Logic Systems

Lattices, classical logic and quantum logic
Logic – Lattice structure

- A lattice is a set of elements a, b, c, ... that is closed for the connections \cap and \cup. These connections obey:

 - The set is partially ordered. With each pair of elements a, b belongs an element c, such that $a \subseteq c$ and $b \subseteq c$.
 - The set is a \cap half lattice if with each pair of elements a, b an element c exists, such that $c = a \cap b$.
 - The set is a \cup half lattice if with each pair of elements a, b an element c exists, such that $c = a \cup b$.
 - The set is a lattice if it is both a \cap half lattice and a \cup half lattice.
Partially ordered set

- The following relations hold in a lattice:

\[
\begin{align*}
 a \cap b &= b \cap a \\
 (a \cap b) \cap c &= a \cap (b \cap c) \\
 a \cap (a \cup b) &= a \\
 a \cup b &= b \cup a \\
 (a \cup b) \cup c &= a \cup (b \cup c) \\
 a \cup (a \cap b) &= a
\end{align*}
\]

- has a partial order inclusion \(\subset\):

\[
 a \subset b \iff a \subset b = a
\]

- A complementary lattice contains two elements \(n\) and \(e\) with each element \(a\) an complementary element \(a'\)

\[
\begin{align*}
 a \cap a' &= n \\
 a \cap n &= n \\
 a \cap e &= a \\
 a \cup a' &= e \\
 a \cup e &= e \\
 a \cup n &= a
\end{align*}
\]
Orthocomplemented lattice

Contains with each element a an element a'' such that:

\[a \cup a'' = e \]
\[a \cap a'' = n \]
\[(a'')'' = a \]
\[a \subset b \iff b'' \subset a'' \]

Distributive lattice

\[a \land (b \lor c) = (a \land b) \lor (a \land c) \]
\[a \lor (b \land c) = (a \lor b) \land (a \lor c) \]

Modular lattice

\[(a \land b) \lor (a \land c) = a \land (b \lor (a \land c)) \]

Classical logic is an orthocomplemented modular lattice
Weak modular lattice

- There exists an element d such that

\[a \subset c \iff (a \cup b) \cap c = a \cup (b \cap c) \cup (d \cap c) \]

- where d obeys:

\[
\begin{align*}
(a \cup b) \cap d &= d \\
a \cap d &= n \\
b \cap d &= n \\
[(a \subset g) \text{ and } (b \subset g)] &\iff d \subset g
\end{align*}
\]
Atoms

- In an atomic lattice

\[\exists p \in L \forall x \in L \{ x \subset p \Rightarrow x = n \} \]

\[\forall a \in L \forall x \in L \{ (a < x < a \cap p) \Rightarrow (x = a \text{ or } x = a \cap p) \} \]

\(p \) is an atom
Logics

• Classical logic has the structure of an orthocomplemented distributive modular and atomic lattice.
• Quantum logic has the structure of an orthocomplemented weakly modular and atomic lattice.
• Also called orthomodular lattice.
Hilbert space

• The set of closed subspaces of an infinite dimensional separable Hilbert space forms an orthomodular lattice

• Is lattice isomorphic to quantum logic
Hilbert logic

- Add linear propositions
 - Linear combinations of atomic propositions
- Add relational coupling measure
 - Equivalent to inner product of Hilbert space
- Close subsets with respect to relational coupling measure

- Propositions \iff subspaces
- Linear propositions \iff Hilbert vectors
Superposition principle

Linear combinations of linear propositions are again linear propositions that belong to the same Hilbert logic system
Isomorphism

• Lattice isomorphic
 • Propositions \iff closed subspaces

• Topological isomorphic
 • Linear atoms \iff Hilbert base vectors
Navigate

To start of Hilbert Book slides:
http://vixra.org/abs/1302.0125

To Hilbert Book slide, part 2:
http://vixra.org/abs/1302.0121

To Hilbert Book Model slides, part 3
http://vixra.org/abs/1309.0018

To Hilbert Book Model slides, part 4:
http://vixra.org/abs/1309.0017

To “Physics of the Hilbert Book Model”
http://vixra.org/abs/1307.0106