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Abstract

A continuous family of static spherically symmetric solutions of Einstein’s vac-
uum field equations with a spatial singularity at the origin r = 0 is found. These
solutions are parametrized by a real valued parameter λ (ranging from 0 to∞) and
such that the radial horizon’s location is displaced continuously towards the singu-
larity (r = 0) as λ increases. In the limit λ → ∞, the location of the singularity
and horizon merges leading to a null singularity. In this extreme case, any infalling
observer hits the null singularity at the very moment he/she crosses the horizon.
This fact may have important consequences for the resolution of the fire wall prob-
lem and the complementarity controversy in black holes. Another salient feature
of these solutions is that it leads to a modification of the Newtonian potential con-
sistent with the effects of the generalized uncertainty principle (GUP) associated
to a minimal length. The field equations due to a delta-function point-mass source
at r = 0 are solved and the Euclidean gravitational action corresponding to those
solutions is evaluated explicitly. It is found that the Euclidean action is precisely
equal to the black hole entropy (in Planck area units). This result holds in any
dimensions D ≥ 3. The study of the Nonperturbative Renormalization Group flow
of the metric gµv[k] in terms of the momentum scale k and its relationship to these
family of metrics parametrized by λ deserves further investigation.

Keywords : General Relativity; Black Holes; Strings. PACS : 04.60.-m, 04.65.+e, 11.15.-q,
11.30.Ly

1



1 Family of Static Spherically Symmetric Solutions

There are static spherically symmetric (SSS) vacuum solutions of Einstein’s equations
[1] beyond the Hilbert [4] and Schwarzschild [2] solutions, which are given by a family of
metrics parametrized by the area radial functions ρλ(r) ( in c = 1 units ), and in terms
of a real parameter 0 ≤ λ ≤ ∞, as follows

(ds)2
(λ) = (1− 2GM

ρλ(r)
) (dt)2 − (1− 2GM

ρλ(r)
)−1 (dρλ)

2 − ρ2
λ(r) (dΩ)2. (1.1)

where (dρλ)
2 = (dρλ(r)/dr)

2(dr)2 and the solid angle infinitesimal element is (dΩ)2 =
(dφ)2 +sin2(φ)(dθ)2. In Appendix A we show explicitly that the metric (1.1) is a solution
to Einstein’s vacuum field equations. This expression for the family of metrics is given in
terms of the areal radial functions ρλ(r) (a radial gauge) which does not violate Birkhoff’s
theorem since the metric (1.1) expressed in terms of the areal radial functions ρλ(r) has
exactly the same functional form as that required by Birkoff’s theorem. The values of r
span the region 0 ≤ r ≤ ∞.

The boundary conditions obeyed by ρλ(r) must be ρλ(r = 0) = 0, ρλ(r = ∞) =
∞. The Hilbert textbook (black hole) solution [4] when ρ(r) = r obeys the boundary
conditions but the Abrams-Brillouin [3] radial gauge ρ(r) = r + 2GM does not. The
original solution of 1916 found by Schwarzschild for ρ(r) did not obey the boundary
condition ρ(r = 0) = 0 as well. The condition ρ(r = 0) = 2GM has a serious flaw and is
: How is it possible for a point-mass at r = 0 to have a non-zero area 4π(2GM)2 and a
zero volume simultaneously ?; so it seems that one is forced to choose the Hilbert areal
radial function ρ(r) = r.

However there are ways to bypass the Hilbert solution and shift the horizon location
from the known 2GM value. We will propose a one parameter family of interpolating
areal-radial functions ρλ(r)

1 such that

ρλ(r = 0) = 0; ρλ(r = r
(λ)
h ) = 2GM ; 0 ≤ r

(λ)
h ≤ 2GM (1.2)

so that the location of the horizon radius r
(λ)
h is being shifted continuously towards the

singularity as λ increases. In the asymptotic regime we shall impose the conditions for
λ 6= 0

ρλ(r →∞) → r + 2GM → r (1.3)

Meaning that the areal radial functions are increasing functions of r and have for
asymptote the line f(r) = r + 2GM . We must also set the conditions on the param-
eter λ as follows

ρλ=0(r) = r; ρλ=∞(r) = r + 2G|M |Θ(r) (1.4)

so the λ = 0 case is just the Hilbert radial function and the extreme limiting case λ =∞
involves Θ(r) which is the antisymmetric Heavyside step function

1We thank Matej Pavsic for a discussion on the choices for the radial functions
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Θ(r = 0) = 0, Θ(r > 0) = 1, Θ(r < 0) = − 1, Θ(−r) = −Θ(r) (1.5)

which vanishes at r = 0 because we choose an antisymmetric radial function ρλ(−r) =
−ρλ(r) so that the extended metric solutions for r < 0 with M > 0, correspond to a white
hole region r > 0,M < 0. The crux of selecting the family of interpolating functions ρλ(r)
is that they are all bounded as follows r ≤ ρλ(r) ≤ r + 2G|M |Θ(r), for all values of λ.

The one-parameter family of metrics in eq-(1.1) (and Riemannian curvature tensors)
associated with the choice of the areal radial functions ρλ(r) are continuous functions for
all values of r. There is a spatial singularity at r = 0 (for positive masses). It is only
in the extreme limiting case λ → ∞, when the metric component gtt and Riemannian
curvature tensor are discontinuous at r = 0, besides being singular, at the location of
the point mass source, due to the discontinuity of the Heavyside step function at r = 0.
Whereas the Ricci tensor and scalar curvature are zero for all values of r, including r = 0,
and for all values λ, including λ =∞, as shown in Appendix A.

If one wishes to avoid these discontinuities due to the use of the Heavyside function
when λ = ∞, one could impose a cutoff Λ 6= ∞ on the upper value of λ, which in
turn leads to a minimal length value for the location of the radial horizon rΛ

h such that
ρΛ(rΛ

h ) = 2GM . One could set this minimal length rΛ
h to be of the order of the Planck

scale LP .
Besides shifting the horizon location from r = 2GM to r

(λ)
h < 2GM , i.e. towards the

singularity, which may be relevant to the resolution of the fire wall problem in black holes
[15], another physical motivation in choosing the metric solutions (1.1) is because it leads
to a modification of the Newtonian potential which also results from the effects of the
generalized uncertainty principle (GUP) associated to a minimal length [17] . The GUP
is related to some approaches in quantum gravity such as string theory, black hole physics
and doubly special relativity theories (DSR). This leads to a

√
Area-type correction to

the area law of entropy which implies that the number of bits N is modified. Therefore,
based on Verlinde’s enthropic force proposal [13], the authors [17] obtained a modified
Newtonian law of gravitation which may have observable consequences at length scales
much larger than the Planck scale.

From the asymptotic behavior of the areal radial functions displayed by eq-(1.3) one
can infer the corrections to the Newtonian potential obtained in the weak field limit :
gtt ∼ (1 + 2V ). Hence,

V = − GM

r + 2GM
= − GM

r
( 1 − 2GM

r
+ ..... ) (1.6)

and the modified Newtonian force felt by a test particle of mass m is

F = − GMm

r2
( 1 − 4GM

r
+ ..... ) (1.7)

One has a repulsive contribution/correction to the modified Newtonian force. At this
stage is too early to speculate if this repulsive correction has any connection to dark
energy. The first two terms of (1.7) have the same functional form (although with different
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numerical coefficients) as the modified Newton’s law of gravitation found by [17] based
on the generalized uncertainty principle (GUP)

F = − GMm

r2
( 1 −

α
√
µ

3r
); α = αoLP , αo = constant, µ = (

2.82

π
)2 (1.8)

We proceed with a discussion on the possibility of having null singularities in the
extreme limiting case λ = ∞. It is rigorously shown in Appendix B that when λ → ∞,
the limiting metric interval ds2

(∞) in eq-(1.1) is null at r = 0, instead of being spacelike.
Hence, it is possible in this limiting λ→∞ case to have null naked singularities associated
to point mass sources. In this limiting case the singularity merges with the horizon which
might have important implications for the resolution of the fire-wall problem in black holes
[15], [16].

The physical insignificance of null naked singularities within the context of Penrose’s
cosmic censorship conjecture was analyzed by [10] in the study of gravitational collapse of
general forms matter in the most general of spacetimes. It was shown that the energy is
completely trapped inside the null singularity and therefore these null singularities cannot
be experimentally observed and cannot cause a breakdown of predictability. This conclu-
sion strongly supports and preserves the essence of the cosmic censorship hypothesis. A
timelike singularity is in principle likely to be visible to an outside observer as the redshift
is always finite for the light rays emerging from it. For the null singularity surface, the
redshift basically diverges as the proper time goes to zero on the null surface. It was
argued by [10] that despite that the null singularity is geometrically naked (null geodesics
can come out of it) essentially it is not physically visible (naked) as no energy can come
out of it due to the infinite redshift. Because one cannot get any information from the null
naked singularity it will not have any undesirable physical effect to an outside observer.

The Penrose diagrams associated with the solutions described in (1.1) are the same as
the diagrams corresponding to the extended Schwarzchild solutions with the only differ-
ence that we must replace the radial variable r for ρ. The horizons at the radial locations
r

(λ)
h all correspond to the unique value of the areal radial function ρ(r

(λ)
h ) = 2GM and

t = ±∞. The spatial singularity is located at ρλ(r = 0) = 0. The Fronsdal-Kruskal-
Szekeres change of coordinates that permit an analytical extension into the interior region
of the black hole has the same functional form as before after replacing r for ρ.

In the extreme limiting case λ = ∞ ⇒ ρλ=∞(r) = r + 2G|M |Θ(r) the Penrose di-
agrams can be obtained from the diagrams corresponding to the extended Schwarzchild
solutions by simply removing the interior regions; i.e. by removing the upper and lower
regions (quadrants) of the Rindler wedge, leaving only the left and right exterior (causal
diamond-like) regions which are connected to the asymptotically flat portions of space-
time. The horizons at r = 0+, t = ±∞, ρ(∞)(r = 0+) = 2GM are causal boundaries
of these left and right diamond-like regions, in addition to the future and past null in-
finity boundary regions. There is a null-line singularity at r = 0 and a null-surface
at r = 0+. This may sound quite paradoxically but it is a consequence of the met-
ric discontinuity at r = 0, the location of the point mass (singularity). Although
the spacetime manifold is continuous everywhere, what is discontinuous at r = 0 is
the metric due to the discontinuity of the areal-radial function ρ(∞)(r) at r = 0 since
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ρ(∞)(r = 0) = 0, ρ(∞)(r = 0+) = 2GM . In this extreme limiting case, any infalling
observer hits the null singularity at the very moment he/she crosses the horizon. This
fact may have important consequences for the resolution of the fire wall problem and the
complementarity controversy in black holes [15], [16].

Because a point mass is an infinitely compact source there is nothing wrong with the
possibility of having a discontinuity of the metric at the location of the singularity r = 0
when the radial function is chosen ρλ=∞(r) = r + 2G|M |Θ(r). This discontinuity may
appear to be unappealing but one cannot disregard such possibility. The study of Einstein
equations and the joining of discontinuous metrics when these are discontinuous across
the joining (hyper) surface was studied by [6] in the static spherically symmetric case.
These discontinuous metrics obey Einstein equations with an energy-momentum tensor
which has a delta function type of singularity on the (hyper) surface of discontinuity. It
was found that a surface tension is always associated to the cases where the metrics are
discontinuous. The kind of metric discontinuity which follows by our choice of the areal
radial function ρ(∞)(r) above is of a different type than the ones studied by [6]. In
section 2 we shall study explicitly the case when it is a delta function type of singularity
for the energy-momentum tensor (mass density and pressure) associated with the point
mass which is the source of a curvature discontinuity, and singularity, at r = 0.

Finally, as stated earlier, if one wishes to avoid these discontinuities due to the use
of the radial function r + 2G|M |Θ(r), when λ = ∞, one could impose a cutoff Λ 6= ∞
on the upper value of λ, which in turn leads to a minimal length value for the location
of the radial horizon rΛ

h and that could be set to be of the order of the Planck scale LP .
This possibility warrants further investigation, in particular because the imposition of a
minimal radius-horizon length is linked directly to the avoidance of metric discontinuities
at the location of point mass sources.

2 Point Mass Sources and Euclidean Gravitational

Action as Entropy

A rigorous correct treatment of point mass distributions in General Relativity has been
provided based on Colombeau’s [7] theory of nonlinear distributions, generalized functions
and nonlinear calculus. This permits the proper multiplication of distributions since the
old Schwarz theory of linear distributions is invalid in nonlinear theories like General
Relativity. Colombeau’s nonlinear distributional geometry supersedes the no-go results of
Geroch and Traschen [11] stating that there is no proper framework to study distributions
of matter of co-dimensions higher than two (neither points nor strings inD = 4) in General
Relativity. Colombeau’s theory of Nonlinear Distributions (and Nonstandard Analysis)
is the proper way to deal with point-mass sources in nonlinear theories like Gravity and
where one may rigorously solve the problem without having to introduce a boundary of
spacetime at r = 0.

Nevertheless one may still arrive at some interesting physical results by recurring to
the ordinary Dirac delta functions. In order to generate δ(r) terms in the right hand side
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of Einstein’s equations in the presence of a point-mass source, it was argued in [8] that
one must replace everywhere r → |r| as required when point-mass sources are inserted.
The Newtonian gravitational potential (in three dimensions) due to a point-mass source
at r = 0 is given by −GM/|r|. It is consistent with Poisson’s law which states that the
non-zero Laplacian of the Newtonian potential ∇2(−GM/|r|) = 4πGρ is proportional to
the mass density distribution ρ = (M/4πr2)δ(r). However, the Laplacian in spherical
coordinates of (1/r) is identically zero.

For this reason, there is a fundamental difference in dealing with expressions involving
absolute values |r| like 1/|r| from those which depend on r like 1/r. This is a direct
consequence of the discontinuity of the derivatives of the function |r| at r = 0. However,
despite this discontinuity in the derivatives we shall be working next with a metric that
is continuous at r = 0, as opposed to the metric studied in the previous section.

Let us begin now with the temporal and radial components of a continuous metric at
r = 0

gtt = 1− 2GM

|r|
= 1− 2GM

r

r

|r|
= 1− 2GM

r
f(r); f(r) ≡ r

|r|
. (2.1)

grr = − 1

gtt
. (2.2)

such that the derivatives are

f ′(r) =
df(r)

dr
= δ(r); f ′′(r) =

d2f(r)

dr2
= δ′(r). (2.3)

and one learns that the curvature scalar R is now nonvanishing at r = 0

R = − 2GM [
f ′′(r)

r
+ 2

f ′(r)

r2
] =

− 2GM [
δ′(r)

r
+ 2

δ(r)

r2
] = − 8πG T (2.4)

where T in eq-(2.4) is the trace of the stress energy tensor gµνTµν in the Einstein’s field
equations due to the presence of matter and the signature chosen is (+,−,−,−). The
scalar curvature (2.4) is R = 0 for r > 0 and it is singular at r = 0. Whereas the scalar
curvature R and Ricci tensor Rµν associated with the standard Schwarzschild (Hilbert)
solutions, involving r instead of |r|, are identically zero for all values of r, including r = 0.
2

The non-trivial Einstein-Hilbert action associated with a point-mass source is

2One may notice that by choosing f(r) = κ/r in eq-(2.4) for κ= constant, it yields R = 0 which
implies a zero trace for the stress energy tensor T = 0, as it happens in Electromagnetism due to the
conformal invariance of Maxwell equations in D = 4. The Reisnner-Nordstrom solutions (in the massless
case) have for temporal metric component gtt = 1 − e2/r2, which has the same functional form as
gtt = 1− (2GM/r)f(r) = 1− 2GMκ/r2 ↔ 1− e2/r2.
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S = − 1

16πG

∫
R 4πr2 dr dt =

1

16πG

∫
2GM [

δ′(r)

r
+ 2

δ(r)

r2
] 4πr2 dr dt. (2.5)

Integrating by parts yields

1

16πG
”

∫
|8πGM [ 2δ(r) − δ(r) ] dr dt =

1

16πG

∫
8πG (

M δ(r)

4πr2
) 4πr2 dr dt =

1

2

∫
M dt (2.6)

One may notice that the metric solution in eqs-(2.1, 2.2) has a well defined notion of
surface gravity at r = 2GM , which is the location of the standard horizon, because the
radial derivatives of GM/|r| are well defined and finite at r = 2GM . Therefore, the
concepts of entropy and Hawking temperature [9] are meaningful in this case.

The Euclideanized Einstein-Hilbert action associated with the non-trivial scalar cur-
vature (2.4) is obtained after a compactification of the temporal direction along a cir-
cle S1 whose net Euclidean time integration interval is 2πtE . The latter interval can
be defined in terms of the Hawking temperature TH and the Boltzman constant kB as
2πtE = (1/kBTH) = 8πGM . The temperature TH also agrees with the Unruh-Rindler
temperature h̄

2π
|a| (in units h̄ = c = 1), where |a| = 1

4GM
is the magnitude of the surface

gravity (acceleration) at the standard horizon location r = 2GM . Integrating with re-
spect to the Euclidean temporal coordinate, the Euclidean gravitational action becomes
then

SE = (
M

2
) (2πtE) = 4π G M2 =

1

4

4π(2GM)2

G
=

Area

4 L2
P

. (2.7)

which is precisely the black bole Entropy in Planck area units G = L2
P ( h̄ = c = 1 ).

This result that the Euclideanized gravitational action (associated with a non-trivial
scalar curvature involving delta functions due to point-mass sources) is the same as the
black hole entropy can be generalized to higher dimensions. In the Reissner-Nordsrom
(massive-charged) and Kerr-Newman black hole case (massive-rotating-charged) we gave
shown also [8] that the Euclidean action in a bulk domain bounded by the inner and
outer horizons is the same as the black hole entropy. These findings should be compared
to Verlinde’s enthropic gravity proposal [13] based on the holographic principle.

As discussed in detail in [8] we can smooth the point-mass distribution by a smeared
delta function [12],

ρ(r) = M
e−r

2/4σ2

(4πσ2)3/2
⇒ limσ→0

e−r
2/4σ2

(4πσ2)3/2
→ δ(r)

4πr2
(2.8)

so that field equations associated with the signature (+,−,−,−) are given by

R00 −
1

2
g00 R = 8πG T00 = 8πG g00 ρ(r), Rij −

1

2
gij R = 8πG Tij (2.9)
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where ρ(r) is a smeared delta function given by the Gaussian, and the Tij elements are
comprised of a radial and tangential pressures of a self-gravitating anisotropic fluid [12]

ρ(r) = M
e−r

2/4σ2

(4πσ2)3/2
, pr = − ρ(r), ptan = pθ = pφ = −ρ(r)− r

2

dρ

dr
. (2.10)

In the σ → 0 limit one has

ρ(r) = − pr(r) = M
δ(r)

4πr2
, pθ(r) = pφ(r) = −Mδ′(r)

8πr
(2.11)

such that the scalar curvature can be expressed in terms of the trace of the energy stress
tensor as indicated by eq-(2.4) above, and the mass-energy source distributions which
generate the metric solutions in eq-(2.1) are provided precisely by the expressions in eq-
(2.11).

We finalize by adding some remarks [8] about how a fuzzy point mass may admit
a short distance cut-off of the Brillouin form ρ(r = 0) = 2GM (instead of zero) if
one has a Noncommutative spacetime coordinates algebra [xµ, xν ] = iΣµν , [pµ, pν ] =
0, [xµ, pν ] = ih̄ηµν where Σµν are c-numbers of (Planck length)2 magnitude. A change
of coordinates in phase space x′µ = xµ + 1

2
Σµν pν leads to commuting coordinates x′µ

and allows to define r′(r) =
√

(xi + 1
2

Σiρ pρ) (xi + 1
2

Σiτ pτ ). One can select Σµν such

that r′(xi = 0) = r′(r = 0) = 2GM , after using the on-shell condition pµp
µ = M2.

Therefore one recovers the cut-off corresponding to the Brillouin area radial function
ρ(r) = r + 2GM ⇒ ρ(r = 0) = 2GM . Thus a fuzzy point mass has non-zero area and
volume.

Another Planck scale cut-off can be derived in terms of noncommutative Moyal star

products f(x) ∗ g(x) simply by replacing r → r∗ =
√
r ∗ r =

√
r2 + Σijxixj/r2 + .... so

r∗(x
i = 0) 6= 0, and it receives Planck scale corrections. A point is fuzzy and delocalized,

henceforth it has a non-zero fuzzy area and fuzzy volume. An open problem is to verify
whether or not Schwarzschild deformed metrics of the form

gtt(r∗) = 1− 2GM

r∗
, grr = −[g−1

tt ]∗, r∗ =
√
r ∗ r =

√
r2 + Σijxixj/r2 + .... . (2.12)

solve the Noncommutative Gravity field equations to all orders in the noncommutative
parameter Σµν . The angular part is given by r∗ ∗ r∗ (dΩ)2, and the star inverse [g−1

tt ]∗
is defined in terms of a Taylor series involving star products . This is a very difficult
problem. To conclude, one has to wait for a theory of quantum gravity to fully address
these issues of the avoidance of singularities due to the noncommutativity of spacetime
coordinates. Another relevant topic is to explore the Nonperturbative Renormalization
Group flow [18] of the metric gµv[k] in terms of the momentum scale k and its relationship
(if any) to the family of metrics (1.1) parametrized by λ.

APPENDIX A : Schwarzschild-like solutions in D > 3
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In this Appendix we follow closely our prior calculations [8] to the static spherically
symmetric vacuum solutions to Einstein’s equations in any dimension D > 3. Let us start
with the line element with signature (−,+,+,+, ....,+)

ds2 = −eµ(r)(dt)2 + eν(r)(dr)2 +R2(r)g̃ijdξ
idξj. (A.1)

where the areal radial function ρ(r) is now denoted by R(r) and which must not be
confused with the scalar curvature R. Here, the metric g̃ij corresponds to a homogeneous
space and i, j = 3, 4, ..., D − 2 and the temporal and radial indices are denoted by 1, 2
respectively. In our text we denoted the temporal index by 0. The only non-vanishing
Christoffel symbols are given in terms of the following partial derivatives with respect to
the r variable and denoted with a prime

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi2j = R′

R
δij, Γijk = Γ̃ijk,

(A.2)

and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δikg̃jl − δil g̃jk).

(A.3)

The vacuum field equations are

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′
R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′
R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2)g̃ij +

k

R2
(D − 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From the combi-
nation e−µ+νR11 +R22 = 0 we get

µ′ + ν ′ =
2R′′

R′
. (A.7)

The solution of this equation is

µ+ ν = lnR′2 + C, (A.8)
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where C is an integration constant that one sets to zero if one wishes to recover the flat
Minkowski spacetime metric in spherical coordinates in the asymptotic region r →∞.

Substituting (A.7) into the equation (A.6) we find

e−ν ( ν ′RR′ − 2RR′′ − (D − 3)R′2 ) = − k(D − 3) (A.9)

or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D − 2-dim sphere for the homogeneous space can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3
) (
dR

dr
)−2 ⇒

grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D−2-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(A.12)
the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D − 2-dim homogeneous space we should write

−ν = ln(k − βDGDM

RD−3
)− 2 lnR′. (A.13)

βD is a constant equal to 16π/(D − 2)ΩD−2, where ΩD−2 is the solid angle in the D − 2
transverse dimensions to r, t and is given by (D − 1)π(D−1)/2/Γ[(D + 1)/2].

Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2 = −(k − βDGDM

RD−3
)(dt)2 +

(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξ
idξj =

−(k − βDGDM

RD−3
)(dt)2 +

1

(k − βDGDM
RD−3 )

(dR)2 + R2(r)g̃ijdξ
idξj (A.15)

One can verify, that the equations (A.4)-(A.6),leading to eqs-(A.9)-(A.10), do not deter-
mine the form R(r). These equations are satisfied even if R(r) has singular derivatives
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at r = 0, like those appearing in dR/dr = 1 + 2G|M |δ(r). It is also interesting to observe
that the only effect of the homogeneous metric g̃ij is reflected in the k = ±1 parameter,
associated with a positive ( negative ) constant scalar curvature of the homogeneous D−2-
dim space. k = 0 corresponds to a spatially flat D − 2-dim section. The metric solution
in eq-(1.1) is associated to a different signature than the one chosen in this Appendix,
and corresponds to D = 4 and k = 1.

We finalize this Appendix by studying what happens when the radial function is given
by R(r) = r + 2G|M |Θ(r) in the limiting case λ = ∞. We must emphasize that despite
that the derivatives dR

dr
= 1 + 2G|M |δ(r) and (d2R/dr2) = 2G|M |δ′(r) are singular at

r = 0, there is an exact and precise cancellation of these singular derivatives (involving
delta functions) in the evaluation of the Ricci curvature tensor components yielding a zero
Ricci tensor Rµν = 0 and a zero Ricci scalar R = 0. What is not zero is the Riemann
curvature tensor Rµνρτ . Therefore, the conditions Rµν = 0 and R = 0 are satisfied for
any area radial function R(r), irrespective if it has singular derivatives at r = 0 or not.

Furthermore, despite that (dR
dr

)2 = (1+2G|M |δ(r))2 in eq-(A.15) involves the ill defined
product of distributions, one should notice that it is well defined at r > 0 ⇒ (dR

dr
)2 = 1,

and also the radial component of the metric (A.15) is well defined at r = 0 because the
product

limr→0 [ (1− 2GM

R
)−1 (

dR

dr
)2 ] → limr→0 [ − R(r)

2GM
(1 + 2G|M |δ(r))2 ] → 0 (A.16)

so that grr(r = 0) = 0. This is a consequence of the fact that R(r = 0)(δ(r = 0))2 =
0× (δ(r = 0))2 = 0 because the expression R(r)(δ(r))2 is an odd function of r which must
vanish at the origin r = 0.

APPENDIX B : Null-like singularities in the limiting λ =∞ case

As mentioned earlier, in the limiting λ = ∞ case, the radial function is R(r) =
r + 2G|M |Θ(r) and there is a discontinuity at r = 0 : R(r = 0) = 0;R(r = 0+) = 2GM
(we shall omit the absolute symbol in M for simplicity), and our solutions can be described
by focusing on the right and left regions (quadrants) of the Rindler-wedge formed by the
straight (null) lines U = ±V , corresponding to r = 0+, t = ±∞, and whose slope is
+45,−45 degrees respectively. In the standard textbook solution, the Fronsdal-Kruskal-
Szekeres change of coordinates [5] in the exterior region R > 2GM is given by

U = (
R

2GM
−1)

1
2 eR/4GM cosh (

t

4GM
), V = (

R

2GM
−1)

1
2 eR/4GM sinh (

t

4GM
); R > 2GM

(B.1)
and the change of coordinates in the interior region R < 2GM is

U = (1− R

2GM
)
1
2 eR/4GM sinh (

t

4GM
), V = (1− R

2GM
)
1
2 eR/4GM cosh (

t

4GM
); R < 2GM

(B.2)
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In the overlap R = 2GM , one has that U = ±V and t = ±∞; and U = V = 0 for finite
t. The coordinate transformations lead to a well behaved metric (except at R(r = 0) = 0)

ds2 =
4(2GM)3

R(U, V )
e−R(U,V )/2GM (dV 2 − dU2 ) −R(U, V )2(dΩ)2. (B.3)

the functional form R(U, V ) is defined implicitly by the equation

U2 − V 2 = (
R

2GM
− 1) eR/2GM ⇒ R

2GM
= 1 + W (

U2 − V 2

e
) (B.4)

where W is the Lambert function defined implicitly by z = W (z)eW (z). When R = 2GM
and dΩ = 0, the above interval displacement ds2 = 0 is null along the lines U = ±V ⇒
dU = ±dV . It is singular at R(r = 0) = 0 along the (spacelike) lines V 2 − U2 = 1 ⇒
dV 6= ±dU .

However in the case of our solutions (1.1) one will still retain the Kruskal-Szekeres
change of coordinates in the exterior region R > 2GM , but one must replace, instead,
the change of coordinates in the interior region R < 2GM in eqs-(B.2) for the following
one

V = (
R

2GM
)
1
2 cosh(

t

4GM
); U = (

R

2GM
)
1
2 sinh(

t

4GM
); R < 2GM (B.5)

leading to V 2 − U2 = R
2GM

and U
V

= tanh(t/4GM). In doing so one has that the points
R(r = 0) = 0 and t = ±∞ are mapped to the straight lines U = ±V with a ±45 degree
slope, respectively. While R(r = 0) = 0 is mapped to the origin of coordinates U = V = 0
for arbitrary but finite values of t. In this fashion there is geodesic completeness and
there are no disconnected points along the geodesics. The incoming radial null geodesics
(and future-oriented time like geodesics) all end up in the null singularity described now
by the straight line U = V , instead of the (spacelike) hyperbola V 2−U2 = 1, and without
”tunneling” through the interior region R < 2GM .

To show that now one has a null singularity at U = ±V one inserts the above change
of coordinates (B.5) for the region R < 2GM into the metric (1.1), such that it leads to
a different expression for the metric than in eq-(B.3) and given by

ds2 = gUU dU2 + gV V dV 2 + 2 gUV dU dV + R2(U, V ) dΩ2, R < 2GM (B.6)

where

gUU = (1− 1

V 2 − U2
) (

4GMV

V 2 − U2
)2 − (1− 1

V 2 − U2
)−1 (4GMU)2 (B.7a)

gV V = (1− 1

V 2 − U2
) (

4GMU

V 2 − U2
)2 − (1− 1

V 2 − U2
)−1 (4GMV )2 (B.7b)
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gUV = gV U = − (1− 1

V 2 − U2
) (

4GMV

V 2 − U2
) (

4GMU

V 2 − U2
) +(4GM)2 (1− 1

V 2 − U2
)−1 U V

(B.7c)
Despite the different expression for the metric components in eqs-(B.7) from those in eq-
(B.3) , one still has a null interval displacement ds2 = 0 along the lines U = ±V , and
which correspond to the values R(r = 0) = 0 and t = ±∞, respectively. Therefore, one
has now a null singularity along the lines U = ±V instead of a spacelike singularity along
the hyperbola V 2 − U2 = 1. One can verify explicitly that when U = ±V, dU = ±dV
there is an exact cancellation of the singular terms

2
(4GM)2UV

(V 2 − U2)3
dUdV − (4GM)2U2

(V 2 − U2)3
dV 2 − (4GM)2V 2

(V 2 − U2)3
dU2 (B.8a)

and

−2
(4GM)2UV

(V 2 − U2)2
dUdV +

(4GM)2U2

(V 2 − U2)2
dV 2 +

(4GM)2V 2

(V 2 − U2)2
dU2 (B.8b)

in the above infinitesimal interval ds2 of eqs-(B.7, B.8). Whereas there is also an exact
cancellation of the non-singular terms when U = ±V, dU = ±dV . Since R(r = 0) = 0, one
obtains a net zero value for the displacement ds2 = 0 in eq-(B.6) furnishing then a null
interval. Because the curvature-squared Kretschmann invariant blows up RµνρτRµνρτ ∼
(2GM)2/R(r)6 → ∞ when R(r) = 0 at r = 0, one has then a null singularity at r = 0,
as opposed to a spacelike singularity in the traditional solutions.

In the r, t coordinate picture when one evaluates gtt[R(r = 0)](dt)2 along the constant
t = ±∞ lines, whose dt = 0, it yields an undetermined product of the form −∞ × 0
because dt = 0. This undetermined product is resolved when one writes the interval ds2

in the form provided by eqs-(B.7) leading to a null result as we have shown. Future and
past infinity t = ±∞(U = ±V ) are well defined and the metric (1.1) has a proper causal
structure.
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