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ABSTRACT. It is demonstrated that, for the recently introduced classical magnetized Ke-
pler problems in dimension 2k + 1, the non-colliding orbits in the “external configuration
space” R2k+1 \ {0} are all conics, moreover, a conic orbit is an ellipse, a parabola, and
a branch of a hyperbola according as the total energy is negative, zero, and positive. It is
also demonstrated that the Lie group SO+(1, 2k + 1)× R+ acts transitively on both the
set of oriented elliptic orbits and the set of oriented parabolic orbits.
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1. INTRODUCTION

The Kepler problem for planetary motions is a two-body dynamic problem with an
attractive force obeying the inverse square law. Mathematically it can be reduced to the
one-body dynamic problem with the equation of motion

r′′ = − r

r3
,(1.1)

where r is a function of t taking value in R3
∗ := R3 \ {0}, r′′ is the acceleration vector and

r is the length of r. We shall refer to this later one-body dynamic problem as the Kepler
problem.

A surprising discovery due to D. Zwanziger [1] and to H. McIntosh and A. Cisneros [2]
independently in the late 1960s is that there exist magnetized companions for the Kepler
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problem. These extra dynamic problems plus the Kepler problem, referred to as MICZ-
Kepler problems, are indexed by the magnetic charge µ, with µ = 0 for the Kepler problem.
The parameter µ can take any real number at the classical mechanics level, a half of any
integer at the quantum mechanics level.

The non-colliding orbits of a MICZ-Kepler problem are all conics, moreover, a conic
orbit is an ellipse, a parabola, and a branch of a hyperbola according as the total energy is
negative, zero, and positive. A recent discovery of the second author [3] says that the Lie
group SO+(1, 3) × R+ acts transitively on both the set of oriented elliptic orbits and the
set of oriented parabolic orbits. (Here SO+(1, 3) is the identity component of SO(1, 3)
and R+ be the multiplicative group of positive real numbers.) The significance of this new
discovery is that, elliptic (or parabolic) orbits of various magnetic charges are related to
each other via Lorentz transformations.

Although the Kepler problem has long been known to exist in all dimensions, for quite a
while the magnetized Kepler problems were thought [4] to exist only in dimension 3, 5 and
possibly 9, corresponding to the division algebra C, H and O respectively. However, it was
demonstrated by the second author [5] that the magnetized Kepler problems exist quantum
mechanically in all dimensions, and that leads one to believe that they also exist classically
in all dimensions. Indeed, the magnetized Kepler problems at the classical mechanics
level were recently obtained by the second author [6] for all odd dimensions, and they are
the MICZ-Kepler problems in dimension 3 and T. Iwai’s SU(2)-Kepler problems [4] in
dimension 5.

The orbits for the MICZ-Kepler problems have been thoroughly studied from the very
beginning, but the same cannot be said to Iwai’s SU(2)-Kepler problems. For example, it is
not known up until now whether the non-colliding orbits of Iwai’s SU(2)-Kepler problems
[4] are conics or not.

In this article, we shall show that the non-colliding orbits of a magnetized Kepler prob-
lem as defined by the second author in Ref. [6] are all conics and then extend the recent
discovery of the second author in Ref. [3] about the MICZ-Kepler problems beyond di-
mension 3. We would like to point out that, for the magnetized Kepler problems in higher
dimensions, the introduction of the equation of motion in Re. [6] is less straightforward,
and so is the study of the orbits here.

1.1. Outline. In section 2, we quickly review the Kepler problem in arbitrary dimensions,
with a focus on the non-colliding orbits and their light cone reformulation. In the next three
sections, we review the magnetized Kepler problems in arbitrary odd dimensions, firstly
the equation of motion in section 3, then a very useful lemma in section 4, and finally the
total energy, the angular momentum and the Lenz vector in section 5; all of these are taken
from Ref. [6]. In the remaining two sections, we state and prove our main results, cf.
Theorem 1 in section 6 and Theorem 2 in section 7.

1.2. Notations and Conventions. We are mainly dealing with poly-vectors in the eu-
clidean space Rn or the Lorentz space R1,n, plus the wedge product, interior product, and
inner product involving the poly-vectors.

The boldface Latin letters are reserved for vectors in the euclidean space Rn only, and
the inner product (i.e., the dot product) of the vectors A and B is written as A ·B. Vectors
in the Lorentz space R1,n are referred to as Lorentz vectors. For the Lorentz vectors a =
(a0,a) and b = (b0,b), the (Lorentz) inner product of a and b, written as a · b, is defined
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as
a0b0 − a · b.

The vector r is reserved for a point in Rn, and the Lorentz vector x is reserved for
a point in R1,n. We often write x = (x0, r) rather than (x0,x). For the standard basis
vectors e0, e1, . . . , en in R1,n, we have e0 · e0 = 1 and ei · ei = −1 for i > 0. When we
view the Lorentz ei (i > 0) as a vector inside the subspace Rn, we write it as ei.

Let V be either Rn or R1,n, k > 0 be an integer. A k-vector in V is just an element
of ∧kV . An 1-vector is just a vector. A k-vector is called decomposable if it is the wedge
product of k vectors. It is a trivial fact that a 2-vector in a 3D space is always decom-
posable. In case X is a non-zero decomposable k-vector in V , we use [X] to denote the
k-dimensional oriented subspace of V , with X representing its orientation.

The inner product extend from vectors to poly-vectors and is denoted by 〈 , 〉. By def-
inition, for vectors u1, . . . , uk, v1, . . . , vk in V , let [ui · vj ] be the square matrix whose
(i, j)-entry is ui · uj , then

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 = det[ui · vj ].

We define the interior product y as the adjoint of the wedge product with respect to the
inner product for poly-vectors: for poly-vectors X , u and v in V with degX + deg u =
deg v, we have

〈X ∧ u, v〉 = 〈u,Xyv〉.
For poly-vector X , we write X2 for 〈X,X〉. In case 〈X,X〉 ≥ 0, we write |X| for√
〈X,X〉. We always write r for |r|. Finally, we remark that a poly-vectorX in Rn is also

viewed as a poly-vector X in R1,n in a natural way.

2. THE KEPLER PROBLEM IN DIMENSION n

Taking the equation of the motion (1.1) and replacing R3
∗ by Rn∗ := Rn \ {0} with

n ≥ 2, we get an analogue of the Kepler problem in dimension n (referred to as the Kepler
problem in dimension n) in the sense that these analogues share the same characteristic
feature as the Kepler problem: existence of the Lenz vector. Indeed, if we introduce

L := r ∧ r′, A := r′yL+
r

r
,

one can easily check that both the angular momentum L and the Lenz vector A are con-
stants of motions.

An orbit is a colliding orbit if and only if L = 0. Note that we are only interested in
the non-colliding orbits, so we assume hereon that L 6= 0. Since L is decomposable, L
determines an oriented 2D subspace [L] of Rn. It is easy to see that A ∧ L = 0 and

r ∧ L = 0, r −A · r = |L|2.(2.1)

Therefore, the non-colliding orbits are oriented conics inside the oriented 2D subspace [L],
with 0 as a focus and A as its eccentricity vector; moreover, one can show that the total
energy for a motion with such an orbit is

E = −1− |A|2

2|L|2
.

Note that the orbit is oriented in the sense that t ∧ n is a positive multiple of L. Here, t
and n are respectively the unit tangent vector and unit normal vector of the oriented curve.
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2.1. The reformulation in the Lorentz space R1,n. The Kepler problem in dimension
n has a mathematically appealing reformulation in the Lorentz space R1,n, as originally
pointed out in Ref. [7]. To see this, we observe that Rn∗ is diffeomorphic to the future light
cone

{x ∈ R1,n | x2 = 0, x0 > 0},
so the Kepler problem in dimension n can be reformulated as a dynamic problem on the
future light cone. As a result, an oriented orbit in Rn∗ can be reformulated as an oriented
curve inside this future light cone, i.e., the intersection of the cylinder over the oriented
orbit with the future light cone. It turns out this reformulated orbit is a conic section, and
this gives another explanation why a non-colliding orbit must be a conic.

To see clearly the intersection plane for the conic section, we write A for (1,A) and
observe that L∧A = L∧ e0 6= 0. For x on the future light cone, Eq. (2.1) can be recast as

x ∧ (L ∧A) = 0, A · x = |L ∧A|2.(2.2)

Eq. (2.2) defines an affine plane and its intersection with the future light cone is the same
as the intersection of the cylinder over the orbit with the future light cone.

3. MAGNETIZED KEPLER PROBLEMS IN DIMENSION n = 2k + 1

The purpose of this section is to describe the equation of motion for the magnetized
Kepler problems in odd dimension n ≥ 3, as first appeared in Ref. [6]. This equation is
the n-dimensional analogue of the equation of motion

r′′ = − r

r3
+ µ2 r

r4
− r′ × µ r

r3
(3.1)

for the MICZ-Kepler problems [2, 1], where the parameter µ is the magnetic charge.
It turns out that the high dimensional analogue of Eq. (3.1) is far from straightforward.

The reason is that, if k > 1, instead of governing motions on R2k+1
∗ , the equation of motion

governs motions on a manifold Pµ which fibers over R2k+1
∗ .

To describe the fiber bundle Pµ → R2k+1
∗ , we let G = SO(2k) and consider the canon-

ical principal G-bundle over S2k:

SO(2k + 1)y
S2k.

This bundle comes with a natural connection

ω(g) := Prso(2k)

(
g−1dg

)
,

where g−1dg is the Maurer-Cartan form for SO(2k + 1), so it is an so(2k + 1)-valued
differential one form on SO(2k + 1), and Prso(2k) denotes the orthogonal projection of
so(2k + 1) onto g := so(2k).

Under the map

π : R2k+1
∗ → S2k

r 7→ r

r
,(3.2)

the above bundle and connection are pulled back to a principal G-bundle

Py
X := R2k+1

∗

(3.3)
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with a connection which is usually referred to as the generalized Dirac monopole [8]. Now

Pµ → R2k+1
∗

is the associated fiber bundle with fiber being a certain co-adjoint orbit Oµ of G, the so-
called magnetic orbit with magnetic charge µ ∈ R.

To describe Oµ, let us use γab (1 ≤ a, b ≤ 2k) to denote the element of ig such that
in the defining representation of g, Ma,b := iγab is represented by the skew-symmetric
real symmetric matrix whose ab-entry is −1, ba entry is 1, and all other entries are 0. For
the invariant metric (, ) on g, we take the one such that Ma,b (1 ≤ a < b ≤ 2k) form
an orthonormal basis for g. Via this invariant metric, one can identify g∗ with g, hence
co-adjoint orbits with adjoint orbits. By definition, for any µ ∈ R,

Oµ := SO(2k) · 1√
k

(|µ|M1,2 + · · ·+ |µ|M2k−3,2k−2 + µM2k−1,2k).(3.4)

It is easy to see that Oµ = {0} if µ = 0 and is diffeomorphic to SO(2k)
U(k) if µ 6= 0.

We are now ready to describe the equation of motion for the magnetized Kepler problem
in dimension 2k + 1. Let r: R→ X be a smooth map, and ξ be a smooth lifting of r:

Pµ

ξ ↗
y

R r−→ X

(3.5)

Let AdP be the adjoint bundle P ×G g → X , d∇ be the canonical connection, i.e., the
generalized Dirac monopole on R2k+1

∗ = X . Then the curvature Ω := d2
∇ is a smooth

section of the vector bundle ∧2T ∗X ⊗ AdP . (With a trivialization of P → X , locally Ω
can be represented by 1

2

√
−1Fjk dx

j ∧ dxk.) The equation of motion is

 r′′ = − r
r3 + µ2

k
r
r4 + (ξ, r′yΩ),

D
dtξ = 0.

(3.6)

Here D
dtξ is the covariant derivative of ξ, (, ) refers to the inner product on the fiber of the

adjoint bundle coming from the invariant inner product on g, and 2-forms are identified
with 2-vectors via the standard euclidean structure of R2k+1. Eq. (3.6) defines a super
integrable model, referred to as the classical Kepler problem with magnetic charge µ
in dimension 2k + 1, which generalize the classical MICZ-Kepler problem. Indeed, in
dimension 3, the bundle is topological trivial, ξ = µM12, and Ω =

∗(
∑3

i=1 x
i dxi)

r3 M12,
then Eq. (3.6) reduces to Eq. (3.1), i.e., the equation of motion for the MICZ-Kepler
problem with magnetic charge µ. In dimension 5, it is essentially Iwai’s SU(2)-Kepler
problem, cf. Ref. [4].

The equation of motion appears to be mysterious, but it doesn’t. As demonstrated in
Ref. [6], with a key input from the work of Sternberg [9], Weinstein [10], and Montgomery
[11], it emerges naturally from the notion of universal Kepler problem in Ref. [12].
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4. A USEFUL LEMMA ON THE GENERALIZED DIRAC MONOPOLES

This article as well as Refs. [5, 6] crucially depend on a lemma about the generalized
Dirac monopoles [8]. The purpose of this section is to introduce an abridged version of
this lemma as used in Ref. [6].

We shall write r = (x1, . . . , xn) for a point in Rn∗ and r for the length of r. The small
Lartin letters j, k, etc. be indices that run from 1 to n, and the small Latin letters a, b, etc.
be indices that run from 1 to n− 1. To do local computations, we need to choose a bundle
trivialization on U which is Rn with the negative n-th axis removed and then write down
the gauge potential explicitly. Indeed, there is a bundle trivialization on U such that the
gauge potential A = Ak dx

k can be written as

An = 0, Ab = − 1

r(r + xn)
xaγab(4.1)

where xaγab means
∑n−1
a=1 x

aγab, something we shall assume whenever there is a repeated
index. It is then clear that the gauge field strength Fjk := ∂jAk − ∂kAj + i[Aj , Ak] is of
the form

Fnb =
1

r3
xaγab, Fab = − 1

r2
(γab + xaAb − xbAa).(4.2)

The following lemma is an abridged version of Lemma 4.1 in Ref. [6].

Lemma 4.1. Assume n = 2k + 1. Let Q = 1
2k

∑
a,b(γab)

2 and ∇k = ∂k + iAk. For the
gauge potential A defined in Eq. (4.1), the following statements are true.

1) As i so(2k)-valued functions on U ,

xkAk = 0, xjFjk = 0, ∇lFjk =
1

r2

(
−xjFlk − xkFjl − 2xlFjk

)
.(4.3)

Consequently, we have ryF = 0 and D
dt (r

2F ) = −r ∧ (r′yF ).
2) Assume ξ ∈ Oµ ⊂ g. As real functions on U ,

r4
∑
k

(iξ, Fkj)(iξ, Fkj′) =
µ2

k

(
δjj′ −

xjxj
′

r2

)
.(4.4)

Consequently, we have |(iξ, r2F )|2 = µ2 and

(iξ, r′yF )y(iξ, r2F ) = −µ
2/k

r

(r
r

)′
, |r2(iξ, r′yF )|2 =

µ2

k

|r ∧ r′|2

r2
.

5. THE ANGULAR MOMENTUM AND THE LENZ VECTOR

Besides the equation of motion (3.6), Ref. [6] also provides formulae for the total energy

E =
1

2
|r′|2 − 1

r
+
µ2/k

2r2
,(5.1)

the angular momentum

L = r ∧ r′ + (ξ, r2Ω)(5.2)

and the Lenz vector

A = r′yL+
r

r
.(5.3)

To verify that L and A are constants of motion directly, it suffices to do local compu-
tations over U . That is because U is R2k+1 with a so called Dirac string (i.e., the negative
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n-th coordinate axis) removed, and, for a given non-colliding orbit, by dimension reason
we may assume it misses the entire n-the coordinate axis.

Over the dense open set U , the bundle P → X shall be trivialized in a way so that
the gauge potential is of the form as in equation (4.1), so that the curvature Ω shall be
represented by iF and the lifting ξ shall be represented by a smooth map (also denoted
by ξ) from R into g whose image is always inside Oµ. With this understood, one can
verify directly that L and A are constants of motions. For example, use the lemma and the
equation of motion, since L = r ∧ r′ + (iξ, r2F ), we have

L′ = r ∧ r′′ + (iξ,−r ∧ (r′yF ))
= r ∧ (r′′ − (ξ, r′yΩ))

= r ∧
(
− r

r3
+
µ2

k

r

r4

)
= 0,

similarly, we have

A′ = r′′yL+
(r
r

)′
=

(
− r

r3
+
µ2

k

r

r4
+ (iξ, r′yF )

)
y
(
r ∧ r′ + (iξ, r2F )

)
+
(r
r

)′
=

(
− 1

r3
+
µ2

k

1

r4

)
ry(r ∧ r′) + (iξ, r′yF )y(iξ, r2F ) +

(r
r

)′
=

(
−1 +

µ2

k

1

r

)(r
r

)′
− µ2/k

r

(r
r

)′
+
(r
r

)′
= 0.

For a non-colliding orbit, since r ∧ r′ 6= 0, use the lemma, we have

|L|2 = |r ∧ r′|2 + |(iξ, r2F )|2 = |r ∧ r′|2 + µ2 > µ2.(5.4)

It has also been shown in Ref. [6] that, for a non-colliding orbit, the total energy is com-
pletely determined by the angular momentum L and the Lenz vector A:

E = − 1− |A|2

2(|L|2 − µ2)
.(5.5)

To see this, we note that

|A|2 = 1 +
2

r
ry(r′yL) + |r′yL|2

= 1 +
2

r
〈r′ ∧ r, L〉+ |(r · r′)r′ − (r′ · r′)r + r2(iξ, r′yF )|2

= 1− 2

r
|r ∧ r′|2 + |(r · r′)r′ − (r′ · r′)r|2 + |r2(iξ, r′yF )|2

= 1− 2

r
|r ∧ r′|2 + |r′|2|r ∧ r′|2 +

µ2

k

|r ∧ r′|2

r2

= 1 + 2|r ∧ r′|2E By Eq. (5.1)
= 1 + 2(|L|2 − µ2)E. By identity (5.4)

6. THE MICZ-KEPLER ORBITS ARE ALL CONICS

In this and next sections we shall study the orbits of magnetized Kepler problems in
a fixed dimension 2k + 1, but with arbitrary magnetic charges. In dimension higher than
3, the angular momentum is no longer decomposable, and that makes our work in higher
dimensions more sophisticated than it might appear.
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A solution (r(t), ξ(t)) to the equation of motion (3.6) shall be referred to as a motion,
whose total trace inside Pµ shall be referred to as an orbit. Under the bundle projection
πµ : Pµ → R2k+1

∗ , these orbits become curves inside the “external configuration space”
R2k+1
∗ , with the non-colliding ones being referred to as MICZ-Kepler orbits. In this section

we shall show that the MICZ-Kepler orbits are all conics. As demonstrated in section 2,
that is indeed the case when the magnetic charge is zero, so we shall assume that µ 6= 0 in
this section, unless said otherwise.

Let (r(t), ξ(t)) be a motion that represents a MICZ-Kepler orbit, and

V := r ∧ r′ ∧ r3(iξ, r′yF ).(6.1)

Since both r and r′ are orthogonal to r3(iξ, r′yF ), we have

|V |2 = |r ∧ r′|2 |r3(iξ, r′yF )|2 =
µ2

k
|r ∧ r′|4 =

µ2

k
(|L|2 − µ2)2(6.2)

by Lemma 4.1 and Eq. (5.4). Therefore |V | is a constant of motion. In view of Eq. (5.4),
it vanishes if and only if µ = 0.

Lemma 6.1. The 3-vector V in R2k+1 is a constant of motion, and it vanishes if and only
if µ = 0.

Proof. Using the product rule for differentiation, we have

V ′ = r ∧ r′′ ∧ r3(iξ, r′yF ) + r ∧ r′ ∧ ((rr′)′y(iξ, r2F )) + r ∧ r′ ∧ (rr′y(iξ, r2F )′)

= r ∧ r′ ∧ ((rr′)′y(iξ, r2F )) + r ∧ r′ ∧ (rr′y(iξ,
D

dt
(r2F ))) by eqn of motion

= r ∧ r′ ∧ ((rr′)′y(iξ, r2F )) + r ∧ r′ ∧ (rr′y(iξ,−r ∧ (r′yF ))) by Lemma 4.1
= r ∧ r′ ∧ ((rr′)′y(iξ, r2F ))− r ∧ r′ ∧ r2r′(iξ, r′yF )
= r ∧ r′ ∧ (rr′′y(iξ, r2F ))
= r ∧ r′ ∧ (r(iξ, r′yF ))y(iξ, r2F )) by eqn of motion and Lemma 4.1

= −µ
2

k
r ∧ r′ ∧

(r
r

)′
by Lemma 4.1

= 0.

The rest is clear. �

The nonzero constant decomposable 3-vector V determines a constant subspace [V ] of
R2k+1. The presence of this 3D space [V ] is not mysterious because one can show that it is
spanned by the three constant vectors A, AyL, and (AyL)yL when AyL 6= 0. Anyhow,
it is straightforward to see that A is a vector inside the 3D space [V ]. Since r∧ V = 0, we
know that the MICZ-Kepler orbit is inside the 3D space [V ], in fact a conic inside [V ], as
we shall see in a moment.

Let L̄ be the image of L under the orthogonal projection ∧2R2k+1 → ∧2[V ]. Being
referred to as the effective angular momentum, L̄ shall be seen to play an important role
in the study of MICZ-Kepler orbits. A simple computation shows that

L̄ =

(
r− r4

|L|2 − µ2
(iξ, r′yF )

)
∧
(
r′ − r′

r
r

)
,(6.3)

a decomposable 2-vector inside the 3D space [V ]. With the help of Lemma 4.1 and Eq.
(6.2), one can verify that

L̄ ∧A =
1

|L|2 − µ2
V, |L̄|2 − |L̄ ∧A|2 = |L̄|2 − µ2

k
= |L|2 − µ2 > 0.(6.4)
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From the definition, L̄ should be a constant of motion, a fact which can be verified directly.
This fact holds even when µ = 0 because L̄ = L in this special case. By some simple
computations, one can verify that r ∈ [V ] and

r −A · r = L̄2 − µ2

k
, L̄ ∧ (r− rA) = 0.(6.5)

In the following we let O denote the set of all oriented MICZ-Kepler orbits and M
denote the set of all pairs (A, L̄) where L̄ is a decomposable 2-vector and A is a vector
(all inside R2k+1) such that |L̄|2 > |L̄ ∧ A|2. For each (A, L̄) ∈ M , we claim that
|L̄−Ay(A ∧ L̄)| > 0, otherwise, L̄ = Ay(A ∧ L̄), after taking the inner product with L̄,
we would have |L̄|2 = |L̄ ∧A|2, a contradiction.

The following theorem extends Theorem 1 of Ref. [3] beyond dimension 3.

Theorem 1. (1) If two motions have the same oriented MICZ-Kepler orbit, then they must
have the same effective angular momentum L̄ and the same Lenz vector A. Consequently
one can speak of an oriented MICZ-Kepler orbit with the Lenz vector A and the effective
angular momentum L̄.

(2) The map
ϕ1 : O →M

which maps an oriented MICZ-Kepler orbit with the Lenz vector A and the effective angu-
lar momentum L̄ to (A, L̄) is a bijection.

(3) An oriented MICZ-Kepler orbit with the Lenz vector A and the effective angular
momentum L̄ is a conic with its eccentricity e satisfying identity

1− e2 =
|L̄|2 − |L̄ ∧A|2

|L̄−Ay(A ∧ L̄)|2
(1− |A|2).(6.6)

Moreover, this MICZ-Kepler orbit is oriented in the sense that t∧n is a positive multiple of
(L̄−Ay(A∧ L̄)). (Here, t and n are respectively its unit tangent and unit normal vector.)
Consequently, reversing the orbit orientation amounts to turning (A, L̄) into (A,−L̄).

(4) Fix an oriented MICZ-Kepler orbit with the Lenz vector A and the effective angular
momentum L̄, the total energy for any motion with this oriented MICZ-Kepler orbit is

E = − 1− |A|2

2(|L̄|2 − |L̄ ∧A|2)
.(6.7)

Consequently one can speak of the total energy E of a MICZ-Kepler orbit.
(5) A MICZ-Kepler orbit is an ellipse, a parabola and a branch of a hyperbola accord-

ing as its total energy E is negative, zero and positive.

Proof. Proof of part (1). It is better to use the reformulation for the oriented MICZ-Kepler
orbits as oriented conic sections. It shall be shown in the next section that, an oriented
MICZ-Kepler orbit for a motion with Lenz vector A and effective angular momentum L̄
corresponds to the intersection of the future light cone in the Lorentz space R1,2k+1 with
the oriented plane

m ∧ x = 0, a · x = 1

where

m =
L̄ ∧A
|L̄ ∧A|

, a =
A

|L̄ ∧A|2

with A = (1,A), moreover, m is a decomposable 3-vector with m2 = 1, and a is a vector
inside the 3D space [m] with a0 > 0, and aym represents the orientation of the plane.
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Suppose now if a motion with Lenz vector A1 and effective angular momentum L̄1

have the same oriented MICZ-Kepler orbit, then we would have the same oriented plane
with this second defining equation:

m1 ∧ x = 0, a1 · x = 1.

Since this plane does not pass through the origin, it spans both the 3D vector subspace [m]
and the 3D vector subspace [m1], so m1 = m or −m. But then we must have a1 = a,
hence m1 = m because both a1ym1 and aym represent the orientation of the plane. Since
(a,m) is uniquely determined by (A, L̄), we have A1 = A and L̄1 = L̄. In summary, the
oriented plane, hence the oriented MICZ-Kepler orbit, is uniquely determined by the pair
(A, L̄).

Proof of part (2). From part (1) we have a well-defined map

ϕ1 : O →M ,

which sends each oriented MICZ-Kepler orbit to the pair (A, L̄) consisting of its unique
Lenz vector A and effective angular momentum L̄. It is clear from the proof of part (1) that
ϕ1 is one-to-one. It remains to show that ϕ1 is onto, i.e., for a given pair (A, L̄) ∈M , we
need to find an initial data consisting of an initial position q, an initial velocity v (which
shall be chosen such that v · q = 0) and an initial point η in an magnetic orbit such that

L̄ = q ∧ v + 1
|v|2v ∧ (vy(iη, |q|2F (q)))

A = vyL̄+ q
|q| .

(6.8)

Just as in the proof of part (3) of Theorem 1 in Ref. [3], a key step is to find a unit vector
n such that

L̄ ∧ n = L̄ ∧A, but A 6= n and |A− n| is maximal possible.

The existence of such a unit vector n is guaranteed by the condition |L̄|2 > |L̄ ∧A|2. To
see this, we write A as the sum of the vector A|| ∈ [L̄] and vector A⊥ perpendicular to
[L̄]. Then the condition |L̄|2 > |L̄ ∧ A|2 is just |L̄|2 > |L̄|2|A⊥|2, which implies that
|A⊥| < 1. Now we just take n = n|| +A⊥ where n|| ∈ [L̄] such that |n|||2 + |A⊥|2 = 1,
n|| ∧A|| = 0 and n|| ·A|| ≤ 0. Clearly n is unique unless AyL̄ = 0.

We are now ready to find the initial data. First, we let

v :=
1

|L̄|2
(n−A)yL̄.(6.9)

Since A− n 6= 0 and (A− n) ∧ L̄ = 0, we have v 6= 0, so we can let

q :=
1−A · n
|v|2

n.(6.10)

Since 1−A ·n = 1−|A⊥|2−n|| ·A|| > 0, we have q 6= 0 and q ·v = 0, as we promised
a few paragraphs above.

With this choice of v and q, one can check that the second identity in Eq. (6.8) holds.
One can also check that, when L̄ ∧A = 0, the first identity in Eq. (6.8) holds if we take
η := 0. It remains to find η for the case L̄ ∧A 6= 0 so that the first identity in Eq. (6.8)
holds.

When L̄ ∧A 6= 0, the vertical component n⊥ of n is nonzero, so

u := vyL̄+ (1−A · n)n 6= 0.(6.11)
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One can check that the nonzero vectors u, v and n are mutually orthogonal, so we can
assume that n = e2k+1, v = |v|e2k, and u = |u|e2k−1 or −|u|e2k−1. By letting

η :=
|u|
|v|

(M12 + · · ·+M2k−3,2k−2 + sign (u · e2k−1)M2k−1,2k),(6.12)

one can check that vy(iη, |q|2F (q)) = u with the help of Eq. (4.2), therefore, the right-
hand side of the first identity in Eq. (6.8) becomes

q ∧ v +
1

|v|2
v ∧ u =

1

|v|2
v ∧ (vyL̄) = L̄,

i.e., the left-hand side of the first identity in Eq. (6.8).
Proof of parts (3), (4) and (5). Part (3) follows by adapting the proof for part (1) of

Theorem 1 in Ref. [3]. Part (4) follows from Eqs. (5.5) and (6.4). Part (5) is a consequence
of parts (3) and (4).

�

7. ORIENTED MICZ-KEPLER ORBITS AND THE LORENTZ GROUP

The goal here is to relate the MICZ-Kepler orbits to the Lorentz group, a phenomena
initially found by the second author [3] for dimension three.

As in Ref. [3], the key is to go to the light cone formulation for the oriented MICZ-
Kepler orbits. To do that, we write x = (x0, r), A = (1,A), and verify by computation
that

(L̄ ∧A, L̄ ∧A)2 = |L|2 − µ2,

a positive number, so L̄ ∧ A 6= 0. Then the MICZ-Kepler orbit as defined in Eq. (6.5) can
be reformulated as the intersection of the future light cone inside R1,2k+1 with the affine
plane

x ∧ (L̄ ∧A) = 0, A · x = |L̄ ∧A|2.(7.1)

This description of the MICZ-Kepler orbit is also valid when µ = 0, because in this special
case L̄ = L and Eq. (7.1) is just Eq. (2.2).

We note that the affine plane defined by Eq. (7.1) passes through the point L̄y(L̄ ∧ A)
and is parallel to the 2D subspace [Ay(L̄ ∧ A)] of R1,2k+1, that is because Eq. (7.1) is
equivalent to equation

(x− L̄y(L̄ ∧A)) ∧ (Ay(L̄ ∧A)) = 0.(7.2)

Since this affine plane is oriented by Ay(L̄ ∧ A) and has a positive x0-intercept, its
intersection with the future light cone is an oriented conic section. The natural projection
from R1,2k+1 onto R2k+1 provides an orientation preserving diffeomorphism from this
oriented conic section onto the oriented MICZ-Kepler orbit as defined via Eq. (6.5).

It is geometrically more convenient to rewrite equation (7.1) as

m ∧ x = 0, a · x = 1(7.3)

and equation (7.2) as

(x− (e0ym)ym
a0

) ∧ (aym) = 0.(7.4)

where m = L̄∧A
|L̄∧A| , a = A

|L̄∧A|2 . It is easy to see that the pair (a,m) thus obtained satisfies

the following condition: m is a decomposable 3-vector in the Lorentz space R1,2k+1 such
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that m2 = 1, and a = (a0,a) is a vector in the Lorentz space R1,2k+1 with a0 > 0 and
a ∧m = 0.

To proceed, we let M be the set of all pairs (a,m) with the conditions we have just
specified in the last paragraph. We remark that an element of M is just an oriented 3D
Lorentz subspace [m] of R1,2k+1 together with a vector a ∈ [m] with a positive temporal
component, moreover, the map (a,m) 7→ m is a fiber bundle map with theM as the total
space, the upper half 3D Lorentz space

R1,2
+ := {(x0,x) ∈ R1,2 | x0 > 0}

as the fiber, and the space G̃r1,2(R1,2k+1) consisting of oriented 3D Lorentz subspaces in
R1,2k+1 as the base space.

For any (a,m) ∈M, we note that aym 6= 0, a fact one may check under the assumption
that m = e0 ∧ e1 ∧ e2. It is not hard to see that the map

ϕ2 : M −→ M(7.5)

(a,m) 7→
(

a

a0
,
e0ym√
a0

)
(7.6)

is a bijection whose inverse maps (A, L̄) to(
A

|L̄ ∧A|2
,
L̄ ∧A
|L̄ ∧A|

)
where A = (1,A). By composing this bijection ϕ2 with the bijection ϕ1 in the part (2) of
Theorem 1, we get a bijection

ϕ : O →M.(7.7)

The following theorem extends Theorem 2 of Ref. [3] beyond dimension 3.

Theorem 2. Let O+ (O0 reps.) be the the set of oriented elliptic (parabolic reps.) MICZ-
Kepler orbits,M+ = {(a,m) ∈M | a2 > 0}, andM0 = {(a,m) ∈M | a2 = 0}.

(1) For the oriented MICZ-Kepler orbit parametrized by (a,m) ∈ M, we have the
energy formula

E = − a2

2a0
.

(2) The bijection ϕ in Eq. (7.7) maps O+ ontoM+ and O0 ontoM0.
(3) The action of SO+(1, 2k + 1)× R+ onM0 defined by

(Λ, λ) · (a,m) = (λ · (Λa),Λm)

is transitive. So SO+(1, 2k + 1) × R+, in fact SO+(1, 2k + 1) also, acts transitively on
the set of oriented parabolic MICZ-Kepler orbits.

(4) The action of SO+(1, 2k + 1)× R+ onM+ defined by

(Λ, λ) · (a,m) = (λ · Λa,Λm)

is transitive. So SO+(1, 2k + 1) × R+ acts transitively on the set of oriented elliptic
MICZ-Kepler orbits.

(5) The action in parts (3) and (4) extends to O+(1, 2k + 1)× R+.

Proof. Only the proof of transitivity in parts (3) and (4) needs a little effort. It is easy to
see that, there are mutually orthogonal vectors u, v and w in R2k+1 such that |u| < 1,
v ∧ w 6= 0, and m = (e0 + u) ∧ v ∧ w. After a rotation of R2k+1, we may assume that
m is a decomposable 3-vector in the Lorentz subspace R1,3. Then, the proof of transitivity
descends to the proof of transitivity in Theorem 2 of Ref. [3].
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�

We conclude this article with a remark: while the Lenz vector and the angular momen-
tum determine an oriented orbit, it is the Lenz vector and the effective angular momentum
that determine an oriented orbit in the “external configuration space”; moreover, each ori-
ented orbit is the lifting via the canonical connection (i.e., the generalized Dirac monopole)
of an oriented orbit in the “external configuration space”.
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