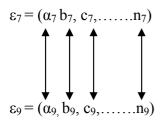
ON THE TWIN PRIME NUMBERS CONJECTURE

The twin prime numbers conjecture announces the hypothesis that there exists an infinite of twin prime numbers, I respond in this way:

Observing a sieve, one can see that there always exists two double configurations F', one double configuration F'', is a couple of decimal series ε of the double configuration F' have a value of 2.


It should be known that the numbers N of the first decimal series ε_1 , of the first double configuration F' of a sieve always have for common unity α , the number 3, the numbers N of the decimal series ε_7 of the second double configuration F' of a always have for a common unity α , the number 7, the numbers N of the decimal series ε_9 of the second double configuration F' of a always have for a common unity α , the number 9 (see Fig. 1 and 2).

1st double configuration on e sieve :

$$\varepsilon_1 = (\alpha_1, b_1, c_1, \dots, n_1)$$

$$\varepsilon_3 = (\alpha_3, b_3, c_3, \dots, n_3)$$

2nd double configuration of a sieve :

These remarks are necessary to find the double configuration of sieve contain exclusively the prime numbers Υ of the sieve as such : $F' \subset \Upsilon$, (see the theory on the particular distribution of prime numbers).

The double configurations F' of a sieve also contain the exclusivity of a twin prime numbers J, as in : $F' \subset J$, why? Because in a double configuration F' there exists a n number of prime numbers Υ which corresponds bijectively and whose differences D equal 2, as in : $J^{\alpha} \Longleftrightarrow J^{\beta}$ (where J^{α} is the number of twin prime numbers of a double configuration, J^{β} is a double of prime numbers corresponding bijectively in a double configuration) – (the bijective correspondants of prime numbers of all double configurations F', are determined by the index of prime numbers of each decimal series of double configuration F') – Knowing that it is possible to class an infinite of decimal series ϵ in an infinite of double configurations F', I conclude that : $I \Longleftrightarrow I'$ (Where I, is an infinite of twin prime numbers, I' an infinite of double configurations).

The conjecture of twin prime numbers is demonstrable.