ON CRAMER’S CONJECTURE

In 1937 the Swedish mathematician Harald Cramer put forth the hypothesis that there always exists a prime number between X and $X \cdot (\ln X)^2$, I respond in this way:

That:

$$\begin{cases}
X \text{ and } X \cdot (\ln X)^2 \iff Q \\
Q \subset S_1 \land S_2 \\
S_2 \subset S_3 \land S_4 \\
S_4 \iff \Upsilon \\
\Psi = \frac{S_3}{\sqrt{S_4}}
\end{cases}$$

Or that:

$$\begin{cases}
X \text{ and } X \cdot (\ln X)^2 \iff Q \\
Q \subset S_1 \land S_2 \\
S_1 = 0 \\
S_2 \iff S_3
\end{cases}$$

(where Q, is a serie of whole naturals, S_1 is a certain number of even numbers, S_2 is a certain number of odd numbers, S_3 a certain number of odd numbers that are multiples, S_4 a certain number of odd+ non-multiple numbers, Υ

Ψ, the number of prime numbers from a series of natural given whole numbers)

In this case taking into account the prime numbers distribution (see theory on the particular distribution of prime numbers) Cramer’s conjecture is wrong.