the means of synchronizing the clocks described in
the proof does not apply. However, in such cases, observers at any location
will see that the pair’s clocks appear to tick at the same rate, as SR predicts.
The matched clock rates in an inertial frame may give a false sense of universal
time.

Lemma 3.4 (A change in relative simultaneity corresponds to a change in
observer coordinates). Let events EO1 and EO2 be events at O, occurring re-
spectively before and after an instantaneous change in relative simultaneity at
P , and with a negligible proper time between the two events. Let EP1 and EP2

be events at P that are classically simultaneous with EO1 and EO2 respectively,
according to O. Let τ be the proper time between EP1 and EP2. Let event ES
at S appear to S to be simultaneous with both EO1 and EP1, and event ES′ at
S′ appear to S′ to be simultaneous with both EO2 and EP2.

The change in classical simultaneity measured by O as a change in time at
P of τ is equivalent to the change in apparent time at P measured by an abstract
observer undergoing a change of coordinates from ES to E′S.
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Note that τ may be negative.

Proof. This follows immediately from SR.
Any observer that is coincident with ES would observe events consistent

with what S observers at that moment, i.e. that ES and EP1 appear simulta-
neous. Similarly, any observer coincident with E′S would observe that E′S and
EP2 appear simultaneous. Thus, in accordance with SR, any observer that is
transformed from ES to E′S will correspond with the appearance of a change in
time at P from EP1 to EP2, which is τ .

Note that the clocks of S and S′ are irrelevant. A potential real observer that
moves from ES to E′S , regardless of the path taken and proper time elapsed,
will observe a change in apparent time at P of τ . Moreover, S and S′ are
abstract, and there is no requirement that a real observer is able to move from
ES to E′S , which should be impossible if τ is negative. A change in relative
classical simultaneity is equivalent to switching from observation at S to those
at S′; since the former causes no real physical effect independent of O, it is not
required that a physical observer is able to switch from S to S′.

With the ability of an abstract observer to switch locations to suit any mo-
mentary simultaneity between O and an observed location, any set of classically
simultaneous events according to O is consistently apparently simultaneous to
this abstract observer.

Theorem 3.5 (The classical interpretation reduces to the apparent). Given
a set of pairs of events, where each pair consists of one event at P that is
classically simultaneous (according to O) with the other event at O, each pair will
be apparently simultaneous according to some observer S, where S an abstract
observer with unrestricted mobility (not limited to physically possible movement
through space or time).

Proof. This follows for any case of discrete velocities and instantaneous changes
between them, from repeated application of Lemmas 3.1 through 3.4. The
continuous case can be made by integration (not provided) of the discrete case.

Extending this to all events, pairing each with all possible other simultane-
ous events according to any observer, the preceding Theorem implies that real-
ity described in terms of classical simultaneity corresponds to reality described
by apparent simultaneity, as seen by an abstract observer. Since observations
from different locations are all mutually consistent, this explains how both the
classical and apparent interpretations provide mutually consistent models of the
same reality. Both interpretations describe direct (apparent) observations of the
same events, but with different apparent simultaneity as measured at different
observer locations.

3.1 Third-person Observers and Multiple Spatial Dimen-
sions

Any observer S described in this section is essentially a third-person perspec-
tive, not directly involved in the signal transmission from P to O. Observer S
can neither observe the photons comprising the signal sent from P , nor can it
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directly measure the reception of the signal at O. Observation of either requires
indirect or secondary signals sent from each of the primary signal’s transmission
and reception events, to S. This happens to be the typical way that events are
experienced in the universe, as information from an event is broadcast to multi-
ple observers, while the reception of information (in the form of energy) causes
a change in the observer which effects additional broadcasting of information.
Typically there is much information available to an observer about what other
observers see. Indirect information about signals sent between others may of
course be expressed in terms of only those signals which eventually make their
way directly to a given observer, calculated from the perspective of each inter-
mediate observer who relays any information, however this is consistent with
the simplification of treating any unobserved signals as propagating at a rate of
c, regardless of direction.

Expressed using Hans Reichenbach’s ε-notation, the apparent timing of a
signal across a distance of d, according to a third-person observer, will appear
to take a time of 2(1 − ε)d/c, for some ε in [0, 1] which depends on the posi-
tioning of the observer relative to the signal’s origin and end point. In the case
of an observer coincident with the recipient of a signal, ε is one, corresponding
to the apparent interpretation. In the case of an observer coincident with the
sender, ε is zero. Each ε value corresponds to a set of observer positions and to
an interpretation similar to the apparent interpretation, except applied to indi-
rectly observed signals. The apparent interpretation is a specific case of a more
general interpretation that considers the experiences of all possible observers,
including any special observer S, whose observations are predicted by classical
SR equations. An interpretation generalized for all possible indirect observer
locations essentially includes the classical and apparent interpretations. Any
such interpretations are equivalent exactly as observations made from different
locations are equivalent.

Note that in the rest case, a special observer S with its ε value of 1/2 corre-
sponds both to an “unbiased” symmetrical observer that is equidistant to both
P and O, as well as to the average of all possible other observers and their
corresponding ε values. The same ε value can be arrived at by assuming equal
timing of inbound and outbound light, without ever referring to the specific
observer location S. Without needing to specify S, the classical interpretation
thus provides a simplification by abstracting some location-dependent aspects
of observations. The cost of the simplification is the classically interpreted de-
lay of light, an adjustment to direct measurements of time, which translates an
observer O’s measurements into what would be measured by S. The simplifica-
tion is useful in cases where no single observer is especially important, such as
the interaction of multiple observers that are relatively at rest, including most
human-scale experiences. It is possibly misleading in cases where the observer
or its location is important and is not S, such as with quantum mechanics and
astronomy.

The conceptual differences between the interpretations then become a matter
of metaphysics, and of convenience, and are irrelevant because the interpreta-
tions are interchangeable.
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3.2 Correspondence of Standard Second Postulate

The range of observer experiences means a range of possible apparent simultane-
ities within a single inertial frame. This is fine for the apparent interpretation
because simultaneity is defined per observer, not per frame.

The standard second postulate avoids this problem by narrowing to one the
possible choices of simultaneity within an inertial frame, thereby also precluding
the apparent interpretation, because differently located observers do not gen-
erally observe a given light signal appearing to propagate at a fixed rate in all
directions. However, correspondence of the interpretations allow the standard
second postulate to be derived.

Theorem 3.6. A measurement of the classical speed of any light signal measured
from any inertial frame, is equivalent to an apparent measurement of the same
signal at some location in the same inertial frame, from where the signal appears
to propagate at a rate of c.

Proof. Consider the inertial frame of an arbitrary observer Q, and a light signal
from P to O, as indirectly measured by Q.

Let points P ′ and O′ share the inertial frame of Q, and let P ′ be coincident
with P at the time of transmission, and O′ be coincident with O at the time of
observation. It follows from SR that the signal from P to O is equivalent to an
identically measured signal from P ′ to O′.

Considering this equivalent signal, there is by Lemma 3.2 a point S from
which the signal appears to have propagated at a rate of c, and which is also at
rest relative to Q. Thus the classical speed of the signal, measured by Q to be
c, is the same as the apparent speed of the signal measured by S.

In any given inertial frame of reference, for any set of n light signals (i.e.
observations of events), there is a set {S1, ..., Sn}, where each Si observes the
corresponding i’th signal appear to propagate at c. This set of observers can be
used by all observers in the inertial frame, as delegate measurement references,
since what is measured at each Si is consistent with what is measured by any
observer Q. And since the apparent time and classical time of an event at Si
as observed by Q differ by d/c, where d is the distance between the observers
at rest, the use of Si as a measurement reference is equivalent to adjusting a
direct observation by Q for a delay of light proportional to distance. And finally,
because the set {S1, ..., Sn} is specifically chosen to agree with the classical speed
of light, any observer which uses a measurement reference equivalent to one from
that set will measure the corresponding signal as having a speed of c.

Thus, an observer in an inertial frame doesn’t have to experience the ap-
pearance of a signal traveling at c, because it can equivalently delegate its mea-
surements to a set of alternate observers, which do experience it. Classical SR
is the equivalent of using the observations from one location to define the mea-
surements at another, which is consistent due to the the agreement of different
observers. With this perspective, the validity of the standard second postulate
need not be either a physical law, nor a mere coincidence.

3.3 Equivalence of Time and Distance

Lemma 2.1 and Lemma 2.2 imply the equivalence of time and distance, whereby
anything moving through a given distance will experience a proportional pass-
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ing of time, and anything experiencing a given passing of time will cover a
proportional distance, if for v < c any additional experienced passing of time
is expressed in terms of light or information traveling at c across well-defined
distances and subject to the same Lemmas.

The equivalence is interpretation-dependent, however I will attempt to make
it independent with the following:

Theorem 3.7 (Equivalence of time and distance). Given the consistency of the
classical interpretation of the predictions of SR, another consistent interpreta-
tion can be constructed by converting a measure of distance into time or vice
versa.

Proof. It is demonstrated herein for the case of converting between τA and τC,
having established that a physical simultaneity of τA and t does not violate
the alternative postulates of SR, and that the classical second postulate can be
derived from the alternative postulate.

This theorem only weakly implies an equivalence of time and distance, ar-
guing the case for only one interpretation (representing the experience of O)
without ruling out coincidence. It is nevertheless possible to construct simi-
lar interpretations to represent the experiences of other arbitrarily located ob-
servers, and their measurement of the apparent timing of signals from P to
O.

4 Interpretation and Speculation

The apparent interpretation essentially follows from SR with an additional prin-
ciple that time is different if measured from different locations.

4.1 Equivalence of Time and Distance

The equivalence of time and distance makes more sense if we consider tem-
poral analogies to the distinct spatial notions of cumulative distance, and dis-
placement. By analogy we would respectively have the conventional notion of
cumulative time (i.e. elapsed time or ageing), and a new notion of temporal dis-
placement. There is no distinct classical notion of temporal displacement; its
equivalent is the travel time of incoming light, which is expressed in terms of
ordinary elapsed time.

Ageing and temporal displacement have different properties. Ageing, like
traveled distance, is a strictly increasing value, producing the characteristic ar-
row of time. Temporal and spatial displacement can either increase or decrease,
and might provide a preferable notion of time for describing quantum mechan-
ical interactions that allow paths of particle that go backward in time.

Equivalence of time and distance implies that any change in one must be
accompanied by a change in the other. Lemma 2.1 already establishes that
any change in relative distance corresponds to a change in relative time. If any
change in time involves a proportional change in distance, then anything moving
at subluminal speeds must be decomposable into some form of information that
is traveling at c. This might manifest as oscillation (accumulation of a relatively
large distance within a relatively small displacement), or perhaps as space-time
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curvature (with light traveling in a straight line which to the observer appears
to curve into a compact space, possibly implying local singularities).

A consequence of equivalence is that velocity can be expressed as a ratio
of distances, or of times. We already see that it is natural for velocities to
be expressed as a ratio of c. Velocity might also have meaning as a ratio of
displacement to the distance covered by information propagating at c.

Also implied is that time cannot be defined at a single point. A point particle
cannot measure a specific duration except relative to some other location. This
predicts that there must be some corresponding measure of distance in any
particle that can transition between states in a well-defined time.

If time and distance have no meaning independent of given observations,
then time and distance could be considered emergent properties that are noth-
ing more than a consistent ordering of events in space and time. Though aspects
of the same measurements, displacements are experienced as length, and cumu-
lative space-time distances are experienced as time.

4.1.1 Sign of Time

Lemma 1.6, converting time between classical and apparent interpretations, is
a conversion between distance and time. The constant −1/c is the conversion
factor.

Using natural units and reversing the sign of time, the conversion factor be-
comes 1, intuitively conveying the equivalence of time and distance. A negation
of conventional time values assigns a greater time value to past events relative
to later events. Since we are able to arbitrarily reset clocks, we can conceive
of a convention whereby an observer’s time remains fixed at 0, establishing a
temporal coordinate origin. In the observer’s coordinates, the observer loca-
tion remains at its origin in both location and time. A perfect local clock would
again be meaningless, as it would require some distance to define a relative time.
While the observer’s time is considered to be fixed rather than passing through
increasing values relative to some fixed past event, the relative times of past
events continuously increase relative to an observer’s “now”. This provides an
intuitive analog to length, where the temporal distance to a past event increases
as though it is receding from the observer.

By analogy, the difference in conventions is similar to the difference between
fixing the zero mark of a tape measure to a location and then moving away
while carrying the tape measure, versus leaving the tape measure and taking
the zero end of the tape with you. Either way, a positive distance is measured.
While leaving a running clock in the past makes no physical sense, this is only
a problem if one were to argue that the absolute time of a clock or event has
physical meaning, rather than being arbitrary and strictly relative.

4.2 Apparent Properties of the Present

A signal sent to O appears instantaneous to O, but generally not instantaneous
to other observers. This may be described as apparent relativity of instanta-
neity. Considering events to be not extended in time, simultaneity of a set of
events entails the sharing of a single instant among the events, thus relativity
of instantaneity implies relativity of simultaneity, and vice versa.

Defining the apparent present as all events apparently simultaneous with an
arbitrarily chosen event at O labeled Now , the apparent present is the past light
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cone of Now . This defines a moment in time according to what is immediately
observed at O.

The apparent instantaneity of a signal from P to O is only an interpretation
based on what O measures, and what is apparent to P provides an equally
valid interpretation. A signal sent from O to P appears instantaneous to P , yet
appears to O to take time to propagate. This signal, on the future light cone
of the transmission event at O, and conveying what P can observe of O, also
represents what O can “now” affect at P . The future light cone can define for
O a moment in time in terms of the set of events that O can effect in a given
instant.

Using the apparent interpretation, no event that occurs outside of the past
light cone of Now would be considered to have happened yet. The event may
only be predicted to later happen, and is a part of O’s apparent future.

Similarly, any event that occurs at P as an effect of a signal sent from
O coincident with Now , cannot be affected by O after Now . According to
SR, the effected event cannot be brought into the future light cone of Now .
Classically, we might say that if a change in inertia is made to attempt this, a
corresponding change in relative simultaneity would prevent it. In the apparent
interpretation, if such an attempt were made, we would see that time at P
appears to pass quickly, so that any reduction in the temporal offset between
O and P is accompanied by the appearance of P receiving O’s signals at an
advanced rate. This means that anything outside of the future light cone of
Now cannot be changed. Thus any event outside of the future light cone of
Now is a part of O’s “effective” past, and Now ’s future light cone can define an
effectible present for O.

Classically, the present may be thought of as an instantaneous “knife edge”
between past and present, defined per inertial frame but occurring at every spa-
tial location within a given frame. Instead, with this alternative interpretation,
the present may be defined causally, including all events lying between a cause
of Now and an effect of Now . The past is then anything that can have already
been observed, and the future is anything that can yet be affected; everything
in between—anything outside of Now ’s light cone—is the present, which is only
locally instantaneous.

This idea of a time-extended present at spatially remote locations, incor-
porates the apparent present and the effectible present of O, or equivalently
we might say that it incorporates the apparent presents of both O and P (for
all possible remote points P ). It allows events in any observer’s present to
be universally in all observers’ presents, by considering the present to be not
universally instantaneous. However, such a definition of present incorporating
relative instantaneity would be defined by causality and not by simultaneity of
events.

In other words, if we allow a present that is not instantaneous, we are able
to have a universal shared present, which has relative extent. This must also
acknowledge that extreme distances correspond with extreme relativity of age.

4.3 Behaviour of Light

The classical interpretation implies that photons travel progressively through
all intervening space between its source and destination, which does not fit well
with an interpretation in which the journey can be measured as a single instant.
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Rather, it is noted that the effects of a photon are apparent only at its source
and destination, and so it appears to leap across the intervening space.

Considering this from third-person points of view, we can describe a signal
as a transfer of energy or information from one location and time, to another
location and time, where the distance covered is consistently c times the dif-
ference in time. There is no need to define light’s behaviour except at the
point of transmission and that of reception. This opens the question of whether
light transmissions without definite receivers are possible, and if so whether it
involves a loss of energy or if conservation laws require that photons must exist
independent of observation.

5 Objections to Apparent Simultaneity

5.1 Validity of Einstein Clock Synchronization

There is an apparent error in Einstein-synchronized clocks if they are viewed
asymmetrically. Classically, the error corresponds to a proportional delay of
light, which is considered separately from synchronization errors. Second-order
apparent relativistic effects can be minimized by minimizing relative velocity,
but first-order effects are proportional to separation distance, making separated
clocks impossible to generally appear synchronized.

Einstein synchronization is valid if the first-order relativistic effects are dis-
regarded, which implies the assumption of an interpretation which disregards
them. Thus this method assumes, rather than proves, the exclusivity of the
classical interpretation.

5.2 Non-Conventionality of Simultaneity

The arguments presented in this paper do not require conventionality of si-
multaneity. Rather, they require conventionality of interpretation. Each inter-
pretation may in turn have its own unique definition of simultaneity, allowing
non-conventionality of simultaneity within that interpretation.

The apparent interpretation indeed seems to favour non-conventionality. As-
suming that a quantum event may appear to a given observer at no more than
one local observation time, there is for that observer a unique apparent simul-
taneity of events. The uniqueness is per observer, but not per inertial frame.
Conventionality of interpretation is equivalent to conventionality—or choice—of
observer, which is better represented as relativity of simultaneity, rather than
conventionality thereof. These differences seem to be a matter of philosophy,
without objective physical meaning.

5.3 Action At a Distance

The behaviour of light described herein fits the definition of action at a dis-
tance as characterized in [9] as “without there being a process that carries this
influence contiguously in space and time.” While instantaneous action at a dis-
tance would imply violation of causality if interactions are symmetric, apparent
interaction between given distant objects is not symmetric according to any ob-
server that measures an apparently instantaneous action between the objects.
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Two-way instantaneous interaction certainly violates causality, but one-way in-
stantaneous action does not necessarily.

5.4 Common Sense Objections

The classical assumption of equal timing of incoming and outgoing light is con-
sistent with SR and so tends to be taken for granted, however it is demonstrated
not a necessary assumption. The apparent interpretation offers an “alternative
common sense” that presumes the principles of relativity, but abandons any
assumption of universality of time.

While there is no requirement that a theory obey common sense, there re-
main issues with the apparent interpretation that nevertheless clash with it. One
problem is that the interpretation essentially implies that things are exactly as
they appear, yet they don’t always behave as though they are. For example,
massive objects behave with respect to gravity as though their distance is dif-
ferent than it appears. This in turn suggests the classical interpretation’s view
that apparent distances are illusory while there is an underlying “real” distance
governing physical processes.

A possible resolution to this problem is that there may be different distances
for different interactions or fields, just as there are different distances for dif-
ferent inertial frames, and different coapparent distances for different observers.
Electromagnet and gravitational force vary differently as functions of distance; it
may be possible to express these differences using different measures of distance.

Such conceptual difficulties of the apparent interpretation do not go against
the philosophy of relativity, but rather take it to an extreme.

If it is a physical reality that photons objectively travel slowly, then the
apparent interpretation is a delusion. The definition of coapparent distance may
be hiding a two-way measure of light. The infinite sum of Eqn (11) also applies
to the classical interpretation as a sum of terms of the time that it takes light
to travel the change of distance that occurs during the previous term. However,
the argument stands that slow traveling light is based on assumptions, and that
empirical evidence does not disprove either interpretation.

Conclusions

SR has always predicted the appearance of events, and incorporating the ap-
parent interpretation is as easy as no longer distinguishing between what is seen
and what is real. This implies accepting Doppler shift analysis as representative
of reality, and accepting that the reality of the Lorentz transformations may
require an abstract substituted observer.

Assuming that the apparent interpretation could be formulated without
using the classical interpretation, but from appropriate alternative postulates
alone, the derivation of the classical second postulate implies that the postulates
of relativity alone do not produce a unique interpretation. Instead, uniqueness is
provided by choice of measurement definitions, or alternatively by choice of ob-
server position. Evidence of the existence of photons independent of observation
would likely invalidate the interpretation.

The validity of different interpretations implies that neither describes a fun-
damental underlying physical reality, but each seems instead to only describe
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an observer’s experience of the physical universe. Classical SR, describing an
average of observers and their interactions, more intuitively models the human
experience, which combines many individual observations into one consistent
understanding of the world. The apparent interpretation better models the ex-
perience of an individual point observation. The different types of experience,
of course, remain mutually consistent.

Conversely, if the different interpretations are equally physically real, the
results that are specific to one interpretation must not be. This includes many
unseen effects of classical SR, such as modifiable simultaneity of events for a
given observer, as with the notion of events that have already happened yet
remain temporarily unmeasurable, and may be undone by a change of inertial
frame. Without this notion, there may be less justification for block universe or
multi-world interpretations.

The apparent interpretation allows much conceptual simplification of SR,
where many of its unintuitive aspects can be explained or avoided through a
simple delegation of observers.
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