Formulas for generating primes involving emirps, Carmichael numbers and concatenation

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. Observations on generating primes or products of very few primes from reversible primes and Carmichael numbers using the method of concatenation.

I. On the numbers obtained through concatenation from emirps and Carmichael numbers using only the digits of the number itself and the digits of its square

Note: First we notice that, if p is a reversible prime and the number q is the number obtained through concatenation of the digits of p^2 with the digits of p, then the number q/p is often the product of very few primes (for a list of emirps see the sequence A006567 in OEIS).

Observation: If p is a reversible prime and the number q obtained through concatenation of the digits of p^2 with the digits of p has the sum of digits equal to 29, then the number q/p is often a prime or a semiprime.

16913/13 = 1301 is prime; 136937/37 = 3701 is prime; 624179/79 = 7901 is prime; 564001751/751 = 751001 is prime; 10180811009/1009 = 101*99901 is semiprime; 17450411321/1321 = 7*1887143 is semiprime.

Note that the first digits of the resulted primes are the same with the digits of p. The pairs of primes [13,1301], [37,3701], [79,7901], [751,751001] and so on deserve further study.

Conjecture: There is an infinity of reversible primes p with the property that the number obtained through concatenation of the digits of p with a number of n digits of 0, where n is equal to one less than the digits of p, and finally with the digit 1 is a prime.

Note: We also notice that, if C is a Carmichael number and the number s is the number obtained through concatenation of the digits of C^2 with the digits of C, then the number C/s is often the product of very few primes (for a list of Carmichael numbers see the sequence A002997 in OEIS):

Few examples: 314721561/561 = 7^2*107^2; 79405921/8911 = 59*1510339; 79580412821/2821 = 28210001; 435732016601/6601 = 2593*25457; 711501714101472184350561/84350561 = 3*2811685366666667.

Note the interesting value of C/s for C = 2821.

II. On the numbers obtained through concatenation from emirps and Carmichael numbers using the digits of the number itself, the digits of its square and the digits 0001

Observation: If C is a Carmichael number then the number obtained through the concatenation of the digits of C with the digits 0001 is often a product of very few primes.

Few examples: 5610001 = 1129*4969; 17290001 = 1051*16451; 28210001 is prime; 66010001 = 2593*25457; 89110001 = 59*1510339; 105850001 = 911*116191; 158410001 is prime.

Note the values obtained for 2821 and 15841, both divisible with 31.

Observation: If C is a Carmichael number divisible by 31 then the number obtained through the concatenation of the digits of C with the digits 0001 is often a product of very few primes.

28210001 is prime; 158410001 is prime; 753610001 is prime; 1720810001 is prime; 21009010001 = 7*3001287143; 9912830875210001 is prime.

Observation: If C is a Carmichael number having 561 (a Carmichael number, also) as the last digits then the following numbers are often a product of very few primes: M, obtained through the concatenation of the digits : of C with the digits 0001; N, obtained through the concatenation of the digits : of C^2 with the digits 0001. Few examples: C = 340561; $C^2 = 115981794721$ M = 3405610001 is semiprime; N = 1159817947210001 is semiprime; C = 8134561; $C^2 = 66171082662721$ M = 81345610001 is prime; N = 661710826627210001 is prime; C = 10024561; $C^2 = 100491823242721$ M = 100245610001 is prime; N = 1004918232427210001 is semiprime; C = 10402561; $C^2 = 108213275358721$ M = 1104025610001 is semiprime; N = 1082132753587210001 is semiprime; C = 45318561; C^2 = 2053771971110721 M = 453185610001 is semiprime; N = 20537719711107210001 is semiprime. C = 84350561; $C^2 = 7115017141014721$ M = 843505610001 is semiprime; N = 71150171410147210001 is semiprime.

Note: Probably the formulas could be extrapolated for Carmichael numbers having as the last digits not 561 but another Carmichael number but the results that we obtained, *exempli gratia*, with Carmichael numbers 1729 and 6601 were not encouraging. **III.** On the numbers obtained through concatenation from emirps using only the digits of the number itself

Observation: We noticed that, through succesive concatenation of the digits of a reversible prime with the digits of its reversal, is obtained an interesting sequence of primes.

Primes obtained through concatenation of the digits of the numbers p, q, p, q and p, where p is an emirp and q is its reversal (this formula also conducts to products of very few primes):

1331133113, 9779977997, 769967769967769, 1511115115111511511

Observation: There is an infinity of primes formed this way.

IV. On the extension of few of these observations from the set of emirps to set of all primes

Note: We observed three interesting series of primes.

(1) Primes q of the form n/p, where p is prime and n is formed through concatenation this way: first digits of n are the digits of the square of p and last digits of n are the digits of p itself:

First few such primes:

31, 71, 1301, 1901, 3701, 6101, 6701, 7901, 103001, 109001, 181001 (...).

(the corresponding p: 3, 7, 13, 19, 37, 61, 67, 79, 103, 109, 181)

(2) Primes formed through succesive concatenation of the digits of the prime p with the digits of its reversal, not necessarily prime, q (this formula also conducts to products of very few primes).

First few such primes:

1331133113, 2992299229, 4334433443, 9779977997, 127721127721127 (...).

Note that, from the primes obtained this way, we can also obtain interesting primes from adding numbers of the form $18*10^{k}$.

Few examples:

- : 1331133113 + 18*10^8 = 3131133113 prime(which is the concatenation of q, q, p, q, p);
- : 9779977997 + 18*10^7 = 9959977997 prime;
- : 9779977997 + 18*10^9 = 27779977997 prime;
- : 769967769967769 + 18*10^9 = 769985769967769 prime;
- : 769967769967769 + 18*10^11 = 771767769967769 prime.

(3) Primes q formed through concatenation of the digits of the squares of the primes p with the digits 0001.

First few such primes:

90001, 490001, 2890001, 8410001, 18490001, 22090001

(the corresponding p: 3, 7, 17, 29, 43, 47).