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Abstract

Introducing a black hole's e�ective temperature, we obtained an Hon-

orable Mention in the 2012 Gravity Research Foundation Essay Compe-

tition interpreting black hole's quasi-normal modes naturally in terms

of quantum levels. This permitted us to show that quantities which

are fundamental to realize the underlying quantum gravity theory, like

Bekenstein-Hawking entropy, its sub-leading corrections and the number

of microstates, are function of the black hole's excited state, i.e. of the

black hole's quantum level, which is symbolized by the quantum �over-

tone� number n that denotes the countable sequence of quasi-normal

modes. Here, we improve the analysis by �nding a fundamental equation

that directly connects the probability of emission of an Hawking quantum

with the two emission levels which are involved in the transition. That

equation permits us to interpret the correspondence between Hawking ra-

diation and black hole quasi-normal modes in terms of a time dependent

Schroedinger system. In such a system, the quasi-normal modes energies,

which are also the total energies emitted by the black hole in correspon-

dence of the various quantum levels, represent the eigenvalues of the un-

perturbed Hamiltonian of the system and the Hawking quanta represent

the energy transitions among the eigenvalues, which correspond to a per-

turbed Hamiltonian ∝ δ(t). In this way, we explicitly write down a time

dependent Schroedinger equation for the system composed by Hawking

radiation and black hole quasi-normal modes. The states of the corre-

spondent Schroedinger wave-function can be written in terms of a unitary

evolution matrix instead of a density matrix. Thus, they result to be pure

states instead of mixed ones. Hence, we conclude with the non-trivial

consequence that information comes out in black hole's evaporation. This

issue is also a con�rmation of the assumption by 't Hooft that Schroedinger

equations can be used universally for all dynamics in the universe, further

endorsing the conclusion that black hole evaporation must be information

preserving.
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The introduction of a black hole's e�ective temperature [1, 2], which takes into
account both of the non-strictly thermal [3, 4] and non-strictly continuous [1]
characters of Hawking radiation [5], recently permitted us to re-analyse black
hole's quasi-normal modes and to interpret them naturally in terms of quantum
levels for emissions of particles [1, 2]. Here, we further improve the analysis. A
fundamental equation that directly connects the probability of emission of an
Hawking quantum with the two emission levels which are involved in the tran-
sition is found. That equation enables to interpret the correspondence between
black hole quasi-normal modes and Hawking radiation in terms of a time de-
pendent Schroedinger system. The quasi-normal modes energies, which are also
the total energies emitted by the black hole in correspondence of the various
quantum levels, represent the eigenvalues of the unperturbed Hamiltonian of
the system and the Hawking quanta represent the energy transitions among the
eigenvalues corresponding to a perturbed Hamiltonian ∝ δ(t). Then, we can
write down a time dependent Schroedinger equation for the system composed
by Hawking radiation and black hole's quasi-normal modes. The states of the
correspondent Schroedinger wave-function are written in terms of a unitary evo-
lution matrix instead of a density matrix. Thus, they result to be pure states
instead of mixed ones. The conclusion implies the non-trivial consequence that
there is not information loss in black hole evaporation, in agreement with the
use of Feynman sum over histories [6], with the results of string theory [7], and
with the recent result based on the Kerr-Schild formalism in Kerr-Newman black
holes [8]. Hence, the �nal conclusion is that black hole evaporation must be in-
formation preserving, con�rming the assumption by 't Hooft that Schroedinger
equations can be used universally for all dynamics in the universe [24].
Working with G = c = kB = ~ = 1

4πε0
= 1 (Planck units), the strictly thermal

approximation gives the probability of emission [1]-[5]

Γ ∼ exp(− ω

TH
), (1)

where ω is the energy-frequency of the emitted particle and TH ≡ 1
8πM the

Hawking temperature. A more precise computation in the tunnelling framework,
which takes into account the energy conservation, i.e. the contraction of the
black hole which enables a back reaction due to the varying geometry, gives a
remarkable correction [3, 4]

Γ ∼ exp[− ω

TH
(1− ω

2M
)], (2)

where the additional term ω
2M is present [3, 4]. By introducing the e�ective

temperature [1, 2]

TE(ω) ≡ 2M

2M − ω
TH =

1

4π(2M − ω)
, (3)

we can re-write eq. (3) in a Boltzmann-like form similar to eq. (1)

Γ ∼ exp[−βE(ω)ω] = exp(− ω

TE(ω)
), (4)
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where exp[−βE(ω)ω] is the e�ective Boltzmann factor, with βE(ω) ≡ 1
TE(ω) .

In other words, the e�ective temperature replaces the Hawking temperature in
the equation of the probability of emission [1, 2]. The physical interpretation is
the following. In various �elds of Science, one takes into account the deviation
from the thermal spectrum of an emitting body by introducing an e�ective
temperature which represents the temperature of a black body that would emit
the same total amount of radiation. We introduced the concept of e�ective
temperature also in the black hole's physics [1, 2]. The e�ective temperature

depends on the energy-frequency of the emitted radiation and the ratio TE(ω)
TH

=
2M

2M−ω represents the deviation of the radiation spectrum of a black hole from
the strictly thermal feature [1, 2]. The introduction of the e�ective temperature
enables the introduction of others e�ective quantities. Following [1, 2], let us
consider the initial mass of the black hole before the emission, M , and the �nal
mass of the hole after the emission, M−ω. We can introduce the e�ective mass

and the e�ective horizon

ME ≡M −
ω

2
, rE ≡ 2ME (5)

of the black hole during its contraction, i.e. during the emission of the particle
[1, 2]. Such e�ective quantities are average quantities [1, 2]. In fact, rE is
the average of the initial and �nal horizons while ME is the average of the
initial and �nal masses [1, 2]. The e�ective temperature TE is the inverse of
the average value of the inverses of the initial and �nal Hawking temperatures
(before the emission we have TH initial = 1

8πM , after the emission we have
TH �nal = 1

8π(M−ω) respectively) [1, 2]. It is important to recall that the

tunnelling is a discrete instead of continuous process [1]. In fact, we have two
di�erent countable black hole's physical states, the black hole's state before
the emission of the particle and the black hole's state after the emission of
the particle [1]. Thus, the emission of the particle can be interpreted like a
quantum transition of frequency ω between the two discrete states [1]. In the
language of the tunnelling approach, a trajectory in imaginary or complex time
joins two separated classical turning points [1, 3]. The consequence is that the
radiation spectrum is also discrete [1]. It is better to clarify this important
issue in details. If we consider a well �xed Hawking temperature, the statistical
probability distribution (2) is a continuous function. On the other hand, the
Hawking temperature in (2) varies in time with a character which is discrete.
The reason is that the forbidden region which the emitting particle traverses has
a �nite size [3]. That is exactly the reason because the e�ective temperature
(3) has been introduced. Considering a strictly thermal approximation, the
turning points have zero separation and it is not clear what joining trajectory
has to be considered as there is not barrier [3]. The problem is solved when one
argues that the forbidden �nite region from rinitial = 2M to rfinal = 2(M=ω)
that the tunnelling particle traverses works like barrier [3]. In other words, the
intriguing explanation is that it is the particle itself which generates a secret
tunnel through the black hole horizon [3]. The physical consequences are that
the spectrum is not strictly thermal [3, 4] and the Hawking temperature has a
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discrete character in time. Hence, also the statistical probability distribution
(2) is discrete in time. We stress that the emitted energies are not only discrete,
but also countable, as it has been shown in [9, 10]. Interesting proposals on
the non strictly continuous character of Hawking radiation can be found in the
literature [11, 12]. It is straightforward that discrete energy spectra rather than
continuous ones are in general associated to quantum systems of �nite size [11].
In the tunnelling framework, the dynamics responsible of the discrete character
of the spectrum refer not only to the �nite region enclosed by the horizon of the
black hole like in [11], but in particular to the �nite size of the forbidden region
that is traversed by the tunnelling particle [3]. The discrete character of the
spectrum is also very important for the physical interpretation of black hole's
quasi-normal modes [1, 2]. The remarkable idea that black hole's quasi-normal
modes can release information about the area quantization arises from the works
[13, 14]. The original results in [13, 14] found various objections [15, 16], which
have been well addressed in [15], where the initial proposal in [13, 14] has been
re�ned. Black hole's quasi-normal frequencies are labelled as ωnl, where l is the
angular momentum quantum number (l≥ 2 for gravitational perturbations) and
n (n = 1, 2, ...) is the quantum �overtone� number which denotes a countable
sequence of quasi-normal modes for each l [1, 2, 13, 14, 15, 16]. The quasi-
normal modes of the Schwarzschild black hole become independent of l for
large n, and, in strictly thermal approximation, their countable sequence is
[1, 2, 13, 14, 15, 16]

ωn = ln 3× TH + 2πi(n+ 1
2 )× TH +O(n−

1
2 ) =

= ln 3
8πM + 2πi

8πM (n+ 1
2 ) +O(n−

1
2 ).

(6)

The quasi-normal frequencies (6) are interpreted like superposition of the damped
oscillations [1, 2, 15]

exp(−iωIt)[a sinωRt+ b cosωRt] (7)

which have a spectrum of complex frequencies ω = ωR + iωI . The equation
governing a damped harmonic oscillator µ(t) is [1, 2, 15]

µ̈+Kµ̇+ ω2
0µ = F (t), (8)

where ω0 is the proper frequency of the harmonic oscillator, F (t) an external
force per unit mass and K the damping constant. If one assumes that the
external force per unit mass scales like a Dirac delta function, i.e.

F (t) ∝ δ(t), (9)

µ(t) results to be a superposition of a term oscillating as exp(iωt) and of a term
oscillating as exp(−iωt), see [15] for details. Then, through the identi�cations
[1, 2, 15]

K
2 = ωI ,

√
ω2

0 − K
4

2
= ωR, (10)
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which give

ω0 =
√
ω2
R + ω2

I , (11)

a damped harmonic oscillator reproduces the behavior (7). The identi�cation
ω0 = ωR is correct only in the approximation K

2 � ω0, i.e. only for very long-
lived modes [1, 2, 15]. For highly excited modes, which represent a lot of black
hole's quasi-normal modes, the opposite limit is the correct one. By using this
observation, some aspects of quantum physics of black holes that were discussed
in previous literature assuming that the relevant frequencies were (ωR)n rather
than (ω0)n can be re-examined in a correct way [1, 2, 15].
We recall that ideas on the continuous character of Hawking radiation did not
agree with attempts to interpret the frequency of the discrete quasi-normal
modes (6), preventing to associate quasi-normal modes to Hawking radiation
[17] as the discrete behavior of the energy spectrum (6) results incompatible
with the spectrum of Hawking radiation whose energies are of the same order
but continuous [17]. On the other hand, the non-strictly thermal behavior which
also implies, as we have shown above, the non-strictly continuous character of
Hawking radiation, removes the above di�culty [1]. Thus, the discrete behavior
of Hawking radiation permits to interpret the quasi-normal frequencies (6) also
like energies of physical Hawking quanta [1]. Quasi-normal modes represent the
reaction of a black hole to small, discrete perturbations in terms of damped
oscillations [1, 2, 13, 14, 15]. The capture of a particle which causes an increase
in the horizon area is a type of discrete perturbation [13, 14, 15]. Thus, it is
very natural to assume that the emission of a particle which causes a decrease
in the horizon area is also a perturbation which generates a reaction in terms of
countable quasi-normal modes as it is a discrete instead of continuous process
[1]. Based on such a natural correspondence between Hawking radiation and
black hole's quasi-normal modes, one can consider quasi-normal modes in terms
of quantum levels for emitted energies too [1, 2]. This important point is in
agreement with the idea that black holes can be considered in terms of highly
excited states in the underlying quantum gravity theory [1, 2, 15]. When one
enables the correspondence between black hole's quasi-normal frequencies and
the emission and/or the absorption of particles, the validity of Bohr Correspon-
dence Principle [18] is implicitly assumed. That Principle states that �transition
frequencies at large quantum numbers should equal classical oscillation frequen-
cies� [13, 14]. We applied the concept of e�ective temperature to the analysis
of physical interpretation of the spectrum of black hole's quasi-normal modes in
[1, 2]. Another key point of the analysis was that eq. (6) is an approximation
as it implies the assumption that the black hole's radiation spectrum is strictly
thermal. The deviation from the thermal spectrum in eq. (2) is taken into
due account when one replaces the Hawking temperature TH with the e�ective
temperature TE in eq. (6) [1, 2]. In that way, the correct expression for the
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quasi-normal modes of the Schwarzschild black hole becomes [1, 2]

ωn = ln 3× TE(|ωn|) + 2πi(n+ 1
2 )× TE(|ωn|) +O(n−

1
2 ) =

= ln 3
4π(2M−|ωn|) + 2πi

4π(2M−|ωn|) (n+ 1
2 ) +O(n−

1
2 ).

(12)

The correct derivation of eq. (12) can be found in[1, 2] (precise details of that
derivation are in the Appendix of [25]. Here we recall its physical interpretation.
The imaginary part of (6) is explained as it follows. As on the given background
the quasi-normal modes determine the position of poles of a Green's function,
the Euclidean black hole solution converges to a thermal circle at in�nity with
the inverse temperature βH = 1

TH
[19]. Hence, the spacing of the poles in eq.

(6) coincides with the spacing 2πiTH expected for a thermal Green's function
[19]. Indeed, as the spectrum is not strictly thermal, one naturally assumes that
the Euclidean black hole solution converges to a non-thermal circle at in�nity
[1, 2]. Thus, the replacement [1, 2]

βH =
1

TH
→ βE(ω) =

1

TE(ω)
, (13)

takes into due account the non-strictly thermal feature of the radiation spectrum
of a black hole. Then, the spacing of the poles in eq. (12) coincides with the
spacing [1, 2]

2πiTE(ω) = 2πiTH(
2M

2M − ω
), (14)

expected for a non-thermal Green's function [1, 2]. In fact a dependence on the
frequency is now present [1, 2].

The physical solution for the absolute values of the frequencies (12) has been
found in [1, 2]

(ω0)n ≡ En = |ωn| = M −
√
M2 − 1

4π

√
(ln 3)2 + 4π2(n+ 1

2 )2

'M −
√
M2 − 1

2 (n+ 1
2 ).

(15)

(ω0)n is interpreted like the total energy emitted by the black hole at that
time [1, 2]. Now, we show that the energy emitted in an arbitrary transition
n → m, with m > n, is proportional to the e�ective temperature associated to
the transition. Considering an emission from the ground state to a state with
large n the mass of the black hole changes from M to

Mn ≡M − En. (16)

On the other hand, in the transition from the state with n to the state with
m > n the mass of the black hole changes again from Mn to

Mm ≡M − En + ∆En→m = M − Em, (17)

as it is ∆En→m ≡ Em−En [1, 2]. Considering eq. (15), eqs. (16) and (17) read
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Mn =

√
M2 − 1

4π

√
(ln 3)2 + 4π2(n+

1

2
)2 (18)

and

Mm =

√
M2 − 1

4π

√
(ln 3)2 + 4π2(m+

1

2
)2. (19)

Now, we set

∆En→m ≡ Em − En =

=

√
M2 − 1

4π

√
(ln 3)2 + 4π2(n+ 1

2 )2 −
√
M2 − 1

4π

√
(ln 3)2 + 4π2(m+ 1

2 )2 =

= Mn −Mm = K [TE ]n→m ,
(20)

where [TE ]n→m is the e�ective temperature associated to the transition n→ m,
and Mn and Mm are given by eq. (17). Let us see if there are values of the
constant K for which eq. (20) is satis�ed. We recall that

[TE ]n→m =
K

4π (Mn +Mm)
, (21)

as the e�ective temperature is the inverse of the average value of the inverses of
the initial and �nal Hawking temperatures. Thus, eq. (20) can be rewritten as

= M2
n −M2

m =
K

4π
. (22)

By using eqs. (18) and (19), for large m and n eq. (22) becomes

1

2
(m− n) =

K

4π
, (23)

which implies that eq. (20) is satis�ed for K = 2π (m− n) . Hence, we can
rewrite (20) as

∆En→m = Em − En = 2π (m− n) [TE(ω)]n→m . (24)

By using eq. (4), the probability of emission between the two levels n and m
can be written in the intriguing form

Γn→m ∼ exp−
{

∆En→m
[TE(ω)]n→m

}
= exp [−2π (m− n)] . (25)

Thus, we have �nd the fundamental result that the probability of emission be-
tween two arbitrary levels characterized by the two �overtone� quantum numbers
n and m scales like exp [−2π (m− n)] . In particular, for m = n + 1 the prob-
ability of emission has its maximum value ∼ exp(−2π), i.e. the probability is
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maximum for two adjacent levels, as one can intuitively expect. Notice that, if
one �xes n, the probabilities (25) can be normalized to the unity in the following
way

mmax∑
m=n

Γn→m =

mmax∑
m=n

α exp [−2π (m− n)] = 1, (26)

where α is the prefactor of eq. (25), mmax is the maximum value for the
�overtone� number m and m = n corresponds to the probability that the black
hole does not emit. Let us compute mmax. Following [1], as (ω0)m = Em is the
total emitted energy for a black hole excited at a level m, one needs

M2 − 1

4π

√
(ln 3)2 + 4π2(m+

1

2
)2 ≥ 0 (27)

in eq. (15). In fact, a black hole does not emit more energy than its total
mass. This implies that the countable sequence of quasi-normal modes cannot
be in�nity [1]. Eq. (27) can be solved giving a maximum value for the �overtone�
number m [1]

m ≤ mmax = 2π2

(√
16M4 − (

ln 3

π
)2 − 1

)
. (28)

The maximum value (28) corresponds to (ω0)mmax = Emmax = M. On the
other hand, by using the Generalized Uncertainty Principle, the approach in [20]
proposed that the total evaporation of a black hole can be prevented exactly like
the Uncertainty Principle prevents the hydrogen atom from total collapse. In
such an analysis, the collapse is prevented by dynamic instead of by symmetry
as Planck scale is approached [20]. In that way, eq. (27) has to be slightly
modi�ed, becoming (notice that the Planck mass is equal to 1 in Planck units)
[25]

M2 − 1

4π

√
(ln 3)2 + 4π2(m+

1

2
)2 ≥ 1. (29)

The solution of eq. (29) gives a di�erent value of the maximum value for for
the �overtone� number m [25]

m ≤ mmax = 2π2

(√
16(M2 − 1)2 − (

ln 3

π
)2 − 1

)
. (30)

Putting k = m− n and exp [−2π] = X eq. (26) becomes

kmax∑
k=0

Γ0→k = α

kmax∑
k=0

Xk = 1. (31)

The sum in eq. (31) is well known. It is the kth partial sum of the geometric
series and can be solved as [21]
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kmax∑
k=0

Xk = α
1−X(kmax+1)

1−X
. (32)

Thus, one gets

α
1−X(kmax+1)

1−X
= 1, (33)

which permits to solve for α

α ≡ αn =
1−X

1−X(kmax+1)
=

1− exp− [2π]

1− exp [−2π (mmax − n+ 1)]
. (34)

Hence, we �nd that the constant of proportionality α depends on the black hole's
quantum level n. Notice that for mmax � n one �nds that such a dependence
can be neglected

α ' 1− exp− [2π] ' 1− 1.87 ∗ 10−3 ∼ 1. (35)

This is not surprising as for ∆En→m � Mn, i.e. when the emitted energy is
much minor than mass of the black hole and the condition mmax � m, n is
guaranteed, the thermal approximation is excellent as the back reaction due to
the energy conservation can be neglected. The dependence of the constant of
proportionality α on the black hole's quantum level n becomes very important
when m, n ∼ mmax, i.e. near the �nal stages of the black hole's evaporation.
In that case, in which we label the constant of proportionality αn, the thermal
approximation breaks down as the condition ∆En→m � Mn is no more guar-
anteed and one needs to use the correct formula (34). An intermediate case can
be considered too, i.e. when it is mmax ∼ m� n. In that case, eq. (35) can be
used even if the condition ∆En→m � Mn is not guaranteed and the thermal
approximation breaks down. On the other hand, eq. (25) shows that transitions
in which m� n are highly improbable.

Inserting the result (34) in eq. (25) we �x the probability of emission between
the two levels n and m as

Γn→m = αn exp−
{

∆En→m

[TE(ω)]n→m

}
= αn exp [−2π (m− n)] =

=
{

1−exp−[2π]
1−exp[−2π(mmax−n+1)]

}
exp [−2π (m− n)] .

(36)

We recall that the quasi-normal frequencies (12) are the eigenvalues of the equa-
tion [1, 2, 17, 25] (

− ∂2

∂x2
+ V (x)− ω2

)
φ, (37)

where

V (x) ≡ V [x(r)] =

(
1− 2ME

r

)(
l(l + 1)

r2
− 6ME

r3

)
(38)
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is the (time independent) e�ective Regge-Wheeler potential [1, 2] and the relation
between the Regge-Wheeler �tortoise� coordinate x and the radial coordinate r
is [1, 2]

x = r + 2ME ln
(

r
2ME

− 1
)

∂
∂x =

(
1− 2ME

r

)
∂
∂r .

(39)

Eq. (37) is interpreted like a Schroedinger equation [1, 2, 17]. In fact, from
a mathematical point of view, the quasi-normal frequencies are discrete quasi-
normal states, analogous to the quasi-stationary states of quantum mechanics
which frequency is allowed to be complex [17]. From the quantum mechanical
point of view, one can physically interpret Hawking radiation like energies of
quantum jumps among the unperturbed levels (15) [1, 2]. Hence, we have a
perturbation of the type in eq. (9) which acts on the quasi-normal modes [1, 2].
Such a perturbation can be described by an operator [22]

U(t) =
W (t) for 0 ≤ t ≤ τ

0 for t < 0 and t > τ.
(40)

We need W (t) to be conform to eq. (9). Thus, in an appropriate orthonormal
basis [22], the matrix elements of W (t) can be written as

Wij(t) ≡ Aijδ(t), (41)

where the Aij are real. Thus, the complete (time dependent) Hamiltonian is
described by the operator [22]

H(x, t) ≡ V (x) + U(t), (42)

which permits to write the correspondent time dependent Schroedinger equation

for the system [22]

i
d|ψ(x, t) >

dt
= [V (x) + U(t)] |ψ(x, t) >= H(x, t)|ψ(x, t) > . (43)

The state which satis�es eq. (43) is [22]

|ψ(x, t) >=
∑
m

am(t) exp (−iωmt) |ϕm(x) >, (44)

where the ϕm(x) are the eigenfunctions of eq. (37) and the ωm are the cor-
respondent eigenvalues. In order to solve the complete quantum mechanical
problem described by the operator (42) one needs to know the probability am-
plitudes am(t) due to the application of the perturbation descripted by the time
dependent operator (40) [22], which represents the perturbation associated to
the emission of an Hawking quantum. For t < 0, i.e. before the perturbation
operator (40) starts to work, the system is in a stationary state |ϕnt(x) >, at

10



the quantum level n, with energy En = |ωn| given by eq. (15). Therefore, in
eq. (44) only the term

|ψn(x, t) >= exp (−iωnt) |ϕn(x) >, (45)

is not null for t < 0. This implies am(t) = δmn for t < 0.When the perturbation
operator (40) stops to work, i.e. after that a quantum has been emitted, for
t > τ the probability amplitudes am(t) return to be time independent, having
the value an→m(τ) [22]. In other words, for t > τ the system is described by
the Schroedinger wave-function

|ψfinal(x, t) >=

mmax∑
m=n

an→m(τ) exp (−iωmt) |ϕm(x) > . (46)

Thus, the probability to �nd the system in an eigenstate having energy Em =
|ωm| is given by [22]

Γn→m(τ) = |an→m(τ)|2. (47)

In order to solve the problem, one proceeds following [22]. By using a standard
analysis, one can obtain the following di�erential equation from eq. (46) [22]

i
d

dt
an→m(t) =

mmax∑
l=m

Wmlan→l(t) exp [i (∆El→m) t] . (48)

To �rst order in U(t), by using the Dayson series, one gets the solution [22]

an→m = −i
ˆ t

0

{Wmn(t′) exp [i (∆En→m) t′]} dt′. (49)

By inserting (41) in (49) we obtain

an→m = −iAmn
ˆ t

0

{δ(t′) exp [i (∆En→m) t′]} dt′ = − i
2
Amn (50)

Combining this equation with eqs. (36) and (47) one gets

αn exp [−2π (m− n)] = 1
4A

2
mn

Amn = 2
√
αn exp [−π (m− n)]

an→m = −i√αn exp [−π (m− n)] .

(51)

We stress that, as
√
αn ∼ 1, for m = n + 1, i.e. when Amn is maximum

for an emission, one gets Amn ∼ 10−2. This implies that the error in our
solution is ∼ 10−4, i.e. our approximation is very good. Clearly, for m > n+ 1
the approximation is better. Thus, one can write down the �nal form of the
Schroedinger wave-function of the system
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|ψfinal(x, t) >=

mmax∑
m=n

−i
√
αn exp [−π (m− n)− iωmt] |ϕm(x) > . (52)

Notice that the Schroedinger wave-function of the system (52) represents a pure
�nal state instead of a mixed �nal state. Thus, the states are written in terms
of a unitary evolution matrix instead of a density matrix and this implies the
fundamental conclusion that information is not loss in black hole evaporation, in
agreement with the results of string theory [7], with the use of Feynman sum over
histories [6], and with the using of the Kerr-Schild formalism in Kerr-Newman
black holes [8]. Notice that we found this fundamental result, which is in full
agreement with quantum mechanics, by using a pure semi-classical analysis, i.e.
without extending the assumptions of our theoretical approach like in the cited
cases of string theory [7] and of the use of Feynman sum over histories [6]. The
result is also in agreement with the assumption by 't Hooft that Schroedinger
equations can be used universally for all dynamics in the universe [24].

In summary, in this paper we found a fundamental equation that directly
connects the probability of emission of an Hawking quantum with the two emis-
sion levels which are involved in the transition. Such an equation permitted
us to interpret the correspondence between Hawking radiation and black hole
quasi-normal modes in terms of a time dependent Schroedinger system. In
that system, the energies of the quasi-normal modes, which are also the total
energies emitted by the black hole in correspondence of the various quantum
levels, represent the eigenvalues of the unperturbed Hamiltonian of the system
and the Hawking quanta represent the energy transitions among the eigenval-
ues, which correspond to a perturbed Hamiltonian ∝ δ(t). In this way, we
explicitly wrote down a time dependent Schroedinger equation for the system
composed by Hawking radiation and black hole quasi-normal modes. The states
of the correspondent Schroedinger wave-function are written in terms of a uni-

tary evolution matrix instead of a density matrix, and, in turn, result to be
pure states instead of mixed ones. In other words, the black hole obeys a time
dependent Schroedinger equation which allows pure states to evolve into pure
states. This implies the non-trivial consequence that information comes out in
black hole's evaporation. As a consequence, the underlying quantum gravity
theory should be also unitary. We stress that the result of this paper are in
full agreement with the results of string theory [7], with the use of Feynman
sum over histories [6], and with the using of the Kerr-Schild formalism in Kerr-
Newman black holes [8]. On the other hand, an important di�erence is that
here we found this fundamental result, which is in full agreement with quantum
mechanics, by using a pure semi-classical analysis, i.e. without extending the
assumptions of our theoretical approach like in the cited cases of string theory
[7] and of the use of Feynman sum over histories [6].

We also emphasize that the results of this paper are correct only for n� 1,
i.e. only for highly excited black holes. This is the reason because we assumed
an emission from the ground state to a state with large n in our discussion.
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On the other hand, a state with large n is always reached at late times, maybe
not through a sole emission from the ground state, but, indeed, through various
subsequent emissions of Hawking quanta.
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