Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy

Carlos Castro

March 2013

Abstract

Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta; perelmanc@hotmail.com

Abstract

A continuous family of static spherically symmetric solutions of Einstein's vacuum field equations with a spatial singularity at the origin $r=0$ is found. These solutions are parametrized by a real valued parameter λ (ranging from 0 to ∞) and such that the radial horizon's location is displaced continuously towards the singularity $(r=0)$ as λ increases. In the limit $\lambda \rightarrow \infty$, the location of the singularity and horizon merges leading to a null singularity. In this extreme case, any infalling observer hits the null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the fire wall problem and the complementarity controversy in black holes. Another salient feature of these solutions is that it leads to a modification of the Newtonian potential consistent with the effects of the generalized uncertainty principle (GUP) associated to a minimal length. The field equations due to a delta-function point-mass source at $r=0$ are solved and the Euclidean gravitational action corresponding to those solutions is evaluated explicitly. It is found that the Euclidean action is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions $D \geq 3$. The study of the Nonperturbative Renormalization Group flow of the metric $g_{\mu \nu}[k]$ in terms of the momentum scale k and its relationship to these family of metrics parametrized by λ deserves further investigation.

Keywords : General Relativity; Black Holes; Strings. PACS : 04.60.-m, 04.65.+e, 11.15.-q, 11.30.Ly

1 Family of Static Spherically Symmetric Solutions

There are static spherically symmetric (SSS) vacuum solutions of Einstein's equations [1] beyond the Hilbert [4] and Schwarzschild [2] solutions, which are given by a family of metrics parametrized by the area radial functions $\rho_{\lambda}(r)$ (in $c=1$ units), and in terms of a real parameter $0 \leq \lambda \leq \infty$, as follows

$$
\begin{equation*}
(d s)_{(\lambda)}^{2}=\left(1-\frac{2 G M}{\rho_{\lambda}(r)}\right)(d t)^{2}-\left(1-\frac{2 G M}{\rho_{\lambda}(r)}\right)^{-1}\left(d \rho_{\lambda}\right)^{2}-\rho_{\lambda}^{2}(r)(d \Omega)^{2} . \tag{1.1}
\end{equation*}
$$

where $\left(d \rho_{\lambda}\right)^{2}=\left(d \rho_{\lambda}(r) / d r\right)^{2}(d r)^{2}$ and the solid angle infinitesimal element is $(d \Omega)^{2}=$ $(d \phi)^{2}+\sin ^{2}(\phi)(d \theta)^{2}$. In Appendix A we show explicitly that the metric (1.1) is a solution to Einstein's vacuum field equations. This expression for the family of metrics is given in terms of the areal radial functions $\rho_{\lambda}(r)$ (a radial gauge) which does not violate Birkhoff's theorem since the metric (1.1) expressed in terms of the areal radial functions $\rho_{\lambda}(r)$ has exactly the same functional form as that required by Birkoff's theorem. The values of r span the region $0 \leq r \leq \infty$.

The boundary conditions obeyed by $\rho_{\lambda}(r)$ must be $\rho_{\lambda}(r=0)=0, \rho_{\lambda}(r=\infty)=$ ∞. The Hilbert textbook (black hole) solution [4] when $\rho(r)=r$ obeys the boundary conditions but the Abrams-Brillouin [3] radial gauge $\rho(r)=r+2 G M$ does not. The original solution of 1916 found by Schwarzschild for $\rho(r)$ did not obey the boundary condition $\rho(r=0)=0$ as well. The condition $\rho(r=0)=2 G M$ has a serious flaw and is : How is it possible for a point-mass at $r=0$ to have a non-zero area $4 \pi(2 G M)^{2}$ and a zero volume simultaneously ?; so it seems that one is forced to choose the Hilbert areal radial function $\rho(r)=r$.

However there are ways to bypass the Hilbert solution and shift the horizon location from the known $2 G M$ value. We will propose a one parameter family of interpolating areal-radial functions $\rho_{\lambda}(r)^{1}$ such that

$$
\begin{equation*}
\rho_{\lambda}(r=0)=0 ; \quad \rho_{\lambda}\left(r=r_{h}^{(\lambda)}\right)=2 G M ; \quad 0 \leq r_{h}^{(\lambda)} \leq 2 G M \tag{1.2}
\end{equation*}
$$

so that the location of the horizon radius $r_{h}^{(\lambda)}$ is being shifted continuously towards the singularity as λ increases. In the asymptotic regime we shall impose the conditions for $\lambda \neq 0$

$$
\begin{equation*}
\rho_{\lambda}(r \rightarrow \infty) \rightarrow r+2 G M \rightarrow r \tag{1.3}
\end{equation*}
$$

Meaning that the areal radial functions are increasing functions of r and have for asymptote the line $f(r)=r+2 G M$. We must also set the conditions on the parameter λ as follows

$$
\begin{equation*}
\rho_{\lambda=0}(r)=r ; \quad \rho_{\lambda=\infty}(r)=r+2 G|M| \Theta(r) \tag{1.4}
\end{equation*}
$$

so the $\lambda=0$ case is just the Hilbert radial function and the extreme limiting case $\lambda=\infty$ involves $\Theta(r)$ which is the antisymmetric Heavyside step function

[^0]\[

$$
\begin{equation*}
\Theta(r=0)=0, \Theta(r>0)=1, \Theta(r<0)=-1, \Theta(-r)=-\Theta(r) \tag{1.5}
\end{equation*}
$$

\]

which vanishes at $r=0$ because we choose an antisymmetric radial function $\rho_{\lambda}(-r)=$ $-\rho_{\lambda}(r)$ so that the extended metric solutions for $r<0$ with $M>0$, correspond to a white hole region $r>0, M<0$. The crux of selecting the family of interpolating functions $\rho_{\lambda}(r)$ is that they are all bounded as follows $r \leq \rho_{\lambda}(r) \leq r+2 G|M| \Theta(r)$, for all values of λ.

The one-parameter family of metrics in eq-(1.1) (and Riemannian curvature tensors) associated with the choice of the areal radial functions $\rho_{\lambda}(r)$ are continuous functions for all values of r. There is a spatial singularity at $r=0$ (for positive masses). It is only in the extreme limiting case $\lambda \rightarrow \infty$, when the metric component $g_{t t}$ and Riemannian curvature tensor are discontinuous at $r=0$, besides being singular, at the location of the point mass source, due to the discontinuity of the Heavyside step function at $r=0$. Whereas the Ricci tensor and scalar curvature are zero for all values of r, including $r=0$, and for all values λ, including $\lambda=\infty$, as shown in Appendix A.

If one wishes to avoid these discontinuities due to the use of the Heavyside function when $\lambda=\infty$, one could impose a cutoff $\Lambda \neq \infty$ on the upper value of λ, which in turn leads to a minimal length value for the location of the radial horizon r_{h}^{Λ} such that $\rho_{\Lambda}\left(r_{h}^{\Lambda}\right)=2 G M$. One could set this minimal length r_{h}^{Λ} to be of the order of the Planck scale L_{P}.

Besides shifting the horizon location from $r=2 G M$ to $r_{h}^{(\lambda)}<2 G M$, i.e. towards the singularity, which may be relevant to the resolution of the fire wall problem in black holes [15], another physical motivation in choosing the metric solutions (1.1) is because it leads to a modification of the Newtonian potential which also results from the effects of the generalized uncertainty principle (GUP) associated to a minimal length [17] . The GUP is related to some approaches in quantum gravity such as string theory, black hole physics and doubly special relativity theories (DSR). This leads to a $\sqrt{\text { Area-type correction to }}$ the area law of entropy which implies that the number of bits N is modified. Therefore, based on Verlinde's enthropic force proposal [13], the authors [17] obtained a modified Newtonian law of gravitation which may have observable consequences at length scales much larger than the Planck scale.

From the asymptotic behavior of the areal radial functions displayed by eq-(1.3) one can infer the corrections to the Newtonian potential obtained in the weak field limit : $g_{t t} \sim(1+2 V)$. Hence,

$$
\begin{equation*}
V=-\frac{G M}{r+2 G M}=-\frac{G M}{r}\left(1-\frac{2 G M}{r}+\ldots .\right) \tag{1.6}
\end{equation*}
$$

and the modified Newtonian force felt by a test particle of mass m is

$$
\begin{equation*}
F=-\frac{G M m}{r^{2}}\left(1-\frac{4 G M}{r}+\ldots . .\right) \tag{1.7}
\end{equation*}
$$

One has a repulsive contribution/correction to the modified Newtonian force. At this stage is too early to speculate if this repulsive correction has any connection to dark energy. The first two terms of (1.7) have the same functional form (although with different
numerical coefficients) as the modified Newton's law of gravitation found by [17] based on the generalized uncertainty principle (GUP)

$$
\begin{equation*}
F=-\frac{G M m}{r^{2}}\left(1-\frac{\alpha \sqrt{\mu}}{3 r}\right) ; \quad \alpha=\alpha_{o} L_{P}, \quad \alpha_{o}=\text { constant }, \quad \mu=\left(\frac{2.82}{\pi}\right)^{2} \tag{1.8}
\end{equation*}
$$

We proceed with a discussion on the possibility of having null singularities in the extreme limiting case $\lambda=\infty$. It is rigorously shown in Appendix B that when $\lambda \rightarrow \infty$, the limiting metric interval $d s_{(\infty)}^{2}$ in eq-(1.1) is null at $r=0$, instead of being spacelike. Hence, it is possible in this limiting $\lambda \rightarrow \infty$ case to have null naked singularities associated to point mass sources. In this limiting case the singularity merges with the horizon which might have important implications for the resolution of the fire-wall problem in black holes [15], [16].

The physical insignificance of null naked singularities within the context of Penrose's cosmic censorship conjecture was analyzed by [10] in the study of gravitational collapse of general forms matter in the most general of spacetimes. It was shown that the energy is completely trapped inside the null singularity and therefore these null singularities cannot be experimentally observed and cannot cause a breakdown of predictability. This conclusion strongly supports and preserves the essence of the cosmic censorship hypothesis. A timelike singularity is in principle likely to be visible to an outside observer as the redshift is always finite for the light rays emerging from it. For the null singularity surface, the redshift basically diverges as the proper time goes to zero on the null surface. It was argued by [10] that despite that the null singularity is geometrically naked (null geodesics can come out of it) essentially it is not physically visible (naked) as no energy can come out of it due to the infinite redshift. Because one cannot get any information from the null naked singularity it will not have any undesirable physical effect to an outside observer.

The Penrose diagrams associated with the solutions described in (1.1) are the same as the diagrams corresponding to the extended Schwarzchild solutions with the only difference that we must replace the radial variable r for ρ. The horizons at the radial locations $r_{h}^{(\lambda)}$ all correspond to the unique value of the areal radial function $\rho\left(r_{h}^{(\lambda)}\right)=2 G M$ and $t= \pm \infty$. The spatial singularity is located at $\rho_{\lambda}(r=0)=0$. The Fronsdal-KruskalSzekeres change of coordinates that permit an analytical extension into the interior region of the black hole has the same functional form as before after replacing r for ρ.

In the extreme limiting case $\lambda=\infty \Rightarrow \rho_{\lambda=\infty}(r)=r+2 G|M| \Theta(r)$ the Penrose diagrams can be obtained from the diagrams corresponding to the extended Schwarzchild solutions by simply removing the interior regions; i.e. by removing the upper and lower regions (quadrants) of the Rindler wedge, leaving only the left and right exterior (causal diamond-like) regions which are connected to the asymptotically flat portions of spacetime. The horizons at $r=0^{+}, t= \pm \infty, \rho_{(\infty)}\left(r=0^{+}\right)=2 G M$ are causal boundaries of these left and right diamond-like regions, in addition to the future and past null infinity boundary regions. There is a null-line singularity at $r=0$ and a null-surface at $r=0^{+}$. This may sound quite paradoxically but it is a consequence of the metric discontinuity at $r=0$, the location of the point mass (singularity). Although the spacetime manifold is continuous everywhere, what is discontinuous at $r=0$ is the metric due to the discontinuity of the areal-radial function $\rho_{(\infty)}(r)$ at $r=0$ since
$\rho_{(\infty)}(r=0)=0, \rho_{(\infty)}\left(r=0^{+}\right)=2 G M$. In this extreme limiting case, any infalling observer hits the null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the fire wall problem and the complementarity controversy in black holes [15], [16].

Because a point mass is an infinitely compact source there is nothing wrong with the possibility of having a discontinuity of the metric at the location of the singularity $r=0$ when the radial function is chosen $\rho_{\lambda=\infty}(r)=r+2 G|M| \Theta(r)$. This discontinuity may appear to be unappealing but one cannot disregard such possibility. The study of Einstein equations and the joining of discontinuous metrics when these are discontinuous across the joining (hyper) surface was studied by [6] in the static spherically symmetric case. These discontinuous metrics obey Einstein equations with an energy-momentum tensor which has a delta function type of singularity on the (hyper) surface of discontinuity. It was found that a surface tension is always associated to the cases where the metrics are discontinuous. The kind of metric discontinuity which follows by our choice of the areal radial function $\rho_{(\infty)}(r)$ above is of a different type than the ones studied by [6]. In section 2 we shall study explicitly the case when it is a delta function type of singularity for the energy-momentum tensor (mass density and pressure) associated with the point mass which is the source of a curvature discontinuity, and singularity, at $r=0$.

Finally, as stated earlier, if one wishes to avoid these discontinuities due to the use of the radial function $r+2 G|M| \Theta(r)$, when $\lambda=\infty$, one could impose a cutoff $\Lambda \neq \infty$ on the upper value of λ, which in turn leads to a minimal length value for the location of the radial horizon r_{h}^{Λ} and that could be set to be of the order of the Planck scale L_{P}. This possibility warrants further investigation, in particular because the imposition of a minimal radius-horizon length is linked directly to the avoidance of metric discontinuities at the location of point mass sources.

2 Point Mass Sources and Euclidean Gravitational Action as Entropy

A rigorous correct treatment of point mass distributions in General Relativity has been provided based on Colombeau's [7] theory of nonlinear distributions, generalized functions and nonlinear calculus. This permits the proper multiplication of distributions since the old Schwarz theory of linear distributions is invalid in nonlinear theories like General Relativity. Colombeau's nonlinear distributional geometry supersedes the no-go results of Geroch and Traschen [11] stating that there is no proper framework to study distributions of matter of co-dimensions higher than two (neither points nor strings in $D=4$) in General Relativity. Colombeau's theory of Nonlinear Distributions (and Nonstandard Analysis) is the proper way to deal with point-mass sources in nonlinear theories like Gravity and where one may rigorously solve the problem without having to introduce a boundary of spacetime at $r=0$.

Nevertheless one may still arrive at some interesting physical results by recurring to the ordinary Dirac delta functions. In order to generate $\delta(r)$ terms in the right hand side
of Einstein's equations in the presence of a point-mass source, it was argued in [8] that one must replace everywhere $r \rightarrow|r|$ as required when point-mass sources are inserted. The Newtonian gravitational potential (in three dimensions) due to a point-mass source at $r=0$ is given by $-G M /|r|$. It is consistent with Poisson's law which states that the non-zero Laplacian of the Newtonian potential $\nabla^{2}(-G M /|r|)=4 \pi G \rho$ is proportional to the mass density distribution $\rho=\left(M / 4 \pi r^{2}\right) \delta(r)$. However, the Laplacian in spherical coordinates of $(1 / r)$ is identically zero.

For this reason, there is a fundamental difference in dealing with expressions involving absolute values $|r|$ like $1 /|r|$ from those which depend on r like $1 / r$. This is a direct consequence of the discontinuity of the derivatives of the function $|r|$ at $r=0$. However, despite this discontinuity in the derivatives we shall be working next with a metric that is continuous at $r=0$, as opposed to the metric studied in the previous section.

Let us begin now with the temporal and radial components of a continuous metric at $r=0$

$$
\begin{gather*}
g_{t t}=1-\frac{2 G M}{|r|}=1-\frac{2 G M}{r} \frac{r}{|r|}=1-\frac{2 G M}{r} f(r) ; \quad f(r) \equiv \frac{r}{|r|} \tag{2.1}\\
g_{r r}=-\frac{1}{g_{t t}} \tag{2.2}
\end{gather*}
$$

such that the derivatives are

$$
\begin{equation*}
f^{\prime}(r)=\frac{d f(r)}{d r}=\delta(r) ; \quad f^{\prime \prime}(r)=\frac{d^{2} f(r)}{d r^{2}}=\delta^{\prime}(r) \tag{2.3}
\end{equation*}
$$

and one learns that the curvature scalar \mathcal{R} is now nonvanishing at $r=0$

$$
\begin{align*}
& \mathcal{R}=-2 G M\left[\frac{f^{\prime \prime}(r)}{r}+2 \frac{f^{\prime}(r)}{r^{2}}\right]= \\
& -2 G M\left[\frac{\delta^{\prime}(r)}{r}+2 \frac{\delta(r)}{r^{2}}\right]=-8 \pi G T \tag{2.4}
\end{align*}
$$

where T in eq-(2.4) is the trace of the stress energy tensor $g^{\mu \nu} T_{\mu \nu}$ in the Einstein's field equations due to the presence of matter and the signature chosen is $(+,-,-,-)$. The scalar curvature (2.4) is $\mathcal{R}=0$ for $r>0$ and it is singular at $r=0$. Whereas the scalar curvature \mathcal{R} and Ricci tensor $\mathcal{R}_{\mu \nu}$ associated with the standard Schwarzschild (Hilbert) solutions, involving r instead of $|r|$, are identically zero for all values of r, including $r=0$. 2

The non-trivial Einstein-Hilbert action associated with a point-mass source is

[^1]\[

$$
\begin{equation*}
S=-\frac{1}{16 \pi G} \int \mathcal{R} 4 \pi r^{2} d r d t=\frac{1}{16 \pi G} \int 2 G M\left[\frac{\delta^{\prime}(r)}{r}+2 \frac{\delta(r)}{r^{2}}\right] 4 \pi r^{2} d r d t \tag{2.5}
\end{equation*}
$$

\]

Integrating by parts yields

$$
\begin{gather*}
\frac{1}{16 \pi G} " \int \left\lvert\, 8 \pi G M[2 \delta(r)-\delta(r)] d r d t=\frac{1}{16 \pi G} \int 8 \pi G\left(\frac{M \delta(r)}{4 \pi r^{2}}\right) 4 \pi r^{2} d r d t=\right. \\
\frac{1}{2} \int M d t \tag{2.6}
\end{gather*}
$$

One may notice that the metric solution in eqs- $(2.1,2.2)$ has a well defined notion of surface gravity at $r=2 G M$, which is the location of the standard horizon, because the radial derivatives of $G M /|r|$ are well defined and finite at $r=2 G M$. Therefore, the concepts of entropy and Hawking temperature [9] are meaningful in this case.

The Euclideanized Einstein-Hilbert action associated with the non-trivial scalar curvature (2.4) is obtained after a compactification of the temporal direction along a circle S^{1} whose net Euclidean time integration interval is $2 \pi t_{E}$. The latter interval can be defined in terms of the Hawking temperature T_{H} and the Boltzman constant k_{B} as $2 \pi t_{E}=\left(1 / k_{B} T_{H}\right)=8 \pi G M$. The temperature T_{H} also agrees with the Unruh-Rindler temperature $\frac{\hbar}{2 \pi}|a|$ (in units $\hbar=c=1$), where $|a|=\frac{1}{4 G M}$ is the magnitude of the surface gravity (acceleration) at the standard horizon location $r=2 G M$. Integrating with respect to the Euclidean temporal coordinate, the Euclidean gravitational action becomes then

$$
\begin{equation*}
S_{E}=\left(\frac{M}{2}\right)\left(2 \pi t_{E}\right)=4 \pi G M^{2}=\frac{1}{4} \frac{4 \pi(2 G M)^{2}}{G}=\frac{\text { Area }}{4 L_{P}^{2}} . \tag{2.7}
\end{equation*}
$$

which is precisely the black bole Entropy in Planck area units $G=L_{P}^{2}(\hbar=c=1)$.
This result that the Euclideanized gravitational action (associated with a non-trivial scalar curvature involving delta functions due to point-mass sources) is the same as the black hole entropy can be generalized to higher dimensions. In the Reissner-Nordsrom (massive-charged) and Kerr-Newman black hole case (massive-rotating-charged) we gave shown also [8] that the Euclidean action in a bulk domain bounded by the inner and outer horizons is the same as the black hole entropy. These findings should be compared to Verlinde's enthropic gravity proposal [13] based on the holographic principle.

As discussed in detail in [8] we can smooth the point-mass distribution by a smeared delta function [12],

$$
\begin{equation*}
\rho(r)=M \frac{e^{-r^{2} / 4 \sigma^{2}}}{\left(4 \pi \sigma^{2}\right)^{3 / 2}} \Rightarrow \lim _{\sigma \rightarrow 0} \frac{e^{-r^{2} / 4 \sigma^{2}}}{\left(4 \pi \sigma^{2}\right)^{3 / 2}} \rightarrow \frac{\delta(r)}{4 \pi r^{2}} \tag{2.8}
\end{equation*}
$$

so that field equations associated with the signature $(+,-,-,-)$ are given by

$$
\begin{equation*}
\mathcal{R}_{00}-\frac{1}{2} g_{00} \mathcal{R}=8 \pi G T_{00}=8 \pi G g_{00} \rho(r), \quad \mathcal{R}_{i j}-\frac{1}{2} g_{i j} \mathcal{R}=8 \pi G T_{i j} \tag{2.9}
\end{equation*}
$$

where $\rho(r)$ is a smeared delta function given by the Gaussian, and the $T_{i j}$ elements are comprised of a radial and tangential pressures of a self-gravitating anisotropic fluid [12]

$$
\begin{equation*}
\rho(r)=M \frac{e^{-r^{2} / 4 \sigma^{2}}}{\left(4 \pi \sigma^{2}\right)^{3 / 2}}, \quad p_{r}=-\rho(r), \quad p_{t a n}=p_{\theta}=p_{\phi}=-\rho(r)-\frac{r}{2} \frac{d \rho}{d r} . \tag{2.10}
\end{equation*}
$$

In the $\sigma \rightarrow 0$ limit one has

$$
\begin{equation*}
\rho(r)=-p_{r}(r)=M \frac{\delta(r)}{4 \pi r^{2}}, \quad p_{\theta}(r)=p_{\phi}(r)=-M \frac{\delta^{\prime}(r)}{8 \pi r} \tag{2.11}
\end{equation*}
$$

such that the scalar curvature can be expressed in terms of the trace of the energy stress tensor as indicated by eq-(2.4) above, and the mass-energy source distributions which generate the metric solutions in eq-(2.1) are provided precisely by the expressions in eq(2.11).

We finalize by adding some remarks [8] about how a fuzzy point mass may admit a short distance cut-off of the Brillouin form $\rho(r=0)=2 G M$ (instead of zero) if one has a Noncommutative spacetime coordinates algebra $\left[x^{\mu}, x^{\nu}\right]=i \Sigma^{\mu \nu}$, $\left[p^{\mu}, p^{\nu}\right]=$ $0,\left[x^{\mu}, p^{\nu}\right]=i \hbar \eta^{\mu \nu}$ where $\Sigma^{\mu \nu}$ are c-numbers of (Planck length) $)^{2}$ magnitude. A change of coordinates in phase space $x^{\prime \mu}=x^{\mu}+\frac{1}{2} \Sigma^{\mu \nu} p_{\nu}$ leads to commuting coordinates $x^{\prime \mu}$ and allows to define $r^{\prime}(r)=\sqrt{\left(x^{i}+\frac{1}{2} \sum^{i \rho} p_{\rho}\right)\left(x_{i}+\frac{1}{2} \sum_{i \tau} p^{\tau}\right)}$. One can select $\Sigma^{\mu \nu}$ such that $r^{\prime}\left(x^{i}=0\right)=r^{\prime}(r=0)=2 G M$, after using the on-shell condition $p_{\mu} p^{\mu}=M^{2}$. Therefore one recovers the cut-off corresponding to the Brillouin area radial function $\rho(r)=r+2 G M \Rightarrow \rho(r=0)=2 G M$. Thus a fuzzy point mass has non-zero area and volume.

Another Planck scale cut-off can be derived in terms of noncommutative Moyal star products $f(x) * g(x)$ simply by replacing $r \rightarrow r_{*}=\sqrt{r * r}=\sqrt{r^{2}+\sum^{i j} x_{i} x_{j} / r^{2}+\ldots}$. so $r_{*}\left(x^{i}=0\right) \neq 0$, and it receives Planck scale corrections. A point is fuzzy and delocalized, henceforth it has a non-zero fuzzy area and fuzzy volume. An open problem is to verify whether or not Schwarzschild deformed metrics of the form

$$
\begin{equation*}
g_{t t}\left(r_{*}\right)=1-\frac{2 G M}{r_{*}}, \quad g_{r r}=-\left[g_{t t}^{-1}\right]_{*}, \quad r_{*}=\sqrt{r * r}=\sqrt{r^{2}+\sum^{i j} x_{i} x_{j} / r^{2}+\ldots} . \tag{2.12}
\end{equation*}
$$

solve the Noncommutative Gravity field equations to all orders in the noncommutative parameter $\Sigma^{\mu \nu}$. The angular part is given by $r_{*} * r_{*}(d \Omega)^{2}$, and the star inverse $\left[g_{t t}^{-1}\right]_{*}$ is defined in terms of a Taylor series involving star products . This is a very difficult problem. To conclude, one has to wait for a theory of quantum gravity to fully address these issues of the avoidance of singularities due to the noncommutativity of spacetime coordinates. Another relevant topic is to explore the Nonperturbative Renormalization Group flow [18] of the metric $g_{\mu v}[k]$ in terms of the momentum scale k and its relationship (if any) to the family of metrics (1.1) parametrized by λ.

APPENDIX A : Schwarzschild-like solutions in $D>3$

In this Appendix we follow closely our prior calculations [8] to the static spherically symmetric vacuum solutions to Einstein's equations in any dimension $D>3$. Let us start with the line element with signature $(-,+,+,+, \ldots,+$)

$$
\begin{equation*}
d s^{2}=-e^{\mu(r)}(d t)^{2}+e^{\nu(r)}(d r)^{2}+R^{2}(r) \tilde{g}_{i j} d \xi^{i} d \xi^{j} \tag{A.1}
\end{equation*}
$$

where the areal radial function $\rho(r)$ is now denoted by $R(r)$ and which must not be confused with the scalar curvature \mathcal{R}. Here, the metric $\tilde{g}_{i j}$ corresponds to a homogeneous space and $i, j=3,4, \ldots, D-2$ and the temporal and radial indices are denoted by 1,2 respectively. In our text we denoted the temporal index by 0 . The only non-vanishing Christoffel symbols are given in terms of the following partial derivatives with respect to the r variable and denoted with a prime

$$
\begin{array}{lll}
\Gamma_{21}^{1}=\frac{1}{2} \mu^{\prime}, & \Gamma_{22}^{2}=\frac{1}{2} \nu^{\prime}, & \Gamma_{11}^{2}=\frac{1}{2} \mu^{\prime} e^{\mu-\nu}, \\
\Gamma_{i j}^{2}=-e^{-\nu} R R^{\prime} \tilde{g}_{i j}, & \Gamma_{2 j}^{i}=\frac{R^{\prime}}{R} \delta_{j}^{i}, & \Gamma_{j k}^{i}=\tilde{\Gamma}_{j k}^{i}, \tag{A.2}
\end{array}
$$

and the only nonvanishing Riemann tensor are

$$
\begin{array}{ll}
\mathcal{R}_{212}^{1}=-\frac{1}{2} \mu^{\prime \prime}-\frac{1}{4} \mu^{\prime 2}+\frac{1}{4} \nu^{\prime} \mu^{\prime}, & \mathcal{R}_{i 1 j}^{1}=-\frac{1}{2} \mu^{\prime} e^{-\nu} R R^{\prime} \tilde{g}_{i j}, \\
\mathcal{R}_{121}^{2}=e^{\mu-\nu}\left(\frac{1}{2} \mu^{\prime \prime}+\frac{1}{4} \mu^{\prime 2}-\frac{1}{4} \nu^{\prime} \mu^{\prime}\right), & \mathcal{R}_{i 2 j}^{2}=e^{-\nu}\left(\frac{1}{2} \nu^{\prime} R R^{\prime}-R R^{\prime \prime}\right) \tilde{g}_{i j}, \tag{A.3}\\
\mathcal{R}_{j k l}^{i}=\tilde{R}_{j k l}^{i}-R^{\prime 2} e^{-\nu}\left(\delta_{k}^{i} \tilde{g}_{j l}-\delta_{l}^{i} \tilde{g}_{j k}\right) . &
\end{array}
$$

The vacuum field equations are

$$
\begin{gather*}
\mathcal{R}_{11}=e^{\mu-\nu}\left(\frac{1}{2} \mu^{\prime \prime}+\frac{1}{4} \mu^{\prime 2}-\frac{1}{4} \mu^{\prime} \nu^{\prime}+\frac{(D-2)}{2} \mu^{\prime} \frac{R^{\prime}}{R}\right)=0, \tag{A.4}\\
\mathcal{R}_{22}=-\frac{1}{2} \mu^{\prime \prime}-\frac{1}{4} \mu^{\prime 2}+\frac{1}{4} \mu^{\prime} \nu^{\prime}+(D-2)\left(\frac{1}{2} \nu^{\prime} \frac{R^{\prime}}{R}-\frac{R^{\prime \prime}}{R}\right)=0, \tag{A.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{R}_{i j}=\frac{e^{-\nu}}{R^{2}}\left(\frac{1}{2}\left(\nu^{\prime}-\mu^{\prime}\right) R R^{\prime}-R R^{\prime \prime}-(D-3) R^{\prime 2}\right) \tilde{g}_{i j}+\frac{k}{R^{2}}(D-3) \tilde{g}_{i j}=0 \tag{A.6}
\end{equation*}
$$

where $k= \pm 1$, depending if $\tilde{g}_{i j}$ refers to positive or negative curvature. From the combination $e^{-\mu+\nu} \mathcal{R}_{11}+\mathcal{R}_{22}=0$ we get

$$
\begin{equation*}
\mu^{\prime}+\nu^{\prime}=\frac{2 R^{\prime \prime}}{R^{\prime}} \tag{A.7}
\end{equation*}
$$

The solution of this equation is

$$
\begin{equation*}
\mu+\nu=\ln R^{\prime 2}+C \tag{A.8}
\end{equation*}
$$

where C is an integration constant that one sets to zero if one wishes to recover the flat Minkowski spacetime metric in spherical coordinates in the asymptotic region $r \rightarrow \infty$.

Substituting (A.7) into the equation (A.6) we find

$$
\begin{equation*}
e^{-\nu}\left(\nu^{\prime} R R^{\prime}-2 R R^{\prime \prime}-(D-3) R^{2}\right)=-k(D-3) \tag{A.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\gamma^{\prime} R R^{\prime}+2 \gamma R R^{\prime \prime}+(D-3) \gamma R^{2}=k(D-3) \tag{A.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=e^{-\nu} \tag{A.11}
\end{equation*}
$$

The solution of (A.10) for an ordinary D-dim spacetime (one temporal dimension) corresponding to a $D-2$-dim sphere for the homogeneous space can be written as

$$
\begin{gather*}
\gamma=\left(1-\frac{16 \pi G_{D} M}{(D-2) \Omega_{D-2} R^{D-3}}\right)\left(\frac{d R}{d r}\right)^{-2} \Rightarrow \\
g_{r r}=e^{\nu}=\left(1-\frac{16 \pi G_{D} M}{(D-2) \Omega_{D-2} R^{D-3}}\right)^{-1}\left(\frac{d R}{d r}\right)^{2} . \tag{A.12}
\end{gather*}
$$

where Ω_{D-2} is the appropriate solid angle in $D-2$-dim and G_{D} is the D-dim gravitational constant whose units are (length $)^{D-2}$. Thus $G_{D} M$ has units of (length) ${ }^{D-3}$ as it should. When $D=4$ as a result that the 2-dim solid angle is $\Omega_{2}=4 \pi$ one recovers from eq-(A.12) the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law and Poisson's equation in $D-1$ spatial dimensions obtained in the Newtonian limit.

For the most general case of the $D-2$-dim homogeneous space we should write

$$
\begin{equation*}
-\nu=\ln \left(k-\frac{\beta_{D} G_{D} M}{R^{D-3}}\right)-2 \ln R^{\prime} \tag{A.13}
\end{equation*}
$$

β_{D} is a constant equal to $16 \pi /(D-2) \Omega_{D-2}$, where Ω_{D-2} is the solid angle in the $D-2$ transverse dimensions to r, t and is given by $(D-1) \pi^{(D-1) / 2} / \Gamma[(D+1) / 2]$.

Thus, according to (A.8) we get

$$
\begin{equation*}
\mu=\ln \left(k-\frac{\beta_{D} G_{D} M}{R^{D-3}}\right)+\text { constant } . \tag{A.14}
\end{equation*}
$$

we can set the constant to zero, and this means the line element (A.1) can be written as

$$
\begin{gather*}
d s^{2}=-\left(k-\frac{\beta_{D} G_{D} M}{R^{D-3}}\right)(d t)^{2}+\frac{(d R / d r)^{2}}{\left(k-\frac{\beta_{D} G_{D} M}{R^{D-3}}\right)}(d r)^{2}+R^{2}(r) \tilde{g}_{i j} d \xi^{i} d \xi^{j}= \\
-\left(k-\frac{\beta_{D} G_{D} M}{R^{D-3}}\right)(d t)^{2}+\frac{1}{\left(k-\frac{\beta_{D} G_{D} M}{R^{D-3}}\right)}(d R)^{2}+R^{2}(r) \tilde{g}_{i j} d \xi^{i} d \xi^{j} \tag{A.15}
\end{gather*}
$$

One can verify, that the equations (A.4)-(A.6), leading to eqs-(A.9)-(A.10), do not determine the form $R(r)$. These equations are satisfied even if $R(r)$ has singular derivatives
at $r=0$, like those appearing in $d R / d r=1+2 G|M| \delta(r)$. It is also interesting to observe that the only effect of the homogeneous metric $\tilde{g}_{i j}$ is reflected in the $k= \pm 1$ parameter, associated with a positive (negative) constant scalar curvature of the homogeneous $D-2$ dim space. $k=0$ corresponds to a spatially flat $D-2$-dim section. The metric solution in eq-(1.1) is associated to a different signature than the one chosen in this Appendix, and corresponds to $D=4$ and $k=1$.

We finalize this Appendix by studying what happens when the radial function is given by $R(r)=r+2 G|M| \Theta(r)$ in the limiting case $\lambda=\infty$. We must emphasize that despite that the derivatives $\frac{d R}{d r}=1+2 G|M| \delta(r)$ and $\left(d^{2} R / d r^{2}\right)=2 G|M| \delta^{\prime}(r)$ are singular at $r=0$, there is an exact and precise cancellation of these singular derivatives (involving delta functions) in the evaluation of the Ricci curvature tensor components yielding a zero Ricci tensor $\mathcal{R}_{\mu \nu}=0$ and a zero Ricci scalar $\mathcal{R}=0$. What is not zero is the Riemann curvature tensor $\mathcal{R}_{\mu \nu \rho \tau}$. Therefore, the conditions $\mathcal{R}_{\mu \nu}=0$ and $\mathcal{R}=0$ are satisfied for any area radial function $R(r)$, irrespective if it has singular derivatives at $r=0$ or not.

Furthermore, despite that $\left(\frac{d R}{d r}\right)^{2}=(1+2 G|M| \delta(r))^{2}$ in eq-(A.15) involves the ill defined product of distributions, one should notice that it is well defined at $r>0 \Rightarrow\left(\frac{d R}{d r}\right)^{2}=1$, and also the radial component of the metric (A.15) is well defined at $r=0$ because the product

$$
\begin{equation*}
\lim _{r \rightarrow 0}\left[\left(1-\frac{2 G M}{R}\right)^{-1}\left(\frac{d R}{d r}\right)^{2}\right] \rightarrow \lim _{r \rightarrow 0}\left[-\frac{R(r)}{2 G M}(1+2 G|M| \delta(r))^{2}\right] \rightarrow 0 \tag{A.16}
\end{equation*}
$$

so that $g_{r r}(r=0)=0$. This is a consequence of the fact that $R(r=0)(\delta(r=0))^{2}=$ $0 \times(\delta(r=0))^{2}=0$ because the expression $R(r)(\delta(r))^{2}$ is an odd function of r which must vanish at the origin $r=0$.

APPENDIX B : Null-like singularities in the limiting $\lambda=\infty$ case

As mentioned earlier, in the limiting $\lambda=\infty$ case, the radial function is $R(r)=$ $r+2 G|M| \Theta(r)$ and there is a discontinuity at $r=0: R(r=0)=0 ; R\left(r=0^{+}\right)=2 G M$ (we shall omit the absolute symbol in M for simplicity), and our solutions can be described by focusing on the right and left regions (quadrants) of the Rindler-wedge formed by the straight (null) lines $U= \pm V$, corresponding to $r=0^{+}, t= \pm \infty$, and whose slope is $+45,-45$ degrees respectively. In the standard textbook solution, the Fronsdal-KruskalSzekeres change of coordinates [5] in the exterior region $R>2 G M$ is given by

$$
\begin{equation*}
U=\left(\frac{R}{2 G M}-1\right)^{\frac{1}{2}} e^{R / 4 G M} \cosh \left(\frac{t}{4 G M}\right), \quad V=\left(\frac{R}{2 G M}-1\right)^{\frac{1}{2}} e^{R / 4 G M} \sinh \left(\frac{t}{4 G M}\right) ; R>2 G M \tag{B.1}
\end{equation*}
$$

and the change of coordinates in the interior region $R<2 G M$ is

$$
\begin{equation*}
U=\left(1-\frac{R}{2 G M}\right)^{\frac{1}{2}} e^{R / 4 G M} \sinh \left(\frac{t}{4 G M}\right), \quad V=\left(1-\frac{R}{2 G M}\right)^{\frac{1}{2}} e^{R / 4 G M} \cosh \left(\frac{t}{4 G M}\right) ; R<2 G M \tag{B.2}
\end{equation*}
$$

In the overlap $R=2 G M$, one has that $U= \pm V$ and $t= \pm \infty$; and $U=V=0$ for finite t. The coordinate transformations lead to a well behaved metric (except at $R(r=0)=0$)

$$
\begin{equation*}
d s^{2}=\frac{4(2 G M)^{3}}{R(U, V)} e^{-R(U, V) / 2 G M}\left(d V^{2}-d U^{2}\right)-R(U, V)^{2}(d \Omega)^{2} \tag{B.3}
\end{equation*}
$$

the functional form $R(U, V)$ is defined implicitly by the equation

$$
\begin{equation*}
U^{2}-V^{2}=\left(\frac{R}{2 G M}-1\right) e^{R / 2 G M} \Rightarrow \frac{R}{2 G M}=1+W\left(\frac{U^{2}-V^{2}}{e}\right) \tag{B.4}
\end{equation*}
$$

where W is the Lambert function defined implicitly by $z=W(z) e^{W(z)}$. When $R=2 G M$ and $d \Omega=0$, the above interval displacement $d s^{2}=0$ is null along the lines $U= \pm V \Rightarrow$ $d U= \pm d V$. It is singular at $R(r=0)=0$ along the (spacelike) lines $V^{2}-U^{2}=1 \Rightarrow$ $d V \neq \pm d U$.

However in the case of our solutions (1.1) one will still retain the Kruskal-Szekeres change of coordinates in the exterior region $R>2 G M$, but one must replace, instead, the change of coordinates in the interior region $R<2 G M$ in eqs-(B.2) for the following one

$$
\begin{equation*}
V=\left(\frac{R}{2 G M}\right)^{\frac{1}{2}} \cosh \left(\frac{t}{4 G M}\right) ; \quad U=\left(\frac{R}{2 G M}\right)^{\frac{1}{2}} \sinh \left(\frac{t}{4 G M}\right) ; \quad R<2 G M \tag{B.5}
\end{equation*}
$$

leading to $V^{2}-U^{2}=\frac{R}{2 G M}$ and $\frac{U}{V}=\tanh (t / 4 G M)$. In doing so one has that the points $R(r=0)=0$ and $t= \pm \infty$ are mapped to the straight lines $U= \pm V$ with a ± 45 degree slope, respectively. While $R(r=0)=0$ is mapped to the origin of coordinates $U=V=0$ for arbitrary but finite values of t. In this fashion there is geodesic completeness and there are no disconnected points along the geodesics. The incoming radial null geodesics (and future-oriented time like geodesics) all end up in the null singularity described now by the straight line $U=V$, instead of the (spacelike) hyperbola $V^{2}-U^{2}=1$, and without "tunneling" through the interior region $R<2 G M$.

To show that now one has a null singularity at $U= \pm V$ one inserts the above change of coordinates (B.5) for the region $R<2 G M$ into the metric (1.1), such that it leads to a different expression for the metric than in eq-(B.3) and given by

$$
\begin{equation*}
d s^{2}=g_{U U} d U^{2}+g_{V V} d V^{2}+2 g_{U V} d U d V+R^{2}(U, V) d \Omega^{2}, \quad R<2 G M \tag{B.6}
\end{equation*}
$$

where

$$
\begin{align*}
g_{U U} & =\left(1-\frac{1}{V^{2}-U^{2}}\right)\left(\frac{4 G M V}{V^{2}-U^{2}}\right)^{2}-\left(1-\frac{1}{V^{2}-U^{2}}\right)^{-1}(4 G M U)^{2} \tag{B.7a}\\
g_{V V} & =\left(1-\frac{1}{V^{2}-U^{2}}\right)\left(\frac{4 G M U}{V^{2}-U^{2}}\right)^{2}-\left(1-\frac{1}{V^{2}-U^{2}}\right)^{-1}(4 G M V)^{2} \tag{B.7b}
\end{align*}
$$

$$
\begin{equation*}
g_{U V}=g_{V U}=-\left(1-\frac{1}{V^{2}-U^{2}}\right)\left(\frac{4 G M V}{V^{2}-U^{2}}\right)\left(\frac{4 G M U}{V^{2}-U^{2}}\right)+(4 G M)^{2}\left(1-\frac{1}{V^{2}-U^{2}}\right)^{-1} U V \tag{B.7c}
\end{equation*}
$$

Despite the different expression for the metric components in eqs-(B.7) from those in eq(B.3), one still has a null interval displacement $d s^{2}=0$ along the lines $U= \pm V$, and which correspond to the values $R(r=0)=0$ and $t= \pm \infty$, respectively. Therefore, one has now a null singularity along the lines $U= \pm V$ instead of a spacelike singularity along the hyperbola $V^{2}-U^{2}=1$. One can verify explicitly that when $U= \pm V, d U= \pm d V$ there is an exact cancellation of the singular terms

$$
\begin{equation*}
2 \frac{(4 G M)^{2} U V}{\left(V^{2}-U^{2}\right)^{3}} d U d V-\frac{(4 G M)^{2} U^{2}}{\left(V^{2}-U^{2}\right)^{3}} d V^{2}-\frac{(4 G M)^{2} V^{2}}{\left(V^{2}-U^{2}\right)^{3}} d U^{2} \tag{B.8a}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 \frac{(4 G M)^{2} U V}{\left(V^{2}-U^{2}\right)^{2}} d U d V+\frac{(4 G M)^{2} U^{2}}{\left(V^{2}-U^{2}\right)^{2}} d V^{2}+\frac{(4 G M)^{2} V^{2}}{\left(V^{2}-U^{2}\right)^{2}} d U^{2} \tag{B.8b}
\end{equation*}
$$

in the above infinitesimal interval $d s^{2}$ of eqs-(B.7, B.8). Whereas there is also an exact cancellation of the non-singular terms when $U= \pm V, d U= \pm d V$. Since $R(r=0)=0$, one obtains a net zero value for the displacement $d s^{2}=0$ in eq-(B.6) furnishing then a null interval. Because the curvature-squared Kretschmann invariant blows up $\mathcal{R}_{\mu \nu \rho \tau} \mathcal{R}^{\mu \nu \rho \tau} \sim$ $(2 G M)^{2} / R(r)^{6} \rightarrow \infty$ when $R(r)=0$ at $r=0$, one has then a null singularity at $r=0$, as opposed to a spacelike singularity in the traditional solutions.

In the r, t coordinate picture when one evaluates $g_{t t}[R(r=0)](d t)^{2}$ along the constant $t= \pm \infty$ lines, whose $d t=0$, it yields an undetermined product of the form $-\infty \times 0$ because $d t=0$. This undetermined product is resolved when one writes the interval $d s^{2}$ in the form provided by eqs-(B.7) leading to a null result as we have shown. Future and past infinity $t= \pm \infty(U= \pm V)$ are well defined and the metric (1.1) has a proper causal structure.

Acknowledgments

We are indebted to M. Bowers for assistance.

References

[1] A. Einstein, Sitzungsber Preuss Akad Berlin II, 831 (1915).
[2] K. Schwarzschild, Sitzungsber Preuss Akad Berlin I,189 (1916); English translation by S. Antoci and A. Loinger can be found in physics/9905030.
[3] M. Brillouin, Jour. Phys. Rad 23, 43 (1923); English translation by S. Antoci can be found at physics/0002009.
[4] D. Hilbert, Nachr. Ges. Wiss Gottingen Math. Phys K1, 53 (1917); H. Weyl, Ann. Physik (Leipzig) 54, 117 (1917); J. Droste, Proc. Ned. Akad. West Ser. A 19, 197 (1917).
[5] C. Fronsdal, Phys. Rev 116, 778 (1959); M. Kruskal, Phys. Rev 119, 1743 (1960); G. Szekers, Publ. Mat. Debreca 7, 285 (1960).
[6] J. Thakur, Pramana Journal of Physics 51 no. 6 (1998) 699.
[7] J.F. Colombeau, New Generalized Functions and Multiplcation of Distributions (North Holland, Amsterdam, 1984); Elementary introduction to Generalized Functions (North Holland, Amsterdam, 1985); J. Heinzke and R. Steinbauer, " Remarks on the distributional Schwarzschild Geometry" gr-qc/0112047; R. Steinbauer and J. Vickers, " The use of generalized functions and distributions in General Relativity" gr-qc/0603078; M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer, Geometric Theory of Generalized Functions with Applications to Relativity (Kluwer series on Mathematics and its Applications vol. 537, Kluwer, Dordrecht, 2001).
[8] C. Castro, Journal of Mathematical Physics 49 (2008) 042501.
[9] S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199.
[10] S. Deshingkar, "On physical insignificance of null naked singularities" arXiv : 1012.3090.
[11] R. Geroch and J. Traschen, Physical Review D 36, 1017 (1987).
[12] P. Nicolini, A. Smalagic, and E. Spallucci, Phys. Letts B 632, 547 (2006); P. Nicolini, J. Phys. A 38, L631 (2005).
[13] E. Verlinde, JHEP 1104 (2011) 29.
[14] P. S. Joshi and D. Malafarina, " Recent developments in gravitational collapse and spacetime singularities' arXiv : 1201.3660.
[15] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, " Black Holes: Complementarity or Firewalls? arXiv : 1207.3123.
[16] B-H Lee and D-H Yeom, "Status report : black hole complementarity controversy" arXiv : 1302.6006
[17] A.F. Ali and A. N. Tawfik, "Modified Newton's law of Gravitation to Minimal Length in Quantum Gravity" arXiv: 1301.3508.
[18] M. Reuter and F. Saueressig, "Quantum Einstein Gravity" arXiv : 1202.2274.
S. Nagy, "Lectures on Renormalization and Asymptotic Safety" arXiv : 1211.4151.
M. Niedermaier, " The Asymptotic Safety Scenario in Quantum Gravity-An Introduction" arXiv : gr-qc/0610018

[^0]: ${ }^{1}$ We thank Matej Pavsic for a discussion on the choices for the radial functions

[^1]: ${ }^{2}$ One may notice that by choosing $f(r)=\kappa / r$ in eq-(2.4) for $\kappa=$ constant, it yields $\mathcal{R}=0$ which implies a zero trace for the stress energy tensor $T=0$, as it happens in Electromagnetism due to the conformal invariance of Maxwell equations in $D=4$. The Reisnner-Nordstrom solutions (in the massless case) have for temporal metric component $g_{t t}=1-e^{2} / r^{2}$, which has the same functional form as $g_{t t}=1-(2 G M / r) f(r)=1-2 G M \kappa / r^{2} \leftrightarrow 1-e^{2} / r^{2}$.

