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Abstract

We study general deformation structures on path spaces defined on
manifolds and specialioze to those with memory. Furthermore, we high-
light the construction of local operators on path space relatively compact
to some position operator. The idea of this rather elementary work is to
engage in the study of how perturbative string theory could be seen as a
representation of a non commutative geometry. The latter, as studied in
[1, 2] is acessible to direct physical interpretation.

1 Introduction

We engage in the study of differential operators on path space and are interested
in particular in the construction of operators relatively compact to some position
operator with a continuum spectrum so that quantum entanglement of space
can survive at all scales as enunciated in [2].

2 Finite displacement structures.

Let M be a finite dimensional compact manifold and let path space P(M) be
defined as the space of all continuous curves without self intersections defined
on an interval [a, b] equipped with the Vietoris topology1. As is well known, it
can be given the structure of a locally convex manifold by using the exponential
map associated to vectorfields. In general, let V be a vectorfield, then the free
displacement over a parameter range λ is given by

∆λ
V γ(s) = expV (λ) [γ(s)]

which defines a curve with the same parameter domain. One can also consider
extensionsof the curve either on the front or tail:

Γλ,+V γ(s) = expV (s− b) [γ(b)]

for b + λ ≥ s ≥ b and γ(s) otherwise. Therefore, the non-abelian semi group2

of difference land is generated by ∆λ
V ,Γ

λ,+
V as well as the operations T and Rλ

where Tγ(s) = γ(b + a − s) and Rλγ is the restriction of γ to [a, a+ λ] for3

1The case with self intersections can be treated by chopping the curve in suitable pieces or
by considering multivalued fields.

2Not every generator has an inverse.
3One can also define the operation Sλ as the restriction of γ to [b− λ, b]. Sλ = TRλT as an

easy calculation reveals; also, T commutes with the displacements ∆λ
V and TΓλ,+V T = Γλ,−V .
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λ ≤ b − a. We now study cases where V is dependent upon γ itself; in this
context, two notions are particularly useful: (a) a curve γ and vectorfield V are
locally alligned if and only if γ̇(t) = α(t)V (γ(t)) where α(t) is real valued and

expλV γ(s) = γ

(
s+

∫ s+λ

s

α(t)dt

)
whenever the last expression between brackets remains smaller or equal to b and
(b) V is called a velocity field if

γ̇(t) = V (γ(t))

and the associated displacement

expλV γ(s)

is given by the expression γ(s + λ) for a ≤ s ≤ b − λ. We now resort to
displacements with memory and depending upon a background vectorfield W
as well.

2.1 Differences with memory and a background influence.

Basically, one can decide to displace a curve in a determinstic or stochastic
manner and the latter only requires probability measures on the appropriate in-
finite dimensional spaces making the relevant objects into stochastic variables.
For now, we will only present some deterministic options and require the pres-
ence of a non-degenerate Riemannian or Lorentzian metric h which canonically
defines a Levi Civita connection ∇. That is, we consider vector valued func-
tions ω(p, γ, h, t) defining a vector at p by means of the inverse exponential map
exp−1h (p) : TM → TpM from a vector at γ(t) constructed by means of local
quantities γ̇(t), γ̈(t), . . . where γ̈(t) is defined as ∇γ̇(t)γ̇(t). Then,

V (p) =

∫ b

a

ω(p, γ, h, t)dt

and we give now some examples where h is Lorentzian versus Riemannian. In
case of a time oriented Lorentzian manifold and causal curves, one has to allow
for an assymetric treatment of the past and future. More specifically ω(p, γ, h, t)
vanishes for all t suh that γ(t) /∈ J+(p)∪J−(p) and its functional form depends
upon whether γ(t) ∈ J+(p) or J−(p) respectively. For an exclusively retarded
prescription on flat Minkowski, one may choose

V (p) =

∫ αp

a

e−µ(A(γ(t),p))γ̇(t)dt

where γ(αp) is the intersection point of γ with J−(p) and A(p, q) denotes the
Alexandrov set between p and q. In case h is the standard flat Euclidean metric,
it is natural to replace the volume of the Alexandrov set by the Euclidean
distance between γ(t) and p. When allowing for an external perturbation W ,
one could add to the above prescription terms of the kind

α(p, γ)W (p) +

∫ b

a

γ̇(s)h(γ̇(s),W (γ(s)))β(γ(s), p)ds

as well as many other forms.
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3 Construction of operators relatively compact
to some position operator.

Let us first recall what it means for an operator A to be relatively compact to
B. A is relatively compact with respect to B on a scale δ if and only if for
any λ ∈ σ(A) there exist a ≤ λ ≤ b with b − a < δ and a hermitian projection
operator pAλ ≺ pA[a,b](where by convention we choose the maximal a and minimal

b)4 such that the smallest pAλ ≺ pBλ obeying pBλBp
B
λ = BpBλ satisfies pBλ ≺ pB[c,d]

where c ≤ d are optimally chosen. A direct consequence is the notion of spectral
compression on a scale δ

Cδ(A,B) = sup
λ

b− a
d− c

.

Finally, we call the pair (A,B) relatively compact on a scale of δ when both are
relatively compact on that scale with respect to one and another. Before we
proceed, let us define differential operators on smooth functions Ψ : P(M)→ R
by using the basic differences ∆ and Γ. Let V be a smooth vectorfield, then

∂V Ψ(γ) = lim
λ→0

Ψ
(
∆λ
V (γ)

)
−Ψ(γ)

λ

and using Γλ,±V one can define ∂±V Ψ. One notices that for elementary coordinate
functions of endpoints, that is

xµf (γ) = xµ(γ(b))

the derivative
∂+V x

µ
f (γ) = V µ(γ(b)) = ∂V x

µ
f (γ).

3.1 Addition rule.

The derivative associated to a composition of ordinary displacements (not in-
volving the T operator) obviously satisfies a chain rule depending upon the
particular scaling limit which has been taken. Concretely, let α(λ, δ) be a posi-
tive function of λ, δ which takes the value zero if and only if δ = λ = 0. Then,
the expression

Ψ
(

∆δ
V Γλ,+W (γ)

)
−Ψ (γ)

α(δ, λ)
=

δ

α(δ, λ)

Ψ
(

∆δ
V Γλ,+W (γ)

)
−Ψ

(
Γλ,+W (γ)

)
δ

+
λ

α(δ, λ)

Ψ
(

Γλ,+W (γ)
)
−Ψ (γ)

λ

and the behaviour of this expression in the double limit depends upon the scaling
λ(δ) as well as the function α. In case α(λ, δ) = 1

2 (λ + δ), the right hand side
reduces to

∂V Ψ(γ) + ∂+WΨ(γ)

in the scaling limit λ = δ.

4One can require that pAλ satisfies pAλAp
A
λ = ApAλ but this is not mandatory.

3



3.2 Coordinatization.

Let us first construct suitable coordinate systems so that explicit calculations
become possible. That is, let B (M) be a countable basis of vectorfields on M
and likewise consider B (O) to be a filter of local subbases meaning B (O) ⊂
B (V) for O ⊂ V. If O is a set of s points and M is n-dimensional, then the
dimension of B (O) is given by sn. Obviously, it is sufficient to construct charts
based around a curve γ an open set O around it and some open interval (−δ, δ);
more specifically, consider the subspace of TO consisting of vectorfields V of
sup-norm one on O (with respect to some Riemannian metric h) and study the
actions

T [λ, δ, V ] (γ) = ∆λ
V Γδ,+Wγ

(γ)

where Wγ is some non-vanishing background field with γ as an integral curve.
Now, while the action above is globally uniquely defined regarding V in the
sense that in case

T [λ, δ, V1] (γ) = T [λ, δ, V2] (γ)

for all λ, δ and γ, then V1 = V2 and ordinary rescalings have been excluded
already by using the sup norm. However, the Gribov problem that for some
δi, Vi the above expressions might be equal remains and appropriate identifica-
tions have to be made. Obviously, the solution to this problem is to further
restrict to vectorfields defined from the maximal Wγ future extension γmax of
γ by using the exponential map exphλ. One knows that exphλ [V (γmax(s))] is
a bijection on (λ, s) ∈ (−d, d) × γmax for some suitable d > 0 given the unit
sup-norm vectorfield V . However, we cannot disgard focal points, otherwise
curves were not allowed to curl and have to stay transversal with respect to
nonintersecting geodesic bundles. Therefore, we define multivalued vectorfields
V to be consistent if and only if differentiable integral curves are well defined
(in the sense that they are well defined whenever V is). Hence, we work with
vectorfields of unit sup-norm on γmax which may be geodesically mapped to a
multivalued field in case the geodesics cross. In particular, let γmax : [a, c]→M
be a (possibly self-intersecting) curve in O where a < b < c and consider as
basis (in L2 norm) of the function space of continuous functions on [a, c] the

family sin
(
nπ s−ac−a

)
, cos

(
nπ s−ac−a

)
where n ∈ N. Moreover, let Ei(s) be some

parallel transported basis with respect to h, then every (possibly multivalued)
orthonormal vectorfield V on γmax can be uniquely written as

V (γmax(s)) =

n∑
i=1

(
ai,0 +

∞∑
n=1

(
ai,n sin

(
nπ

s− a
c− a

)
+ bi,n cos

(
nπ

s− a
c− a

)))
Ei(s)

in the L2 sense. Since normalization with respect to the sup-norm is techni-
cally akward, it is much easier to consider the map exph1 (V (γmax(s))) wher-
ever the image of the latter is a connected curve5 since exph1 (V (γmax(s))) =
exphλ

(
1
λV (γmax(s))

)
. Therefore, the infinite dimensional coordinate charts look

like (λ, ai,0, ai,n, bi,n) with as chart mapping

exph1
(
V λ(s)

)
Rb−a+λ (γmax)

5Taking into account that some pieces may drop off the manifold.
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where

V λ(s) =

n∑
i=1

(
ai,0 +

∞∑
n=1

(
ai,n sin

(
nπ

s− a
b+ λ− a

)
+ bi,n cos

(
nπ

s− a
b+ λ− a

)))
Ei(s)

and the reader may verify that everything is well defined. Notice that not
every vectorfield defined in this way has a continuous representant and that
therefore holes are to be pinched in this chart; however, the set of vectors with
a continuous representant is open in the compact-open topology on R∞ and
everything below has to be understood in this way.

3.3 Explicit expressions of operators.

We now calculate leading terms for the standard differential operators depending
upon nonlocal functions of local geometric tensors derived from the metric h and
give exact expressions in the Euclidean case. Let us start with the difference
operator ∆µ

W ; that is, we calculate

∆µ
W (p)co(s) =

(
exph1 (γmax(s))

)−1 (
∆µ
W

(
exph1

(
V λ(s)

)) (
Rb−a+λ (γmax(s))

))
where p = (λ, ai,0, ai,n, bi,n) and rescale to the entire interval [a, c]. More pre-
cisely, we calculate the first and second derivatives with respect to µ and W
as far as we can for a general Riemannian metric, the Lorentzian case being
somewhat more subtle. Concerning the µ-derivative, one needs to remember
the notion of Fermi transport and calculate the geodesic difference equation.
Let V be a vectorfield, then the Fermi derivative of W along V is defined as

DF
V (W ) = ∇VW −

h(∇VW,V )

h(V, V )
V

and coincides with the standard Levi-Civita derivative in case V has geodesic
integral curves. Therefore, let γ(s, t) be a one parameter family of geodesic
curves in the sense that

s→ γ(s, t)

defines a geodesic in affine parametrization for all t. We wish to write down an

evolution equation for the orthogonal part Z+ = Z − h(Z,V )
h(V,V )V of the geodesic

deviation vector Z = ∂tγ(s, t) and note that LV Z = [V,Z] = 0 by construction.
Taking into account that DF

V Z+ = ∇V Z+, we arrive at

DF

ds
Z+ = ∇V Z+

and

DF

ds

DF

ds
Z+ = ∇V∇V Z+ = ∇V∇ZV = −R(Z, V )V = −R(Z+, V )V

due to the geodesic equation. Let us study more in particular the geodesic
congruence

expstZ+V (p)
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where s ≥ 0, t ∈ (−δ, δ) and h(Z, V ) = 0 at t = 0. Consider an n − 1 bein
Ei(s) perpendicular to V (s) ≡ d

ds expsV (p) satisfying ∇V (s)Ei(s) = 0; then with
Z(s) = Zi(s)Ei(s) the above equation reduces to

d2

ds2
Zi(s) = −Rinjn(expsV (p))Zj(s)h(V, V )

with Z(0) = 0 and D
dsZ(0) = Z. Last, but not least, we need a method to find

excellent approximations to solutions of the geodesic equation and the geodesic
deviation in particular; first, choose a coordinate system such that |hαβ−δαβ | <
ε and the Christoffel symbols Γαβδ are all smaller in absolute value than ε > 0 as
well and we proceed with a Newton-Rhapson iteration scheme. That is, linearize
the geodesic equation for a bundle of geodesics given by integral curves of some
vectorfield V

V µ∂µV
ν + ΓναβV

αV β = 0

by means of the equation

V µi ∂µV
ν
i+1 + ΓναβV

α
i V

β
i+1 = 0

where i ≥ 1 and at each iteration step fixed initial data are held for some
maximal n− 1 surface Σ. For example, in such coordinate system, one can pick
Σ as xn = 0 and consider

V1(x1+W 1(x1, . . . , xn−1)xn, . . . , xn−1+Wn−1(x1, . . . , xn−1)xn, xnWn(x1, . . . , xn−1)) = W (x1, . . . , xn−1)

where W , transversal to Σ, is a vectorfield on Σ kept fixed at any iteration
step. We should check that the above procedure converges to a fix point (an
obvious fact in one dimension where V3 = V2). In that regard, it is easier to use
the notation Aα = ∂α + Γα and frame the convergence of the Newton-Rhapson
procedure within the context of that family of operators; defining Vi+1 = Vi+δVi
where δVi = 0 on Σ, one obtains that

V α1 ΓµαβV
β
1 + V α1 ∂αδV

µ
1 + V α1 ΓµαβδV

β
1 = 0

and it is a matter of uniformly controlling the behaviour of δVi in a neighborhood
of Σ given that the equation ∇ViδVi = 0 is equivalent to δVi = 0. It is natural to
consider the Hilbert space H of vectorfields vanishing on Σ and study spectral
properties of the operators Ai = V αi Aα; hence, we construct the Green kernels
Gαi β(x, y) satisfying

Aαi γG
γ
i β(x, y) =

√
h(y)δn(x, y)δαβ

and with boundary conditions Gi(x, y) = 0 whenever x ∈ Σ. It is most con-
venient to go to a V adapted coordinate system (x1, . . . , xn−1, xn) where the
first n− 1 digits constitute the standard coordinates of the intersection point of
the unique integral curve of V with Σ and xn is the affine parameter vanishing
when x ∈ Σ. Covariance of the above equation then implies

∂

∂xn
Gαβ(x, y) + Γαnγ(x)Gγβ(x, y) =

√
h(y)δn(x, y)δαβ

and the latter is most easily solved by noticing that for xn > 0

∂

∂xn

(
T G(x, y) exp

(∫ xn

0

Γn(x1, . . . , xn−1, s)ds

))
= T exp

(∫ xn

0

Γn(x1, . . . , xn−1, s)ds

)
√
h(y)δn(x, y)
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where the operation T orders the expression in decreasing values of time. Con-
sequently, G(x, y) is given by

√
h(y)T

∫ xn

0

dt

(
exp

(∫ t

0

Γn(x1, . . . , xn−1, s)ds

)
δn(x1, . . . , xn−1, t, y)

)
exp

(
−
∫ xn

0

Γn(x1, . . . , xn−1, s)ds

)
.

The above formula has a nice geometric interpretation in the sense that
∫
G(x, y)f(y)dny

only depends on the values of f on the integral curve of V through x on the past
of x and obviously, this statement is coordinate independent. It is clear that,
although formal proofs of convergence can be set up, this method is not going
to be of much help since calculating integral curves in closed form is usually not
possible and therefore one is working with approximations of approximations.

Another, much more geometrical and direct method, consists in constructing
geodesics as an ordered integral from some initial values; that is, choose δ small
enough such that variations of Γ become small on scales of Wδ and construct
a piecewise linear curve starting on Σ at x0 with initial direction W (x0) and
length of the first linear piece δ

√
h(W (x0),W (x0)) ending at x1. At x1, twist

the vector W (x0) by an amount of −δW (x0)Γ(x0)W (x0) and repeat this pro-
cedure n times such that nδ remains constant in the limiting procedure. It is
very easy to track the evolution of the geodesic deviation in this way by con-
structing two geodesics with nearly identical initial conditions in phase space
and comparing the endpoints at identical parameter lengths.

Finally, exact computations are only possible in highly symmetric spaces such as
Euclidean space, higher dimensional tori or some n-dimensional sphere; we shall
treat here to some detail the first case. Since general exact computations of non-
local operators are out of reach, we merely compute the derivative d

dλ∆λ
W |λ=0;

in general, one has to obtain the Fourier coefficients of

V κ(s) + λW
(
Rb−a+κ(γmax)(s) + V κ(s)

)
with respect to a parallel transported vielbein Ei(s). As an example, let

γ :

[
0,

1

2

]
→ R2 : s→ (0, s)

and γmax be the unique maximal extension to [0, 1]. With V 0(s) as before and
W (x, y) = (1, y2), we are left with Fourier decomposing( ∞∑

m=1

(a2,m sin(2πms) + b2,m cos(2πms)) + a2,0 + s

)2

in order to determine the corresponding vectorfield on R∞. Obviously, the
reader can immediately construct a few differential operators forming a rela-
tively compact pair on any scale to the endpoint operator

xif (γ) = ai,0 +

∞∑
m=1

(−1)mbi,m
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on the space of square integrable functions on path space6 for the same reason
that ∂y and x are. More interesting examples are to be constructed later on.
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