
On the p-untestability of combinational faults
Suresh k Devanathan Michael L Bushnell

Abstract—We describe the p-untestability of faults in combina-
tional circuits. They are similar to redundant faults, but are defined
probabilistically. P-untestable fault is a fault that is not detectable
after N random pattern simulation or a fault, FAN either proves
to be redundant or aborts after K backtracks. We chose N to be
about 1000000 and K to be about 1000. We provide a p-untestability
detectability algorithm that works in about 85% of the cases, with
average of about 14% false negatives. The algorithm is a simple
hack to FAN and uses structural information and can be easily
implemented. The algorithm does not prove redundancy completely
but establishes a fault as a probabilistically redundant, meaning a
fault with low probability of detection or no detection.

I. INTRODUCTION

It has been known that automatic test pattern generation
ATPG is a hard problem. One of the most difficult problems
that arise in ATPG is proof of untestability. This would offload
and do a great benefit to a random pattern generation since a
random pattern generator requires an infinite sequence to label
a fault as untestable. Although this is generic untestability, we
are not concerned with this problem at this moment, as it is
very difficult problem. Instead we want to limit our focus on
probabilistic untestability which is an easier problem and can
easily be proved by a fault simulator by random pattern testing
or algorithmic backtrack limits.

II. DEFINITIONS

We define p-untestability of a fault to be probability a fault
simulator fails to detect it after N patterns of random vector
simulation or a fault aborted or proven to be redundant by
a deterministic ATPG algorithm , esp. the FAN[6] algorithm
after K backtracks. We can call it p-untestability(N,r) or p-
untestability(K,b) where r and b stand for random pattern
generation or algorithmic backtrack limit. For the sake of
simulation, we restricted our search for p-untestability with
N=1000000 and K = 1000. We used the ATALANTA[8] atpg
tool and HOPE[7] fault simulator for the sake of analysis.

III. ALGORITHMIC IDENTIFICATION OF P-UNTESTABLE
FAULTS

You will have to modify calls to fan as follows to identify
a p-untestable fault. The algorithm has been shown to work
in most cases and only provides false negatives in a minority
of cases.

A. Symbol meanings

cf stands for current fault.
cf->line is -1 for output stem or an input line for input line
fault.
cf->gate is the gate of the current fault.
gate->fn is the function of the gate:AND,OR, NOT,etc.

get rog of rog(g) is a function which returns a random output
gate of a random output gate of g.
K is the backtrack limit of the algorithm.
put fl is the p-untestability fault list.
SA0 means stuck at 0 fault.
SA1 means stuck at 1 fault.
&param denotes a pass-by reference parameter.
g2->wire input(g) wires the output of gate g into the input
of g2.
g2->unwire input(g) removes gate g from the input of g2.
put fl->add fault(f) adds fault f to fault list put fl.

B. Proc1

Here we describe Proc1 which is internally called by the
main p-untestability identification algorithm. The purpose of
this procedure is to change the function of the gate depending
on whether it is a stem fault or input line fault.

procedure PROC1(cf,fg)
if cf− >line is output stem then

if cf− >type is SA0 then
switch fg->fn do

case AND
fg− > fn← OR

case NOR
fg− > fn← NAND

else if cf->type is SA1 then
switch fg->fn do

case OR
fg− > fn← AND

case NAND
fg− > fn← NOR

end if
else if cf->line is a input line then

switch fg->fn do
case OR

fg− > fn← AND

case NOR
fg− > fn← NAND

case NAND
fg− > fn← NOR

case AND
fg− > fn← OR

end if
end procedure



C. Proc2

He we describe Proc2 which is internally called by the main
algorithm. The purpose of this procedure is to deal with case
where the fault is a input line. This procedure is similar to
Proc1’s ability to handle input line fault, except it nots the
function of the gate.

procedure PROC2(cf,fg)
if cf->line is input line then

switch fg->fn do
case OR

fg− > fn← NAND

case NOR
fg− > fn← AND

case NAND
fg− > fn← OR

case AND
fg− > fn← NOR

end if
end procedure;

D. Proc3

Here we describe Proc3 which is internally called by the
main algorithm. This procedure changes the function of the
gate attached to the input line.

procedure PROC3 (cf,&fg,&sfn)
if cf->line is input line then
∗fg ← cf− > gate− > inputs[cf− > line]
∗sfn← fg− > fn
Proc1(cf, fg)

end if
end procedure

E. Proc4

Here we describe Proc4 which is internally called by the
main algorithm. This procedure rewires the gate to output of
a output of the gate of the current fault site.

procedure PROC4(cf,&m,&g2)
g ← cf− > gate
g2← get rog of rog(g);
m← 0
if g is not in g2->inputs then

m← 1
g2− > wire input(g)

end if
end procedure

F. Identify

Here we describe Identify algorithm which forms the main
core of the process. Identify algorithms takes foot once FAN
is unable to get test or prove a fault to be untestable. Identify
is an approximate procedure. It is really useful in identifying
p-untestable faults, as seen in table I. It does however have a
false identification rate averaging 14%, as seen in table II. The
algorithm works by modifying the function of the gate either
at the fault site or around it or it changes the observability
criteria of the fault by joining the output of the fault gate to
the input of a gate connected to output of one of its output
gates.

procedure IDENTIFY(cf,&put fl)
status← FAN(cf,K)
r ← 0
while (cf not detected | cf is not declared untestable)

& (r < 4) do
ts← status
fg ← cf− > gate
sfn← fg− > fn
switch r do

case 0
Proc1(cf, fg)

case 1
Proc2(cf, fg)

case 2
Proc3(cf,&fg,&sfn)

case 3
Proc4(cf,&m,&g2)

status← FAN(cf,K)
if status is not redundant then

status← ts
end if
fg− > fn← sfn
if (r = 3) & m then

g2− > unwire input(g)
end if
if status is redundant then

put fl− > add fault(cf)
break

end if
r ← r + 1

end while
end procedure

IV. RESULTS

We modified the test generation phase of the ATALANTA
FAN algorithm with static learning. We also used the hope
fault simulator to test the p-untestability of these faults and
applied the original ATALANTA algorithm with backtrack
limit of 1000 to test to see if faults declared p-untestable are
still declared redundant or aborted or no test is found. Results
are reported in table I and II.



TABLE I
P-UNTESTABILITY IDENTIFICATION WITH IDENTIFY ALGORITHM

Ckt. PutF N-HOPE Undet. K-FAN (red+ab)
b01 0 - -
b02 0 - -
b03 0 - -
b04 1 1 1
b08 0 - -
b10 0 - -
b11 2 2 2
b12 5 5 5
b13 0 - -
b14 20 20 20
b15 371 346 347
b17 899 774 806
b18 512 363 393+1=394
b20 100 98 80
b21 117 115 83
b22 122 116 97

PutF: p-untestable faults
N-HOPE Undet: Undetected faults after simulated using HOPE for
N random vectors, esp. 1000000
K-FAN (red+tab): Faults aborted or proved redundant by FAN after
K-backtrack limit, esp. 1000

TABLE II
P-UNTESTABILITY IDENTIFICATION WITH IDENTIFY ALGORITHM

STATISTICS

Amount Value
Total PutF 2150

Total N-Hope Undet. 1840
Total K-FAN (red+ab) 1835
Success Rate N-Hope 85.62%
Success Rate K-FAN 85.35%
Failure Rate N-Hope 14.38%
Failure Rate K-FAN 14.65%

V. CONCLUSION

In return, we built a new model of untestability, namely p-
untestability and showed that it is very useful in identifying
untestable faults. We also showcased an approximate algorithm
that was able to detect p-untestable faults. Future improve-
ments to the algorithm identification will make it more and
more accurate.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

[2] Suresh Kumar Devanathan and Michael L. Bushnell, Sequential Spectral
ATPG Using the Wavelet Transform and Compaction, VLSI Design, 2006,
pp. 407-412

[3] Suresh Kumar Devanathan and Michael L. Bushnell, Test Pattern Gener-
ation Using Modulation by Haar Wavelets and Correlation for Sequential
BIST, VLSI Design, 2007 pp. 485-491

[4] lrith Pomeranz, Procedures for Static Compaction of Test Sequences for
Synchronous Sequential Circuits Based on Vector Restoration, DATE,
1998

[5] T M Niermann, HITEC: A test generation package for sequential circuits,
EDA, 1991

[6] H. Fujiwara , Fan: a fanout-oriented test pattern generation algorithm
ISCAS, 1985

[7] Hyung Ki Lee, Dong Sam Ha , HOPE: an efficient parallel fault
simulator DAC, 1992, pp. 336-340

[8] H. K. Lee, D. S. Ha , Atalanta: An Efficient ATPG for Combinational
Circuits ,1993


