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Abstract

A continuous family of static spherically symmetric solutions of Einstein’s vac-
uum field equations with a spatial singularity at the origin r = 0 is found. These
solutions are parametrized by a real valued parameter λ (ranging from 0 to∞) and
such that the radial horizon’s location is displaced continuously towards the singu-
larity (r = 0) as λ increases. In the limit λ → ∞, the location of the singularity
and horizon merges leading to a null singularity. In this extreme case, any infalling
observer hits the null singularity at the very moment he/she crosses the horizon.
This fact may have important consequences for the resolution of the fire wall prob-
lem and the complementarity controversy in black holes. Another salient feature
of these solutions is that it leads to a modification of the Newtonian potential con-
sistent with the effects of the generalized uncertainty principle (GUP) associated
to a minimal length. The field equations due to a delta-function point-mass source
at r = 0 are solved and the Euclidean gravitational action corresponding to those
solutions is evaluated explicitly. It is found that the Euclidean action is precisely
equal to the black hole entropy (in Planck area units). This result holds in any
dimensions D ≥ 3. The study of the Nonperturbative Renormalization Group flow
of the metric gµv[k] in terms of the momentum scale k and its relationship to these
family of metrics parametrized by λ deserves further investigation.

Keywords : General Relativity; Black Holes; Strings. PACS : 04.60.-m, 04.65.+e, 11.15.-q,
11.30.Ly
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1 Family of Static Spherically Symmetric Solutions

There are static spherically symmetric (SSS) vacuum solutions of Einstein’s equations
[1] beyond the Hilbert [4] and Schwarzschild [2] solutions, which are given by a family of
metrics parametrized by the area radial functions ρλ(r) ( in c = 1 units ), and in terms
of a real parameter 0 ≤ λ ≤ ∞, as follows

(ds)2
(λ) = (1− 2GM

ρλ(r)
) (dt)2 − (1− 2GM

ρλ(r)
)−1 (dρλ)

2 − ρ2
λ(r) (dΩ)2. (1.1)

where (dρλ)
2 = (dρλ(r)/dr)

2(dr)2 and the solid angle infinitesimal element is (dΩ)2 =
(dφ)2 +sin2(φ)(dθ)2. In Appendix A we show explicitly that the metric (1.1) is a solution
to Einstein’s vacuum field equations. This expression for the family of metrics is given in
terms of the areal radial functions ρλ(r) which does not violate Birkhoff’s theorem since
the metric (1.1) expressed in terms of the areal radial functions ρλ(r) has exactly the same
functional form as that required by Birkoff’s theorem. It is well known that the extended
Schwarzschild metric solution for r < 0 with M > 0, corresponds to a solution in the
region r > 0 with M < 0. Negative masses are associated with repulsive gravity. For this
reason, the domain of values of r will be chosen to span the whole real axis −∞ ≤ r ≤ ∞.
One may notice that our metric solutions (1.1) are invariant under : r → −r;M → −M
when the areal radial function is chosen to be antisymmetric ρ(−r) = −ρ(r).

The boundary conditions obeyed by ρλ(r) must be ρλ(r = 0) = 0, ρλ(r = ∞) =
∞. The Hilbert textbook (black hole) solution [4] when ρ(r) = r obeys the boundary
conditions but the Abrams-Brillouin [3] choice ρ(r) = r + 2GM does not. The original
solution of 1916 found by Schwarzschild for ρ(r) did not obey the boundary condition
ρ(r = 0) = 0 as well. The condition ρ(r = 0) = 2GM has a serious flaw and is : how is it
possible for a point-mass at r = 0 to have a non-zero area 4π(2GM)2 and a zero volume
simultaneously ?; so it seems that one is forced to choose the Hilbert areal radial function
ρ(r) = r. It is known that fractals have unusual properties related to their lengths, areas,
volumes, dimensions but we are not focusing on fractal spacetimes at the moment. For
instance, one could have a fractal surface of infinite area but zero volume (space-filling
fractal surface). The finite area of 4π(2GM)2 could then be seen as a regularized value
of the infinite area of a ”fractal horizon”.

However there are ways to bypass the Hilbert solution and shift the horizon location
from the known 2GM value. We will propose a one parameter family of areal-radial
functions ρλ(r)

1 such that

ρλ(r = 0) = 0; ρλ(r = r
(λ)
h ) = 2GM ; 0 ≤ r

(λ)
h ≤ 2GM (1.2)

so that the location of the horizon radius r
(λ)
h is being shifted continuously towards the

singularity as λ increases. In the asymptotic regime we shall impose the conditions for
λ 6= 0

ρλ(r →∞) → r + 2G|M | → r (1.3)

1We thank Matej Pavsic for a discussion on the choices for the radial functions
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Meaning that the areal radial functions are increasing functions of r and have for
asymptote (when r > 0) the line f(r) = r + 2G|M |. We must also set the conditions on
the parameter λ as follows

ρλ=0(r) = r; ρλ=∞(r) = r + 2G|M |sgn(r) (1.4)

the λ = 0 case is just the Hilbert radial function choice, and the extreme limiting case
λ =∞ involves sgn(r) which is the sign function defined as

sgn(r = 0) = 0, sign(r > 0) = 1, sgn(r < 0) = − 1, sgn(−r) = − sgn(r) (1.5)

The sign function is related to the Heaviside step function ΘH(r) as follows 2ΘH(r)−1 =
sgn(r), after setting ΘH(r = 0) = 1

2
. The sign function vanishes at r = 0 because it is an

odd function of r. The sign and Heaviside function are not differentiable in the ordinary
sense at r = 0, but they are differentiable under the generalized notion of differentiation
in distribution theory. In particular, dΘH(r)/dr = δ(r) and dsgn(r)/dr = 2δ(r). For
further details we refer to [14].

The reason one chooses an antisymmetric radial function ρλ(−r) = −ρλ(r), and one
uses the absolute sign |M | in eq-(1.4), is because the extended metric solutions in eq-(1.1)
for r < 0 with M > 0, correspond to a solution in region r > 0 with M < 0. Namely, the
change in sign due to ρ(r < 0) = −ρ(r > 0) in eq-(1.1) is tantamount to changing the sign
of the mass M . Hence the metric solutions (1.1) are invariant under the transformations
r → −r;M → −M when ρλ(−r) = −ρλ(r).

For a recent analysis of the properties of the maximal extensions ( in regions r < 0 )
of the Kerr and Kerr-Newman spacetimes with negative mass, see [10]. Negative mass
(or regions of negative mass density) imply violations of one or another variant of the
positive energy condition of Einstein’s general theory of relativity; however, the positive
energy condition is not a required condition for the mathematical consistency of the
theory as shown by [11]. The authors [12] pointed out that the quantum mechanics
of the Casimir effect can be used to produce a locally mass-negative region of space-
time. In this article, and subsequent work by others, they showed that negative matter
could be used to stabilize a wormhole. Therefore, the solutions described above make
sense once one takes into consideration the negative and positive domain of values of
r = ±

√
x2 + y2 + z2, consistent with the ± signs under the square root, and that the sign

and Heaviside functions are differentiable under the generalized notion of differentiation
in distribution theory [14] as indicated earlier.

The family of interpolating functions ρλ(r) are all bounded, for all values of λ , as
follows

r ≤ ρλ(r) ≤ r + 2G|M |, for r > 0 (1.6a)

and
r ≥ ρλ(r) ≥ r − 2G|M |, for r < 0 (1.6b)

For convenience purposes we may drop the absolute sign in |M | but it should be kept in
mind in order to account for the invariance of the metric (1.1) under the transformations
r → −r;M → −M and which imply that ρλ(−r) = −ρλ(r).
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The Riemann and Weyl Curvature Tensors can be computed from eqs-(A.3) in the
Appendix, after equating the areal radial function R(r) with ρ(r). The curvature tensor
components are given explicitly by

R2121 = Rrtrt = − 2GM

ρ(r)3
(
dρ(r)

dr
)2; R1212 = Rtrtr = − 2GM

ρ(r)3
(
dρ(r)

dr
)2 (1.7a)

Rrθrθ = − 1

2

2GM

ρ(r)
(1− 2GM

ρ(r)
)−1 (

dρ(r)

dr
)2 sin2φ (1.7b)

Rrφrφ = − 1

2

2GM

ρ(r)
(1− 2GM

ρ(r)
)−1 (

dρ(r)

dr
)2 (1.7c)

One can see that these curvature components cannot be obtained from the ordinary
Schwarzschild solutions by the simple replacement r → ρ(r) due to the fact that (dρ(r)

dr
)2 6=

1, in general.
The other curvature components

Rtitj =
1

2

2GM

ρ(r)
(1− 2GM

ρ(r)
) g̃ij, g̃φφ = 1, g̃θθ = sin2φ (1.8)

and Rφθφθ = Rθφθφ can be obtained from the ordinary Schwarzschild solutions by the
simple replacement r → ρ(r).

Since the solutions described in Appendix A and eq-(1.1) are Ricci flat Rµν = R = 0,
the Weyl tensor Cµνρσ coincides with the curvature tensor. Therefore, due to eqs-(1.7)
we have that the curvature/Weyl tensor is not equivalent to the one obtained in the
Schwarzschild solution after the replacement of the radial coordinate r → ρ(r).

Furthermore, we should notice that the curvature tensor components in eqs-(1.7) in-
volving the radial direction are not obtained by a radial reparametrization r → ρ(r) of
the Hilbert-Schwarzschild solution. For example,

RSchwarzschild
rtrt = − 2GM

r3
6= Rρtρt (

dρ(r)

dr
)2 = − 2GM

ρ(r)3
(
dρ(r)

dr
)2 = Rrtrt (1.9)

When ρ(r) = r, there is an agreement RSchwarzschild
rtrt = Rrtrt but not in general. Sim-

ilarly, the radial component of the Hilbert-Schwarzschild solution −(1 − 2GM/r)−1 is
not given by a radial reparametrization of the radial component of the metric (1.1)

grr = −(1 − 2GM/ρ(r))−1(dρ(r)
dr

)2 = gρρ(
dρ(r)
dr

)2. This means that (1 − 2GM/r)−1( dr
dρ

)2 6=
(1 − 2GM/ρ)−1. Roughly speaking, one could interpret the areal radial function ρ(r) =
R(r) as if it were an arbitrary ”integrating function” which appears in the solutions of
Appendix A and (1.1). The particular choice ρ(r) = r yields the standard Hilbert-
Schwarzschild solution.

For Ricci flat solutions, the Weyl tensor Cµνρσ coincides with the curvature tensor.
Type D regions in the Petrov [5] algebraic classification of gravitational solutions are
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associated with the gravitational fields of isolated massive objects. The two double princi-
pal null directions define ”radially” ingoing and outgoing null congruences near the object
which is the source of the field.

The one-parameter family of metrics in eq-(1.1) (and Riemannian curvature tensors)
associated with the choice of the areal radial functions ρλ(r) are continuous functions for
all values of r. There is a spatial singularity at r = 0 (for positive masses). It is only
in the extreme limiting case λ → ∞, when the metric component gtt and Riemannian
curvature tensor are discontinuous at r = 0, besides being singular, at the location of the
point mass source, due to the discontinuity of the sign function at r = 0. Whereas the
Ricci tensor and scalar curvature are zero for all values of r, including r = 0, and for all
values λ, including λ =∞, as shown in Appendix A.

If one wishes to avoid these discontinuities due to the use of the sign function in the
limiting case λ =∞, one could impose a cutoff Λ 6=∞ on the upper value of λ, which in
turn leads to a minimal length value for the location of the radial horizon rΛ

h and such
that ρΛ(rΛ

h ) = 2GM . One could set this minimal length rΛ
h to be of the order of the

Planck scale LP . This is the scale where Quantum Gravity effects play an important role
and classical General Relativity is supposed to break down.

Besides shifting the radius horizon location from r = 2GM to r
(λ)
h < 2GM , i.e.

towards the singularity, which may be relevant to the resolution of the fire wall problem
in black holes [20], another physical motivation in choosing the metric solutions (1.1) is
because it leads to a modification of the Newtonian potential which also results from the
effects of the generalized uncertainty principle (GUP) associated to a minimal length [22]
. The GUP is related to some approaches in quantum gravity such as string theory, black
hole physics and doubly special relativity theories (DSR). This leads to a

√
Area-type

correction to the area law of entropy which implies that the number of bits N is modified.
Therefore, based on Verlinde’s enthropic force proposal [18], the authors [22] obtained a
modified Newtonian law of gravitation which may have observable consequences at length
scales much larger than the Planck scale.

From the asymptotic behavior of the areal radial functions displayed by eq-(1.3) one
can infer the corrections to the Newtonian potential obtained in the weak field limit :
gtt ∼ (1 + 2V ). Hence,

V = − GM

r + 2GM
= − GM

r
( 1 − 2GM

r
+ ..... ) (1.10a)

and the modified Newtonian force felt by a test particle of mass m is

F = − GMm

r2
( 1 − 4GM

r
+ ..... ) (1.10b)

One has a leading repulsive contribution/correction to the modified Newtonian force.
At this stage is too early to speculate if this leading repulsive correction has any con-
nection to dark energy. Nevertheless it is worth exploring this possibility. The first two
terms of (1.10b) have the same functional form (although with different numerical coeffi-
cients) as the modified Newton’s law of gravitation found by [22] based on the generalized
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uncertainty principle (GUP)

F = − GMm

r2
( 1 −

α
√
µ

3r
); α = αoLP , αo = constant, µ = (

2.82

π
)2 (1.11)

We proceed with a discussion on the possibility of having null singularities in the
extreme limiting case λ = ∞. It is rigorously shown in Appendix B that when λ → ∞,
the limiting metric interval ds2

(∞) in eq-(1.1) is null at r = 0, instead of being spacelike.
Hence, it is possible in this limiting λ→∞ case to have null naked singularities associated
to point mass sources. In this limiting case the singularity merges with the horizon which
might have important implications for the resolution of the fire-wall problem in black holes
[20], [21].

The physical insignificance of null naked singularities within the context of Penrose’s
cosmic censorship conjecture was analyzed by [15] in the study of gravitational collapse of
general forms matter in the most general of spacetimes. It was shown that the energy is
completely trapped inside the null singularity and therefore these null singularities cannot
be experimentally observed and cannot cause a breakdown of predictability. This conclu-
sion strongly supports and preserves the essence of the cosmic censorship hypothesis. A
timelike singularity is in principle likely to be visible to an outside observer as the redshift
is always finite for the light rays emerging from it. For the null singularity surface, the
redshift basically diverges as the proper time goes to zero on the null surface. It was
argued by [15] that despite that the null singularity is geometrically naked (null geodesics
can come out of it) essentially it is not physically visible (naked) as no energy can come
out of it due to the infinite redshift. Because one cannot get any information from the null
naked singularity it will not have any undesirable physical effect to an outside observer.

The Penrose diagrams associated with the solutions described in (1.1) are the same as
the diagrams corresponding to the extended Schwarzchild solutions with the only differ-
ence that we must replace the radial variable r for ρ. The horizons at the radial locations
r

(λ)
h all correspond to the unique value of the areal radial function ρ(r

(λ)
h ) = 2GM and

t = ±∞. The spatial singularity is located at ρλ(r = 0) = 0. The Fronsdal-Kruskal-
Szekeres change of coordinates that permit an analytical extension into the interior region
of the black hole has the same functional form as before after replacing r for ρ. In the
exterior region ρ(r) > 2GM one has

U = (
ρ(r)

2GM
−1)

1
2 eρ(r)/4GM cosh (

t

4GM
), V = (

ρ(r)

2GM
−1)

1
2 eρ(r)/4GM sinh (

t

4GM
); ρ(r) > 2GM

(1.12a)
and the change of coordinates in the interior region ρ(r) < 2GM is

U = (1− ρ(r)

2GM
)
1
2 eρ(r)/4GM sinh (

t

4GM
), V = (1− ρ(r)

2GM
)
1
2 eρ(r)/4GM cosh (

t

4GM
); ρ(r) < 2GM

(1.12b)
In the overlap ρ(r) = 2GM region one has U = ±V when t = ±∞, and U = V = 0 for
finite t.

The coordinate transformations lead to a well behaved metric (except at ρ(r = 0) = 0)
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ds2 =
4(2GM)3

ρ(U, V )
e−ρ(U,V )/2GM (dV 2 − dU2 ) − ρ(U, V )2 (dΩ)2. (1.12c)

When ρ(r = rhorizon) = 2GM and dΩ = 0, the above interval displacement ds2 = 0 is
null along the lines U = ±V ⇒ dU = ±dV . It is singular at ρ(r = 0) = 0 : along the
(spacelike) lines V 2 − U2 = 1 ⇒ dV 6= ±dU . The range of coordinates for the family of
interpolating functions ρλ(r), for all values of λ was given by eqs-(1.6).

In the extreme limiting case λ = ∞ ⇒ ρλ=∞(r) = r + 2G|M |sgn(r) the Penrose
diagrams can be obtained from the diagrams corresponding to the extended Schwarzchild
solutions by simply removing the interior regions; i.e. by removing the upper and lower
regions (quadrants) of the Rindler wedge, leaving only the left and right exterior (causal
diamond-like) regions which are connected to the asymptotically flat portions of space-
time. The horizons at r = 0+, t = ±∞, ρ(∞)(r = 0+) = 2G|M | are causal bound-
aries of these left and right diamond-like regions, in addition to the future and past
null infinity boundary regions. There is a null-line singularity at r = 0 and a null-
surface at r = 0+. This may sound quite paradoxically but it is a consequence of the
metric discontinuity at r = 0, the location of the point mass (singularity). Although
the spacetime manifold is continuous everywhere, what is discontinuous at r = 0 is
the metric due to the discontinuity of the areal-radial function ρ(∞)(r) at r = 0 since
ρ(∞)(r = 0) = 0, ρ(∞)(r = 0+) = 2G|M |. In this extreme limiting case, any infalling
observer hits the null singularity at the very moment he/she crosses the horizon. This
fact may have important consequences for the resolution of the fire wall problem and the
complementarity controversy in black holes [20], [21].

Because a point mass is an infinitely compact source there is nothing wrong with the
possibility of having a discontinuity of the metric at the location of the singularity r = 0
when the radial function is chosen ρλ=∞(r) = r + 2G|M |sgn(r). This discontinuity may
appear to be unappealing but one cannot disregard such possibility. Similarly, despite
the unappealing nature of the black hole singularity at r = 0 this was no reason to dismiss
those solutions. The study of Einstein equations and the joining of discontinuous metrics
when these are discontinuous across the joining (hyper) surface was studied by [7] in the
static spherically symmetric case. These discontinuous metrics obey Einstein equations
with an energy-momentum tensor which has a delta function type of singularity on the
(hyper) surface of discontinuity. It was found that a surface tension is always associated
to the cases where the metrics are discontinuous. The kind of metric discontinuity which
follows by our choice of the areal radial function ρ(∞)(r) above is of a different type
than the ones studied by [7]. In section 2 we shall study explicitly the case when it is
a delta function type of singularity for the energy-momentum tensor (mass density and
pressure) associated with the point mass which is the source of a curvature discontinuity,
and singularity, at r = 0.

Finally, as stated earlier, if one wishes to avoid these discontinuities due to the use
of the radial function r + 2G|M |sgn(r), when λ = ∞, one could impose a cutoff Λ 6= ∞
on the upper value of λ, which in turn leads to a minimal length value for the location
of the radial horizon rΛ

h and that could be set to be of the order of the Planck scale LP .
This possibility warrants further investigation, in particular because the imposition of a
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minimal radius-horizon length is linked directly to the avoidance of metric discontinuities
at the location of point mass sources.

Despite that rΛ
h may be of the order of the Planck length, the value of the areal radial

function is still ρΛ(rΛ
h ) = 2G|M | and which is not small for macroscopic masses. This

interplay between a microscopic length rΛ
h ∼ LPlanck (where Quantum Gravity effects are

relevant) and a much larger scale 2G|M | (where classical gravity is valid) corresponding to
the horizon radius of the standard black hole solutions (when ρ(r) = r) might be relevant
to the Hawking radiation phenomenon and viewing a black hole as a macroscopic quantum
system due to a Bose Einstein condensate of a very large number of soft gravitons [24].

2 Point Mass Sources and Euclidean Gravitational

Action as Entropy

A rigorous correct treatment of point mass distributions in General Relativity has been
provided based on Colombeau’s [8] theory of nonlinear distributions, generalized functions
and nonlinear calculus. This permits the proper multiplication of distributions since the
old Schwarz theory of linear distributions is invalid in nonlinear theories like General
Relativity. Colombeau’s nonlinear distributional geometry supersedes the no-go results of
Geroch and Traschen [16] stating that there is no proper framework to study distributions
of matter of co-dimensions higher than two (neither points nor strings inD = 4) in General
Relativity. Colombeau’s theory of Nonlinear Distributions (and Nonstandard Analysis)
is the proper way to deal with point-mass sources in nonlinear theories like Gravity and
where one may rigorously solve the problem without having to introduce a boundary of
spacetime at r = 0.

Nevertheless one may still arrive at some interesting physical results by recurring to
the ordinary Dirac delta functions. In order to generate δ(r) terms in the right hand side
of Einstein’s equations in the presence of a point-mass source, it was argued in [9] that
one must replace everywhere r → |r| as required when point-mass sources are inserted.
The Newtonian gravitational potential (in three dimensions) due to a point-mass source
at r = 0 is given by −GM/|r|. It is consistent with Poisson’s law which states that the
non-zero Laplacian of the Newtonian potential ∇2(−GM/|r|) = 4πGρ is proportional to
the mass density distribution ρ = (M/4πr2)δ(r). However, the Laplacian in spherical
coordinates of (1/r) is identically zero.

For this reason, there is a fundamental difference in dealing with expressions involving
absolute values |r| like 1/|r| from those which depend on r like 1/r. This is a direct
consequence of the discontinuity of the derivatives of the function |r| at r = 0. However,
despite this discontinuity in the derivatives we shall be working next with a metric that
is continuous at r = 0.

Let us begin now with the temporal and radial components of a continuous metric at
r = 0 and whose signature is chosen to be (−,+,+,+)
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gtt = − (1− 2GM

|r|
) = − (1− 2GM

r

r

|r|
) = − (1− 2GM

r
f(r)); f(r) ≡ r

|r|
. (2.1)

the function f(r) = r
|r| is by definition the same as the sign function sgn(r) = f(r).

Because it is an odd function of r it vanishes at r = 0, and is ±1 when r > 0, r < 0,
respectively. The mass is chosen to be positive M > 0. We must emphasize that the
expression (2.1) for the metric component does make sense, as we shall prove below,
when we study the metric associated with a mass distribution given by a smeared delta
function [17] and take the limit when the mass density distribution becomes a delta
function. The other metric components are

grr = − 1

gtt
, gφφ = r2, gθθ = r2sin2(φ) (2.2)

In section 1 we stressed the fact that the values of r may span the region −∞ ≤ r ≤ ∞
and despite that the sign and Heaviside functions are not differentiable in the ordinary
sense at r = 0, they are differentiable under the generalized notion of differentiation in
distribution theory [14]. In particular, the derivative of the sign function is [14]

f(r) ≡ sgn(r) ⇒ f ′(r) =
df(r)

dr
= 2 δ(r); f ′′(r) =

d2f(r)

dr2
= 2 δ′(r). (2.3)

and one learns that the curvature scalar R corresponding to the metric (2.1, 2.2) is now
nonvanishing at r = 0

R = − 2GM [
f ′′(r)

r
+ 2

f ′(r)

r2
] =

− 4GM [
δ′(r)

r
+ 2

δ(r)

r2
] = − 8πG T (2.4)

where T in eq-(2.4) is the trace of the stress energy tensor gµνTµν in the Einstein’s field
equations due to the presence of matter. We should emphasize that after using the
distributional relation rδ′(r) = −δ(r) allows to rewrite the scalar curvature (2.4) solely in

terms of δ(r) as R = −4GMδ(r)
r2

. This latter expression for the scalar curvature is precisely
the one obtained after taking the trace of eqs-(A.4-A.6) and using the metric expression
(2.1-2.2) solely in terms of the absolute values |r| and not in terms of the sign function

sgn(r). The metric (2.1-2.2) and scalar curvature R = −4GMδ(r)
r2

are invariant under
r → −r;M →M . There is no sign change in M as it occurred in the solutions (1.1).

The Ricci tensor associated to the metric (2.1, 2.2) can be obtained by using eqs-(A.4-
A.6) in the Appendix

Rtt =
2GM

r2
(1− 2GM

|r|
) δ(r), Rrr = − 2GM

r2
(1− 2GM

|r|
)−1 δ(r) (2.5a)
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Rθθ = 0, Rφφ = 0 (2.5b)

Hence, after taking the trace of eqs-(2.5) yields R = gttRtt + grrRrr = −4GMδ(r)
r2

as
announced.

The scalar curvature (2.4) is R = 0 for r > 0 and it is singular at r = 0. Whereas
the scalar curvature R and Ricci tensor Rµν associated with the standard Schwarzschild
(Hilbert) solutions, involving r instead of |r|, are identically zero for all values of r,
including r = 0. What is not zero, and singular at r = 0, is the Riemannian curvature
tensor. 2

The Einstein tensor corresponding to eqs-(2.1, 2.2, 2.5) is

Rtt −
1

2
gtt R =

2GM

r2
(1− 2GM

|r|
) δ(r) − 1

2
(−(1− 2GM

|r|
)) (−4GMδ(r)

r2
) = 0 (2.6a)

Rrr −
1

2
grr R = − 2GM

r2
(1−2GM

|r|
)−1 δ(r) −1

2
(1−2GM

|r|
)−1 (−4GMδ(r)

r2
) = 0 (2.6b)

Rθθ −
1

2
gθθ R = gθθ

2GMδ(r)

r2
= 8πG gθθ pθ ⇒ pθ =

2Mδ(r)

8πr2
(2.6c)

Rφφ −
1

2
gφφ R = gφφ

2GMδ(r)

r2
= 8πG gφφ pφ ⇒ pφ =

2Mδ(r)

8πr2
(2.6d)

Therefore we have found that the Einstein tensor associated with the metric (2.1, 2.2)
and Ricci tensors (2.5) correspond to a matter distribution such that

ρ = pr = 0, pθ = pφ =
2Mδ(r)

8πr2
(2.7)

The weak energy conditions ρ ≥ 0, ρ + pi ≥ 0, for i = 1, 2, 3, are satisfied by (2.7). Also
the strong energy conditions ρ +

∑
i pi ≥ 0 are satisfied. While on the other hand, the

dominant energy conditions ρ ≥ |pi| are not satisfied.
The non-trivial Einstein-Hilbert action is

S = − 1

16πG

∫ ∫
R 4πr2 dr dt =

1

16πG

∫ ∫ 4GM δ(r)

r2
4πr2 dr dt =

1

16πG

∫ ∫
16πGM δ(r) dr dt =

∫ ∫
M δ(r) dr dt (2.8)

Because the radial integral (2.8) is symmetric in r due to δ(−r) = δ(r), the radial integral
from r = 0 to r =∞ can be rewritten as one half the integral from r = −∞ to r =∞

S =
∫ r=∞

r=0

∫
M δ(r) dr dt =

1

2

∫ r=∞

r=−∞
δ(r) dr

∫
M dt =

1

2

∫
M dt (2.9)

2One may notice that by choosing f(r) = κ/r in eq-(2.4) for κ= constant, it yields R = 0 which
implies a zero trace for the stress energy tensor T = 0, as it happens in Electromagnetism due to the
conformal invariance of Maxwell equations in D = 4. The Reisnner-Nordstrom solutions (in the massless
case) have for temporal metric component gtt = 1 − e2/r2, which has the same functional form as
gtt = 1− (2GM/r)f(r) = 1− 2GMκ/r2 ↔ 1− e2/r2.
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The metric in eqs-(2.1, 2.2) has a well defined notion of surface gravity at r = 2GM ,
which is the location of the standard horizon, and the radial derivatives of GM/|r| are
well defined and finite at r = 2GM . Therefore, the concepts of entropy and Hawking
temperature [13] are meaningful in this case.

The Euclideanized Einstein-Hilbert action (2.8, 2.9) associated with the non-trivial
scalar curvature is obtained after a compactification of the temporal direction along a
circle S1 whose net Euclidean time integration interval is 2πtE . The latter interval can
be defined in terms of the Hawking temperature TH and the Boltzman constant kB as
2πtE = (1/kBTH) = 8πGM . The temperature TH also agrees with the Unruh-Rindler
temperature h̄

2π
|a| (in units h̄ = c = 1), where |a| = 1

4GM
is the magnitude of the surface

gravity (acceleration) at the standard horizon location r = 2GM . Integrating with respect
to the Euclidean temporal coordinate, the Euclidean gravitational action becomes then

SE = (
M

2
) (2πtE) = 4π G M2 =

1

4

4π(2GM)2

G
=

Area

4 L2
P

. (2.10)

which is precisely the black bole Entropy in Planck area units G = L2
P ( h̄ = c = 1 ).

This result that the Euclideanized gravitational action (associated with a non-trivial
scalar curvature involving delta functions due to point-mass sources) is the same as the
black hole entropy can be generalized to higher dimensions. In the Reissner-Nordsrom
(massive-charged) and Kerr-Newman black hole case (massive-rotating-charged) we gave
shown also [9] that the Euclidean action in a bulk domain bounded by the inner and
outer horizons is the same as the black hole entropy. These findings should be compared
to Verlinde’s enthropic gravity proposal [18] based on the holographic principle.

Another approach [9] to tackle delta function sources is by smoothing the point-mass
distribution by a smeared delta function as proposed by [17]

ρ(r) = M
e−r

2/4σ2

(4πσ2)3/2
⇒ limσ→0 M

e−r
2/4σ2

(4πσ2)3/2
→ 2M

δ(r)

4πr2
≡ Mδ3(r, φ, θ) (2.11a)

The integral of the mass density is∫ r=∞

r=0
M

e−r
2/4σ2

(4πσ2)3/2
4πr2 dr = M (2.11b)

after using the result

∫
r2 e−r

2/a2 dr =
a2

4
(
√
π a erf(

r

a
) − 2r e−r

2/a2 ), erf(r = 0) = 0, erf(r =∞) = 1

(2.11c)
where erf(x) is the error function. The result in (2.11b) is also consistent with the
integral of the mass density in the σ → 0 limit given by eq-(2.11a), after making use of
the symmetry property δ(−r) = δ(r) such that the radial integral from r = 0 to r = ∞
can be rewritten as one half the integral from r = −∞ to r =∞∫ r=∞

r=0
2M

δ(r)

4πr2
4πr2 dr =

1

2

∫ r=∞

r=−∞
2M

δ(r)

4πr2
4πr2 dr = M

∫ r=∞

r=−∞
δ(r) dr = M

(2.11d)
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Therefore one arrives at the expected result in (2.11d).
The field equations

R00 −
1

2
g00 R = 8πG T00, Rij −

1

2
gij R = 8πG Tij (2.12)

were solved by [17] when the stress energy tensor T00, Tij elements are comprised of a
density ρ(r), a radial and tangential pressures pr(r), pθ(r), pφ(r) associated to a self-
gravitating anisotropic fluid and were given in terms of a smeared delta function (a
Gaussian of width σ ) as follows [17]

ρ(r) = M
e−r

2/4σ2

(4πσ2)3/2
, pr = − ρ(r), ptan = pθ = pφ = −ρ(r)− r

2

dρ

dr
. (2.13)

The metric solutions to the field equations (2.12) corresponding to the stress energy tensor
associated with the density and pressure in (2.13) have a similar form as the Hilbert-
Schwarzschild solution after replacing the mass parameter M for a radial-dependent mass
function given by M(r) =

∫ r
0 ρ(r′)4πr′2dr′ [17]. In the σ → 0 limit, the elements of eq-

(2.13) become

ρ(r) = − pr(r) = 2M
δ(r)

4πr2
≡ Mδ3(r, φ, θ), pθ(r) = pφ(r) = − 2M

δ′(r)

8πr
=

−2M
rδ′(r)

8πr2
= 2M

δ(r)

8πr2
(2.14)

where in the last terms of eq-(2.14) we have used the important distributional relation
rδ′(r) = −δ(r) 3 and which enables to write everything in eq-(2.14) directly in terms of
the delta function δ(r).

The scalar curvature in the σ → 0 limit can be expressed in terms of the trace of the
energy stress tensor of eq-(2.14) and it yields −8πGT µµ = R = −4GMδ(r)/r2 which turns
out to be equal to the scalar curvature obtained from taking the trace of eqs-(2.5a,2.5b
). Therefore, despite that the point-mass stress energy source distribution in eq-(2.14)
differs from the point-mass stress energy source in eq-(2.7), both have the same trace
and consequently generate they same scalar curvature R = −4GMδ(r)/r2, which in turn,
leads to the same value of the Euclideanized gravitational action and which coincides with
the black-hole entropy (2.10) S = Area/4L2

P . To conclude, the metric solutions (2.1, 2,2)
and eq-(2.3) do make sense, from the mathematical and physical point of view.

An important remark is in order before presenting our conclusions. The Gaussian
width limit σ → 0 must be taken afterwards one inserts the metric given by [17] into the
field equations. In one takes this limit before evaluating the Einstein tensor, it leads di-
rectly to the standard Hilbert-Schwarzschild metric which furnishes a zero Einstein tensor
and corresponds to the textbook static spherically symmetric Ricci flat vacuum solution
Rµν = 0 (a zero stress energy tensor in the right hand side of Einstein’s equations).

3In general, when n derivatives are involved one has the relation rnδ(n)(r) = (−1)nn!δ(r) [14]
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It is instructive to study the energy conditions for the given density and pressure
configurations of eq-(2.14) when M > 0. After simple algebra one learns that the weak
energy conditions ρ ≥ 0 and ρ + pi ≥ 0, for i = 1, 2, 3, are satisfied due to dρ/dr ≤ 0
when r ≥ 0. The strong energy conditions ρ +

∑
i pi ≥ 0 are only satisfied in the region

r ≥ 2σ but not in the core region r < 2σ. While on the other hand, the dominant energy
conditions ρ ≥ |pi| are satisfied for the values of r ≤ 2

√
2σ but are violated for the values

of r > 2
√

2σ. Thus, the matter field configuration studied in eq-(2.14) obeys only the
weak energy conditions for all values of r such that r ≥ 0.

We finalize by adding some remarks [9] about how a fuzzy point mass may admit
a short distance cut-off of the Brillouin form ρ(r = 0) = 2GM (instead of zero) if
one has a Noncommutative spacetime coordinates algebra [xµ, xν ] = iΣµν , [pµ, pν ] =
0, [xµ, pν ] = ih̄ηµν where Σµν are c-numbers of (Planck length)2 magnitude. A change
of coordinates in phase space x′µ = xµ + 1

2
Σµν pν leads to commuting coordinates x′µ

and allows to define r′(r) =
√

(xi + 1
2

Σiρ pρ) (xi + 1
2

Σiτ pτ ). One can select Σµν such

that r′(xi = 0) = r′(r = 0) = 2GM , after using the on-shell condition pµp
µ = M2.

Therefore one recovers the cut-off corresponding to the Brillouin area radial function
ρ(r) = r + 2GM ⇒ ρ(r = 0) = 2GM . Thus a fuzzy point mass has non-zero area and
volume.

Another Planck scale cut-off can be derived in terms of noncommutative Moyal star

products f(x) ∗ g(x) simply by replacing r → r∗ =
√
r ∗ r =

√
r2 + Σijxixj/r2 + .... so

r∗(x
i = 0) 6= 0, and it receives Planck scale corrections. A point is fuzzy and delocalized,

henceforth it has a non-zero fuzzy area and fuzzy volume. An open problem is to verify
whether or not Schwarzschild deformed metrics of the form

gtt(r∗) = 1− 2GM

r∗
, grr = −[g−1

tt ]∗, r∗ =
√
r ∗ r =

√
r2 + Σijxixj/r2 + .... . (2.15)

solve the Noncommutative Gravity field equations to all orders in the noncommutative
parameter Σµν . The angular part is given by r∗ ∗ r∗ (dΩ)2, and the star inverse [g−1

tt ]∗
is defined in terms of a Taylor series involving star products . This is a very difficult
problem. To conclude, one has to wait for a theory of Quantum Gravity to fully address
these issues of the avoidance of singularities due to the noncommutativity of spacetime
coordinates. Another relevant topic is to explore the Nonperturbative Renormalization
Group flow [23] of the metric gµv[k] in terms of the momentum scale k and its relationship
(if any) to the family of metrics (1.1) parametrized by λ.

APPENDIX A : Schwarzschild-like solutions in D > 3

In this Appendix we follow closely our prior calculations [9] to the static spherically
symmetric vacuum solutions to Einstein’s equations in any dimension D > 3. Let us start
with the line element with signature (−,+,+,+, ....,+)

ds2 = −eµ(r)(dt)2 + eν(r)(dr)2 +R2(r)g̃ijdξ
idξj. (A.1)

where the areal radial function ρ(r) is now denoted by R(r) and which must not be
confused with the scalar curvature R. Here, the metric g̃ij corresponds to a homogeneous
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space and i, j = 3, 4, ..., D − 2 and the temporal and radial indices are denoted by 1, 2
respectively. In our text we denoted the temporal index by 0. The only non-vanishing
Christoffel symbols are given in terms of the following partial derivatives with respect to
the r variable and denoted with a prime

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi2j = R′

R
δij, Γijk = Γ̃ijk,

(A.2)

and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δikg̃jl − δil g̃jk).

(A.3)

The vacuum field equations are

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′
R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′
R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2)g̃ij +

k

R2
(D − 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From the combi-
nation e−µ+νR11 +R22 = 0 we get

µ′ + ν ′ =
2R′′

R′
. (A.7)

The solution of this equation is

µ+ ν = lnR′2 + C, (A.8)

where C is an integration constant that one sets to zero if one wishes to recover the flat
Minkowski spacetime metric in spherical coordinates in the asymptotic region r →∞.

Substituting (A.7) into the equation (A.6) we find

e−ν ( ν ′RR′ − 2RR′′ − (D − 3)R′2 ) = − k(D − 3) (A.9)

or
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γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D − 2-dim sphere for the homogeneous space can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3
) (
dR

dr
)−2 ⇒

grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D−2-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(A.12)
the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D − 2-dim homogeneous space we should write

−ν = ln(k − βDGDM

RD−3
)− 2 lnR′. (A.13)

βD is a constant equal to 16π/(D − 2)ΩD−2, where ΩD−2 is the solid angle in the D − 2
transverse dimensions to r, t and is given by (D − 1)π(D−1)/2/Γ[(D + 1)/2].

Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2 = −(k − βDGDM

RD−3
)(dt)2 +

(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξ
idξj =

−(k − βDGDM

RD−3
)(dt)2 +

1

(k − βDGDM
RD−3 )

(dR)2 + R2(r)g̃ijdξ
idξj (A.15)

One can verify, that the equations (A.4)-(A.6),leading to eqs-(A.9)-(A.10), do not deter-
mine the formR(r). It is also interesting to observe that the only effect of the homogeneous
metric g̃ij is reflected in the k = ±1 parameter, associated with a positive ( negative )
constant scalar curvature of the homogeneous D − 2-dim space. k = 0 corresponds to a
spatially flat D−2-dim section. The metric solution in eq-(1.1) is associated to a different
signature than the one chosen in this Appendix, and corresponds to D = 4 and k = 1.

We finalize this Appendix by studying what happens when the radial function is given
by R(r) = r + 2G|M |sgn(r) in the limiting case λ = ∞. It is important to emphasize
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that despite that the derivatives dR
dr

= 1 + 4G|M |δ(r) and (d2R/dr2) = 4G|M |δ′(r) are
singular at r = 0, there is an exact and precise cancellation of these singular derivatives
(involving delta functions) in the evaluation of the Ricci curvature tensor components
yielding a zero Ricci tensor Rµν = 0 and a zero Ricci scalar R = 0. What is not zero
is the Riemann curvature tensor Rµνρτ . Therefore, the conditions Rµν = 0 and R = 0
are satisfied for any area radial function R(r), irrespective if it has singular derivatives at
r = 0 or not.

Furthermore, despite that (dR
dr

)2 = (1+4G|M |δ(r))2 in eq-(A.15) involves the ill defined
product of distributions, one should notice that it is well defined at r > 0 ⇒ (dR

dr
)2 = 1,

and also the radial component of the metric (A.15) is well defined at r = 0 because the
product

limr→0 [ (1− 2GM

R
)−1 (

dR

dr
)2 ] → limr→0 [ − R(r)

2GM
(1 + 4G|M |δ(r))2 ] → 0 (A.16)

so that grr(r = 0) = 0. This is a consequence of the fact that R(r = 0)(δ(r = 0))2 =
0× (δ(r = 0))2 = 0 because the expression R(r)(δ(r))2 is an odd function of r which must
vanish at the origin r = 0.

APPENDIX B : Null-like singularities in the limiting λ =∞ case

As mentioned earlier, in the limiting λ = ∞ case, the radial function is R(r) =
r+ 2G|M |sgn(r) and there is a discontinuity at r = 0 : R(r = 0) = 0;R(r = 0+) = 2GM
(we shall omit the absolute symbol in M for simplicity), and our solutions can be described
by focusing on the right and left regions (quadrants) of the Rindler-wedge formed by the
straight (null) lines U = ±V , corresponding to r = 0+, t = ±∞, and whose slope is
+45,−45 degrees respectively. In the standard textbook solution, the Fronsdal-Kruskal-
Szekeres change of coordinates [6] in the exterior region R > 2GM is given by

U = (
R

2GM
−1)

1
2 eR/4GM cosh (

t

4GM
), V = (

R

2GM
−1)

1
2 eR/4GM sinh (

t

4GM
); R > 2GM

(B.1)
and the change of coordinates in the interior region R < 2GM is

U = (1− R

2GM
)
1
2 eR/4GM sinh (

t

4GM
), V = (1− R

2GM
)
1
2 eR/4GM cosh (

t

4GM
); R < 2GM

(B.2)
In the overlap R = 2GM , one has that U = ±V and t = ±∞; and U = V = 0 for finite
t. The coordinate transformations lead to a well behaved metric (except at R(r = 0) = 0)

ds2 =
4(2GM)3

R(U, V )
e−R(U,V )/2GM (dV 2 − dU2 ) −R(U, V )2(dΩ)2. (B.3)

the functional form R(U, V ) is defined implicitly by the equation

U2 − V 2 = (
R

2GM
− 1) eR/2GM ⇒ R

2GM
= 1 + W (

U2 − V 2

e
) (B.4)
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where W is the Lambert function defined implicitly by z = W (z)eW (z). When R = 2GM
and dΩ = 0, the above interval displacement ds2 = 0 is null along the lines U = ±V ⇒
dU = ±dV . It is singular at R(r = 0) = 0 along the (spacelike) lines V 2 − U2 = 1 ⇒
dV 6= ±dU .

However in the case of our solutions (1.1) one will still retain the Kruskal-Szekeres
change of coordinates in the exterior region R > 2GM , but one must replace, instead,
the change of coordinates in the interior region R < 2GM in eqs-(B.2) for the following
one

V = (
R

2GM
)
1
2 cosh(

t

4GM
); U = (

R

2GM
)
1
2 sinh(

t

4GM
); R < 2GM (B.5)

leading to V 2 − U2 = R
2GM

and U
V

= tanh(t/4GM). In doing so one has that the points
R(r = 0) = 0 and t = ±∞ are mapped to the straight lines U = ±V with a ±45 degree
slope, respectively. While R(r = 0) = 0 is mapped to the origin of coordinates U = V = 0
for arbitrary but finite values of t. In this fashion there is geodesic completeness and
there are no disconnected points along the geodesics. The incoming radial null geodesics
(and future-oriented time like geodesics) all end up in the null singularity described now
by the straight line U = V , instead of the (spacelike) hyperbola V 2−U2 = 1, and without
”tunneling” through the interior region R < 2GM .

To show that now one has a null singularity at U = ±V one inserts the above change
of coordinates (B.5) for the region R < 2GM into the metric (1.1), such that it leads to
a different expression for the metric than in eq-(B.3) and given by

ds2 = gUU dU2 + gV V dV 2 + 2 gUV dU dV + R2(U, V ) dΩ2, R < 2GM (B.6)

where

gUU = (1− 1

V 2 − U2
) (

4GMV

V 2 − U2
)2 − (1− 1

V 2 − U2
)−1 (4GMU)2 (B.7a)

gV V = (1− 1

V 2 − U2
) (

4GMU

V 2 − U2
)2 − (1− 1

V 2 − U2
)−1 (4GMV )2 (B.7b)

gUV = gV U = − (1− 1

V 2 − U2
) (

4GMV

V 2 − U2
) (

4GMU

V 2 − U2
) +(4GM)2 (1− 1

V 2 − U2
)−1 U V

(B.7c)
Despite the different expression for the metric components in eqs-(B.7) from those in eq-
(B.3) , one still has a null interval displacement ds2 = 0 along the lines U = ±V , and
which correspond to the values R(r = 0) = 0 and t = ±∞, respectively. Therefore, one
has now a null singularity along the lines U = ±V instead of a spacelike singularity along
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the hyperbola V 2 − U2 = 1. One can verify explicitly that when U = ±V, dU = ±dV
there is an exact cancellation of the singular terms

2
(4GM)2UV

(V 2 − U2)3
dUdV − (4GM)2U2

(V 2 − U2)3
dV 2 − (4GM)2V 2

(V 2 − U2)3
dU2 (B.8a)

and

−2
(4GM)2UV

(V 2 − U2)2
dUdV +

(4GM)2U2

(V 2 − U2)2
dV 2 +

(4GM)2V 2

(V 2 − U2)2
dU2 (B.8b)

in the above infinitesimal interval ds2 of eqs-(B.7, B.8). Whereas there is also an exact
cancellation of the non-singular terms when U = ±V, dU = ±dV . Since R(r = 0) = 0, one
obtains a net zero value for the displacement ds2 = 0 in eq-(B.6) furnishing then a null
interval. Because the curvature-squared Kretschmann invariant blows up RµνρτRµνρτ ∼
(2GM)2/R(r)6 → ∞ when R(r) = 0 at r = 0, one has then a null singularity at r = 0,
as opposed to a spacelike singularity in the traditional solutions.

In the r, t coordinate picture when one evaluates gtt[R(r = 0)](dt)2 along the constant
t = ±∞ lines, whose dt = 0, it yields an undetermined product of the form∞×0 because
dt = 0. This undetermined product is resolved when one writes the interval ds2 in the
form provided by eqs-(B.7) leading to a null result as we have shown. Future and past
infinity t = ±∞(U = ±V ) are well defined and the metric (1.1) has a proper causal
structure.
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