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We are such things as dreams are made of (William Shakespeare) 

 
Abstract; An Application of Statistical Mechanics to Dark Energy 

 
A reexamination of a past application of order-disorder theory to a new two dimensional 
application produces a toy model of “dark energy.”  This model of the universe contains 

negative pressure. The model depicts sparse basic geometric figures having vertices 
covered with celestial objects. Most of the basic figures are empty or considered as 

vacuum covered. There are interactions between the occupied adjacent vertices of the 
basic figures. The basic figures change from a point to a bond to a triangle and, as 
larger basic figures are considered, the results become more accurate as the 

mathematics become more difficult. There is no need in this application to resort to 
phenomena as negative mass or anti matter, etc. in order to explain dark energy as has 

been done in some other publications. However, new publications that refer to 
entangled growth and coevolution of correlated multiplex networks seem appropriate.  

   
Introduction: The big bang caused the universe to expand very fast and equally in all 
directions. Such a phenomenon happened 13.7 billion years ago. Recently astronomers 

can surmise that distant galaxies are moving away from us at an accelerated velocity, 
much above what is expected. This is said to be caused by “dark energy.” It is believed 

that the entropy of the universe is always increasing. A previous application of order-
disorder theory is utilized here to examine a scenario where the interaction between 

stars and galaxies cause events to be now construed as dark energy. It should be 
understood that what was called order-disorder theory some years ago is now called 
chaos theory. It is also sometimes referred to as a theory of cooperative phenomena. 

Such cooperative phenomena can be seen to cause repulsion as well as attraction. 

   

Three papers by Hijmans and De Boer (1) developed a treatment of order-disorder 
theory that has been applied to a study of localized physical adsorption. This led to the 

Langmuir isotherm, when using a point as a basic figure, and the Fowler-Guggenheim 
isotherm, when using the bond as the basic figure. They will be called the zero- and 
first- order cases of a more generalized approach. The same procedure will be produced 

here and will be used to model the phenomenon known as dark energy in present 
cosmological descriptions. 

Our universe is considered as a two dimensional plane containing basic figures which 
are the smallest localities that act as centers for the appearance of stars or galaxies. 
These sites may be occupied or empty and a sample of these sites may form geometric 



figures that rise in complexity. One can assign to each site an energy of attachment and 
a probability of occurrence. From these quantities, the energy and entropy of the 

assembly of sites can be computed. This yields an expression for the free energy and 
after minimization, the chemical potential of the attached phase is equated with the 

chemical potential of the free phase. Normalizing and consistency equations can also be 
derived in addition to the equilibrium relations that are given for the basic figure and its 

subfigures. The exact final resulting expressions can then lead to the isotherm 
equations that pertain to the largest basic figure in each approximation. 
It is realized that, in the application of a gas adsorbed onto a surface, we were dealing 

with basic figures that were part of a lattice. This was indicated by a coordination 
number (Z), for the case of either a square or hexagonal lattice. There was also an 

understanding that the procedure could be used for three dimensional lattices.  The two 
dimensional case could be extended to a three dimensional case by holography. 
A method for deriving the chemical potential (µ) of particles adsorbed on a two 

dimensional surface has previously been derived (1, 2,) for lateral and next nearest 
neighbor interactions of the particles.  In order to do so a parameter called K was used 

and K = ((exp((µ-ϵ/kT))(ϴ/1-ϴ)) =(P/Po)(ϴ/1-ϴ)). In the last equation, ϵ is the 
adsorption energy, k is the Boltzman constant, T is the temperature in degrees Kelvin 

and P is the pressure. It was found from a series of normalizing, consistency, and 
equilibrium relations shown in papers by Hijmans and DeBoer (1) and used by Bumble 
and Honig (2) in a paper on the adsorption of a gas on a solid.  In the above, µ is the 

chemical potential and ϵ is the adsorption energy.  The numerical values of K were 
derived from computers for various lattices with different values of the interaction 

parameters for nearest neighbors (c) and next nearest neighbors (c’), where c = exp(-
w/kT) and w is the interaction energy, and the “order” of such lattices were plotted as 

the values of exp(µ-ϵ/kT) or P/Po=exp((µ-ϵ/kT)) versus ϴ  (the degree of occupancy of 
the lattice).  A method for approximating the lattice was accomplished mathematically 
by selecting basic figures such as the point o, the bond o—o, the triangle ∆, or the 

rhombus ◊.  The basic figure, the bond, has the point as a subfigure. If the point 
represents a planet, or a star or a galaxy, then the fully occupied bond can be thought 

of as two celestial objects with a connection between them. The occupation can be 
represented as a nucleation and the nucleating factor can be symbolized as K’.  The two 

connected sites in a bond are connected by an energy denoted as c. We can have four 
bond situations: ●-●(c(K’)^2), ●-o(K’), o-●(K’), or o-o( 1 ), in which case,  
ϴ =(K’+(K’)^(2)c)/(1+2K’+(K’)^(2)c), 

Where the Greek letter theta stands for the fraction of sites that are occupied, K’ is the 
nucleating variable and c = exp(-w/kT) is the parameter for the interaction energy.  

The value of K’ can be found using the methods of Hijmans and de Boer(1) to set up 
the normalizing, consistency and equilibrium relations in the original papers for a lattice 
of such sites. The mathematics in the original papers are reformulated in a simpler form 

without reducing the rigor of the original methods or results. This is presented here. It 
can be derived that K’=K(ϴ/(1-ϴ)) =Ka, where a = ϴ/(1-ϴ), and thus the above 

equation becomes 
            ϴ = Ka(1+cKa)/(1+2Ka+c(Ka)^(2)) 



 
Solving for ϴ, we find the quadratic equation 

 
            c (K)^(2)a+K(1-a) -1 = 0 

             
and K =(P/Po)(1-ϴ/ϴ)), where ϴ is the extent (varying from 0 to unity) of coverage of 

the adsorbent, µ is the chemical potential and ϵ is the energy of adsorption on the site.  
Setting the value of (ϴ/1-ϴ) equal to a, then P/Po = Ka. 
 

If β = (1+4cϴ(1-ϴ)(c-1))^(1/2), 

then, P/Po = (ϴ/(1-ϴ)(β-1+2ϴ)/(2ϴc) 

This equation represents the isotherm for the adsorption for a particular value of c. At a 
certain value for c the isotherm may become flat, i. e., the pressure is constant for a 
number of values of ϴ. This is the critical isotherm that occurs when the adsorbed gas 

turns into a liquid and many values of ϴ share the same value of P/Po.  The process 
has been carried out for the cases when the basic figure of the lattice is a bond, a 

triangle and a rhombus. They yield in succession more complex calculations and better 
approximations to the exact answers. Such isotherms are shown below in figure 1 

where P/Po is plotted against ϴ.  Critical isotherms were obtained for the bond when c 
was approximately 1.75 (see figure 1); for the triangle when c was approximately 2.78 
and for the rhombus when c was approximately 3. (See figure 1). We notice in the 

reference that a value for the coordination number (Z) was used as 6 which is not used 
in the cosmic application. This was because in the application for adsorption the basic 

figure was part of a lattice. Here the basic figure is a free agent. 
Applying this format to the model of the sparse universe, we use the coordination 

number Z as unity so that we have the following equation as shown above: 

                           P/Po =(ϴ/(1-ϴ)(β-1+2ϴ)/(2ϴc) 

  

A graph of the above equation with the interaction parameter, c, and the occupancy, ϴ, 
varying is shown in figure 1. 

 
It is emphasized that in the solution of the quadratic equation above, β was assumed to 

be positive. In the quadratic solution used in the cosmic bond solution, β can also be 
negative. Then the equation for P/Po is given below. 

            P/Po = (ϴ/(1-ϴ)(-β-1+2ϴ)/(2ϴc)  

and when P/Po is plotted against ϴ, we obtain the isotherms shown below in figures 2 
to 4 for various values of c. Notice in these graphs all values of P/Po are negative and 

that the value -1 is the limiting value. The graph can be regarded as holograms of a 
three dimensional field; the cosmos. This would mean that we have a toy model of 



what is taking place during the appearance of dark energy in 3 dimensions. Also note 
that the value of   P/Po/ρ is < -1/3, (where ρ is the density), as expected. 

Discussion: Figure 1 shows isotherms for P/Po (pressure ratio of a gas) versus ϴ 
(coverage of several basic figures formed on a triangular lattice of an adsorbent). The 

values of c = (-w/kT), where w is the interaction energy between adjacent occupied 
sites of the lattice, is given for the bond, and is shown for several cases. 

     Considering the isolated basic figures, one can calculate critical values of c when the 
adsorbed matter changes its phase. The derivation for P/Po as a function of ϴ is shown 
in the literature and a reprint of the article to show this will be sent to those who 

indicate their interest by email. 

In the equation above, P/Po is shown as a f(ϴ). In its derivation, the values of β can be 

either positive or negative. If we use the negative value of β, P/Po will always be 
negative. When β is positive, then P/Po will always be positive. Figures 2 to 4 show 
plots of when P/Po can be either. Where c>1, then the interaction is attractive, and 

P/Po is positive. When c<1, or the interaction energy is repulsive, then P/Po is negative. 
These latter cases correspond to dark energy. It is also noted that the slopes will also 

correspond to positive values when P/Po is positive and negative values when P/Po is 
negative, as seen in figure 5. This figure has P/Po varying continuously for c = 0.25, .5, 

.75, 1.5, 2, 2.5 and 3.  We can also have a mixed plot of two values of c, one with 
positive energy (attraction) and the other with negative energy (repulsion) as long as 
the mole fraction sum is unity and this is shown in figure 6. 

The temperature of the cosmos is 2.7 degrees Kelvin. Recently there has been the 
possibility of negative absolute temperatures (6). This could allow a negative value for β 

and then the phenomenon of negative pressure can also occur.  
When the value of ϴ is very small, then the value of P/Po becomes very negative. This 

occurs at the Big Bang and there the expansion is, of course, very large and very fast. 
If this continues for a long time we can have the big rip. The values of ϴ can 
correspond to the time since the big Bang. However, most of the application of this toy 

model corresponds to values of ϴ that are very low indicating that the occupancy is 
scant. 

Further work done here used the triangle as the basic figure. This leads to a quartic 
equation in K, which was solved for its four roots of K. The real roots can lead to 

a  singular-like solution where P/Po is driven to extremely negative values for a 
particular value of ϴ. This again corresponds to the expansion of the universe in an 
extremely short time and indicates that it happened shortly after the “big bang”. This 

can also be simulated in a close analogy using special values of c in the bond model. It 
is to be expected that the expansion is from a vacuum and the instantaneous expansion 

was accompanied with very high negative pressure. 

   
Conclusions: As we uncover more about the universe around us, including exoplanets 



and “exostarsystems,” it may be necessary for more equipment such as better 
telescopes, the LHC, and other astrophysical instruments to refine or disprove the 

theoretical work presented here. Other recent publications that utilize entanglement or 
multiplex networks may be combined with the present work to improve the mode and 

results. There have been many graphs constructed similar to the figures, so this work 
has just begun. A universe consisting of phenomena associated with negative pressure 

can help us understand more clearly our place and future in the multiverse. Theory 
must be subject to experimental and/or observational tests and we will need to wait for 
further developments. 

References: 

1. J. Hijmans and J. M. de Boer, Physica, 221, 485, 499, 1955. 

2. S. Bumble and J. M. Honig, J. Chem. Phys. 33, 424, 19603.                                   
3. S. Bumble, Computer Generated Physical Properties, Lewis Publishers, CRC Press, 
Boca Raton, 1999.                                                                                                                                                                                                                                                                                                                                              

4. S. Bumble, Computer Simulated Plant Design for Waste Minimization/Pollution 
Prevention, Lewis Publishers, CRC Press, 2000. 

5. Honig, Jurgen M., Solid Surfaces, June 1, 1966, 239-292, Chapter 25,  Utilization of 
Order-Disorder Theory in Physical Adsorption, The Square Lattice, Advances in 

Chemistry, Vol. 33, ACS, 1961. 
6. Science,Vol. 339, Page 52, S. Braun et alia, 4 January, 2013. 

7. Jung Yeol Kim and K,-I. Goh, Coevolution and Correlated Multiplexity in multiplex 

Networks, arXiv:1303.1369v18. 

8. Savatore Capozziello and Orlando Luongo, Dark Energy From Entanglement Entropy, 

arXiv:1303.1311v1 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.2 0.4 0.6 0.8 1

P/Po 

ϴ 

P/Po vs. ϴ 

bond c=3

tri c=3

rhom c=3

tri c=2.78

rhom c=2.8



   Figure 1 

 

                                        Figure 2 

 

                                                Figure 3 

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2

P/Po 

THETA 

P/Po vs. THETA, C=3 to 1.9 
 

negP/Po

posP/Po

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

P/Po 

theta 

P?Po vs. theta for C = 2.78 

P/Po-

P/po+



 

                                                      Figure 4    

   

                                            Figure 5 

-2

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

P/PO 

Theta 

P/Po vs. THETA, C= 1.5 

negP/Po

posP/Po

-6

-4

-2

0

2

4

6

1

10 19 28 37 46 55 64 73 82 91

10
0

10
9

11
8

P/Po- & P/Po+ 

Repeated THETA values 

P/Po- & P/Po+ vs. THETA for c values 
for c = 0.25, .5, .75, 1.5, 2. 2.5, 3 

Theta

P/Po-

P/Po+

c



 

     

                                                  Figure 6                  

 

 

 

 

-4

-3

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

P/Po 

theta 

.5+p/po+.5-p/po vs. theta 

.5+p/po+.5-p/po


