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This paper is intended to show the Schrodinger equation, within its structure, allows the mani-
festation of the wave function collapse within a very natural way of reasoning. In fact, as we will
see, nothing new must be inserted to the classical quantum mechanics, viz., only the dialectics of
the physical world must be interpreted under a correct manner. We know the nature of a physi-
cal system turns out to be quantical or classical, and, once under the validity of the Schrodinger
equation to provide the evolution of this physical system, the dialectics, quantum or classical, mu-
tually exclusive, must also be under context through the Schrodinger equation, issues within the
main scope of this paper. We will show a classical measure, the obtention of a classical result,
emerges from the structure of the Schrodinger equation, once one demands the possibility that, over
a chronological domain, the system begins to provide a classical dialectic, showing the collapse may
be understood from both: the structure of the Schrodinger equation as well as from the general so-
lution to this equation. The general solution, even with a dialectical change of description, leads to
the conservation of probability, obeying the Schrodinger equation. These issues will turn out to be a
consequence of a general potential energy operator, obtained in this paper, including the possibility
of the classical description of the physical system, including the possibility of interpretation of the
collapse of the quantum mechanical state vector within the Schrodinger equation scope.
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INITIAL POSITION OF THE PROBLEM

For the moment, we will be interested in an one particle
physical system under a non-relativistic scope. We are
interested in the general potential energy operator for
this physical system, V (x, t), such that the Schrodinger
equation in (1 + 1)-dimensions, in two classical spacetime
dimensions:

i~
∂

∂t
Ψ (x, t) = EΨ (x, t) =

[
V (x, t)− ~2

2m

∂2

∂x2

]
Ψ (x, t) ,

(1)
becomes complete for a quantical or a classical charac-
terization of the system represented by its wave function
Ψ (x, t), where m is the [constant] mass of our physical
system, ~ ≡ h/ (2π), where h is the Planck constant, E
is the total energy of our physical system, x a spatial
location for our physical system at an instant t.

Considering the system such that a physical potential
energy Vp (x, t) that characterizes the interaction for the
physical problem under consideration is known, in this
case, one canonically writes:

V (x, t) ≡ Vp (x, t) , (2)

within the Schrodinger equation [within the Eq. (1)].
E.g., one canonically writes, if the physical problem is
the one of a simply harmonic oscillator:

V (x, t) ≡ Vp (x, t) =
1

2
mω2x2, (3)

with nothing else related to this physical interaction, with
nothing else related to a possible change of characteriza-
tion of the physical system, e.g., when an observer turns
out to describe the system under its own [classical] di-
aletic. For this, the axiomatic structure of the quantum
mechanics counts with the Born rule.

There is a fundamental difference between a system
that evolves under the Schrodinger equation with its
quantical [say a q-dialectical] characterization ad infini-
tum, viz., such that:

V (x, t) ≡ Vp (x, t) ∀ t ∈ (−∞,+∞) , (4)

and a system that does not have such q-dialectical char-
acterization ad infinitum, viz., such that:

V (x, t) ≡ Vp (x, t) ∀ t ∈ (−∞, τ) , (5)

i.e., having got a classical [say a c-dialectical] characteri-
zation from t = τ :

V (x, t) = Vc (x, t) ∀ t ∈ [τ,+∞) , (6)

where Vc (x, t) is unknown at our stage of reasoning.
Vc (x, t) seems to require a quality to characterize the col-
lapse of the wave function, once one has, from a collapsed
state beginning at τ , a classical c-dialectic of characteri-
zation for the system.

These dialectical characterizations turn out to be mu-
tually exclusive, once the chronological domains for these
characterizations are mutually exclusive, viz.:

for Iq ≡ (−∞, τ) , (7)
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and:

for Ic ≡ [τ,+∞) , (8)

one has got:

Iq ∩ Ic = (−∞, τ) ∩ [τ,+∞) = ∅. (9)

In relation to the chronological domain, once one is
interested in the solution for the Eq. (1):

∀t ∈ R, (10)

i.e.:

∀t ∈ Iq ∪ Ic, (11)

one may write for the potential energy operator:

V (x, t) ≡ (1− δtt̄)Vp (x, t) + δtt̄Vc (x, t) , (12)

where:

δtt̄ = 0 ∀t ∈ Iq; (13)

δtt̄ = 1 ∀t ∈ Ic, (14)

where the intervals Iq and Ic were defined, respectively,
by the Eqs. (7) and (8).

The potential energy operator Vq (x, t) is the one, as
discussed above, one considers for the physical problem
under consideration, e.g., the one given by the Eq. (3)
for the simply harmonic oscillator, over the chronologi-
cal domain Iq ≡ (−∞, τ). Here is instructive to assert
one may consider a q-dialectic ad infinitum, i.e., Iq = R:
taking τ → +∞, avoiding a c-dialectic, viz., with Ic = ∅.
In this latter case [provided τ → +∞], the Eqs. (12),
(13) and (14) lead to the Eq. (4), and the c-dialectic
turns out to be void via the Schrodinger equation, be-
ing accomplished ad hoc, axiomatically, via Born rule.
Otherwise, to have a c-dialectic ad infinitum, under the
considerations we are developing here, i.e., to prescribe
Ic = R, it is sufficient to consider: τ → −∞, avoiding
a q-dialectic, viz., with Iq = ∅, for which the Eqs. (12),
(13) and (14) lead to:

V (x, t) ≡ Vc (x, t) ∀ t ∈ (−∞,+∞) , (15)

and the q-dialectic turns out to be void via the
Schrodinger equation, i.e., cannot be achieved via the ax-
iomatic structure of quantum mechanics in the sense the
quantum mechanical q-dialectic for the system emerging
from the Schrodinger equation [via its solution] would
be banned, so that the solution would be providing a
c-dialectical solution ad infinitum; in other words: the
system would be collapsed from the very beginning.

In virtue of these considerations, the position of
the problem is the complete determination of the Eq.
(12), for which one needs to determine Vc (x, t). This
done, we must turn back to the Eq. (1), to obtain
its solution under the action of the complete potential
energy operator given by the Eq. (12). These issues are
to be considered in the next sections.

POSITION OF THE PROBLEM: Vc (x, t) ?

The potential energy operator to generate our c-
dialectic must be given by:

Vc (x, t) ≡ [E −K] (x, t) , (16)

as demanded by the Physics, where E is the constant me-
chanical energy of the system, being K its kinetic energy
[operator]. Once the very nature of a system, essentially,
even for a c-dialectically described, is quantum mechan-
ical: albeit under a c-dialectical [observer’s] perception,
this perception, within the reasonings we are developing,
is to arise as solution of the Eq. (1), provided the Eq.
(12), from which one turns out to simply write:

Vc (x, t) ≡ E +
~2

2m

∂2

∂x2
. (17)

The Eq. (17) seems to have been obtained through an
obvious reasoning, but there is subtle point that must be
pointed out. In fact, the dynamics of the system, over
the Ic domain, is to be understood as:

i~
∂

∂t
Ψ (x, t) = EΨ (x, t) =

[
Vc (x, t)− ~2

2m

∂2

∂x2

]
Ψ (x, t) ,

(18)
in virtue of the Eq. (1). The essential characteristic of a
classical [Newtonian] description [of a c-dialectical one] of
a system is the condition, theoretical and instrumentally
verified:

• Classical conservative systems have got a constant
[scalar] energy E.

Hence, a quantum mechanical operational cause, via the
Hamiltonian operator:

q-dialectics︷ ︸︸ ︷[
i~
∂

∂t

]
Ψ (x, t) ≡

q-dialectics︷ ︸︸ ︷[
Vc −

~2

2m

∂

∂x2

]
(x, t) Ψ (x, t) , (19)

acting on the system Ψ (x, t), leads, under a chronological
evolution starting at an instant τ , to a classical effect,
viz.:

q-dialectics, Eq. (19), the cause︷︸︸︷
[ · · · ] = E︸︷︷︸

c-dialectics, the effect

Ψ (x, t) .

(20)
The imposition of a necessary constant, a constant

scalar, not an operator, for E, in virtue of the preceeding
reasonings through the march that led to the Eq. (20),
characterizes E in the Eq. (17) as a classical quantity in
the sense of its intrinsically classical [c-dialectic] dialec-
tic. The Eq. (17) follows from the Eqs. (19) and (20).
One should infer, from the Eq. (19), that the operator:

K ≡ − ~2

2m

∂

∂x2
, (21)
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appearing in the Eq. (16), is essentially q-dialectical.
Hence, since E is, in the context of Vc (x, t) [Eq. (20)],
c-dialectical:

• The potential energy operator Vc (x, t) given by the
Eq. (17) has not a purely quantum-mechanical di-
alectic.

We will see this requisite will lead to a necessary reduc-
tion of the state vector, will consequently destroy the
q-dialectical characteristic of superposition for the sys-
tem Ψ (x, t) to a localized Ψ (x, t) over the chronological
domain Ic.

To a better understanding of the essential difference
in defining E as essentially constant, not an operator,
consider, e.g., for purposes of brevity and clarity, a case
in which the potential energy does not depend on t. For
the general solution of the Eq. (1), with V (x, t) ≡ Vp (x),
with the initial and boundary conditions for the physical
problem properly condidered, one reaches:

Ψ (x, t) =
∑
∀k

ake
−iEkt/~φk (x) , (22)

with: Ek being the k-eigenvalue of i~∂/∂t operating on
its respective k-eigenvector Ψk (x, t), φk (x) being the
[orthonormalized] k-eigenvector of the time independent
Schrodinger equation [we will be back to these issues
later; for now, the Eq. (1) and the Eq. (22) are suffi-
cient for the argument we are raising here], ak being the
k-coefficient:

ak =

∫ ∞
−∞

φ∗k (x) Ψ (x, 0) dx (23)

=

∫ ∞
−∞

φ∗k (x)

∑
∀p

apφp (x)

 dx
=
∑
∀p

ap

∫ ∞
−∞

φ∗k (x)φp (x) dx

=
∑
∀p

apδ
p
k

= ak, (24)

where the initial condition reads:

Ψ (x, 0) =
∑
∀k

akφk (x) . (25)

The Eq. (22) may be written:

Ψ (x, t) =
∑
∀k

akΨk (x, t) , (26)

i.e., as a superposition of [orthonormalized] eigenstates:

Ψk (x, t) = e−iEkt/~φk (x) , (27)

eigenstates of the operator i~∂/∂t. The eigenvalue prob-
lem:

i~
∂

∂t
Ψk (x, t) = EkΨk (x, t) , (28)

is fully obeyed, for Ek constant, as one may verify from
the Eq. (27):

i~
∂

∂t
Ψk (x, t) = i~

∂

∂t

[
e−iEkt/~φk (x)

]
= i~φk (x)

∂

∂t

[
e−iEkt/~

]
= i~φk (x) e−iEkt/~

(
−iEk

~

)
= Eke

−iEkt/~φk (x)

= EkΨk (x, t) . (29)

But, once under superposition, a necessary property of
q-dialectic, the eigenvalue problem:

i~
∂

∂t
Ψ (x, t) = EΨ (x, t) , (30)

with E constant, not an operator, does not hold, once
a pure quantum mechanical state written as a superpo-
sition of the energy operator eigenstates, as in the Eq.
(22), has not got a defined energy. In fact, from the Eqs.
(22) and (30):

i~
∂

∂t
Ψ (x, t) = i~

∂

∂t

[∑
∀k

ake
−iEkt/~φk (x)

]

= i~
∑
∀k

akφk (x)
∂

∂t

(
e−iEkt/~

)
= i~

∑
∀k

ake
−iEkt/~φk (x)

(
−iEk

~

)
=
∑
∀k

Ekake
−iEkt/~φk (x)

!

6= EΨ (x, t) = E
∑
∀k

ake
−iEkt/~φk (x) .

(31)

with E being a constant (not an operator).
The right-hand side of the Eq. (31) is a necessary con-

dition for a c-dialectical description for the system, as one
infers from our considerations leading to the Eq. (20).
Thus, the q-dialectic is incompatible with the c-dialectic,
mutually exclusive, the first chronologically holding over
Iq, the latter over Ic, as discussed before. Hence, the
march that led us to the obtention of the Eqs. (16), (17)
and (18), as well as its subsequent considerations, to de-
fine the c-dialectical potential energy operator Vc (x, t),
is not a triviality. Concluding this section, we have got
our problem in position: with the obtention we have got
carried out through this section for the c-dialectical de-
scription of the system Ψ (x, t) at any instant t ∈ Ic via
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the potential energy operator Vc (x, t) acting on Ψ (x, t)
over Ic:

Vc (x, t) ≡ E +
~2

2m

∂2

∂x2
, E constant (not an operator),

(32)
the complete potential energy operator for the entire
chronology R = Iq ∪ Ic of the system, Eq. (12), reads:

V (x, t) = (1− δtt̄)Vp (x, t) + δtt̄

(
E +

~2

2m

∂2

∂x2

)
. (33)

Now, with the Eq. (33), we are in position to solve the
Eq. (1), the Schrodinger equation, an issue to be solved
in the next section.

SOLVING THE SCHRODINGER EQUATION

The Schrodinger equation, Eq. (1), with the insertion
of the potential energy operator, Eq. (33), reads:

i~
∂

∂t
Ψ (x, t) = (1− δtt̄)Vp (x, t) Ψ (x, t) +

+ δtt̄

(
E +

~2

2m

∂2

∂x2

)
Ψ (x, t) +

− ~2

2m

∂2

∂x2
Ψ (x, t) . (34)

Since t ∈ Iq or t ∈ Ic, depending on the description, on
the dialectic that is being manifested to infer the reality
of the physical system Ψ (x, t), as discussed before, we
analyse the solution for the Eq. (34) through two succes-
sive but mutually exclusive parts: t ∈ Iq or t ∈ Ic [cf.
the Eqs. (7) and (8)].

For t ∈ Iq = (−∞, τ) = R− Ic = R− [τ,+∞):

In this case, δtt̄ = 0, in virtue of the Eq. (13). Hence,
the Eq. (34) reads:

i~
∂

∂t
Ψ (x, t) = Vp (x, t) Ψ (x, t)− ~2

2m

∂2

∂x2
Ψ (x, t) . (35)

In virtue of linearity, one may firstly solve the Eq. (35)
for the eigenstates Ψk (x, t), with k ∈ {1, · · · , d}, being
d the number of linearly independent eigenvectors of the
i~∂/∂t operator, i.e., in other words:

k ∈ {1, · · · ,dim (HΨ|Ψk (x, t) ∈ HΨ)} , (36)

being HΨ the Hilbert vector space to which Ψ (x, t)
belongs. Thus:

i~
∂

∂t
Ψk (x, t) = Vp (x, t) Ψk (x, t)− ~2

2m

∂2

∂x2
Ψk (x, t) .

(37)
Since the Eq. (34) is developed here as being for gen-

eral scope under the (1 + 1)-dimensional spacetime [2],
once we are interested in its consequences, the consid-
eration of a general physical potential Vp (x) [instead of
Vp (x, t)] energy operator to be acting on Ψ (x, t) over Iq
is irrelevant, i.e., we will suppose, with no loss of general-
ity [in fact, the process of solution we are accomplishing
here for t ∈ Iq, could be accomplished, once demanded,
for a general Vp (x, t); this does not change the necessity
of reasoning related to the solution of the Eq. (34) for t ∈
Ic, this latter being mutually exclusive to the interval Iq
over which Vp (x, t) [or Vp (x)] operates on Ψ (x, t)], the
potential energy of the physical case under consideration
obeys:

Vp (x, t) = Vp (x) . (38)

Back to the Eq. (37):

i~
∂

∂t
Ψk (x, t) = Vp (x) Ψk (x, t)− ~2

2m

∂2

∂x2
Ψk (x, t) , (39)

one canonically proposes a solution under a separable
form:

Ψk (x, t) ≡ ϕk (t)φ (x) , (40)

leading, by substitution within the Eq. (39):

i~
∂

∂t
[ϕk (t)φk (x)] = Vp (x)ϕk (t)φk (x)− ~2

2m

∂2

∂x2
[ϕk (t)φk (x)]⇒

i~φk (x)
∂

∂t
ϕk (t) = Vp (x)ϕk (t)φk (x)− ~2

2m
ϕk (t)

∂2

∂x2
φk (x)⇒

i~φk (x)
d

dt
ϕk (t) = Vp (x)ϕk (t)φk (x)− ~2

2m
ϕk (t)

d2

dx2
φk (x)

×[Ψk(x,t)]−1 6=∞⇒
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i~
φk (x)

Ψk (x, t)

d

dt
ϕk (t) = Vp (x)

ϕk (t)φk (x)

Ψk (x, t)
− ~2

2m

ϕk (t)

Ψk (x, t)

d2

dx2
φk (x)

Eq. (40)⇒

i~
φk (x)

ϕk (t)φk (x)

d

dt
ϕk (t) = Vp (x)

ϕk (t)φk (x)

ϕk (t)φk (x)
− ~2

2m

ϕk (t)

ϕk (t)φk (x)

d2

dx2
φk (x) ∴

i~
ϕk (t)

d

dt
ϕk (t) = Vp (x)− ~2

2m

1

φk (x)

d2

dx2
φk (x) . (41)

In relation to the Eq. (41), its left-hand side solely de-
pends on t and its right-hand side solely depends on x,
from which, to accomodate both the necessities, a for-
tiori, one writes:

i~
ϕk (t)

d

dt
ϕk (t) = Vp (x)− ~2

2m

1

φk (x)

d2

dx2
φk (x) = Ek,

(42)
where Ek is a constant of context, viz.: for each k, since
each k generates an equation identical to the Eq. (41).

Hence, we have generated two equations within each
k-eigenvector context, both coupled, via Eq. (42), by the
context constant Ek [this constant will turn out to be the
energy associated to each eigenstate Ψk (x, t), as we will
develop, but, this is a very well known fact within the
context we are developing here]:

i~
ϕk (t)

d

dt
ϕk (t) = Ek; (43)

Vp (x)− ~2

2m

1

φk (x)

d2

dx2
φk (x) = Ek. (44)

To solve the Eq. (43) we multiply both the sides of the
Eq. (43) by ∆t→ 0, and by 1/ (i~):

dϕk (t)

ϕk (t)
=
Ek
i~
dt. (45)

Integrating both the sides of the Eq. (45) from t0 < t < τ
to t: ∫ t

t0

dϕk (t)

ϕk (t)
=

∫ t

t0

Ek
i~
dt⇒ (46)

ln [ϕk (t)]|tt0 =
Ek
i~
t

∣∣∣∣t
t0

⇒

ln [ϕk (t)]− ln [ϕk (t0)] =
Ek
i~
t− Ek

i~
t0 =

Ek
i~

(t− t0)⇒

ln

[
ϕk (t)

ϕk (t0)

]
=

Ek
i~

(t− t0)⇒

ϕk (t)

ϕk (t0)
= exp

[
Ek
i~

(t− t0)

]
⇒

ϕk (t) = ϕk (t0) exp

[
Ek
i~

(t− t0)

]
⇒

ϕk (t) =
[
ϕk (t0) eiEkt0/~

]
e−iEkt/~.

(47)

Hence, for purposes of superposition, one has got:

ϕk (t) ∝ e−iEkt/~, (48)

where the proporcionality is accomplished by a k-context
constant λk given by:

λk = ϕk (t0) eiEkt0/~. (49)

To solve the Eq. (44), one multiplies both the sides of
this equation by φk (x) 6= 0, by hypothesis, and reaches
the so-called time-independent Schrodinger equation:

Vp (x)φk (x)− ~2

2m

d2

dx2
φk (x) = Ekφk (x) . (50)

The solution for the time-independent Schrodinger equa-
tion, Eq. (50), depends on the specific potential energy
operator Vp (x) under consideration, but it is clear the
solution for this equation reads φk (x).

In virtue of the Eqs. (48), [(49)], and (50), the or-
thonormal members Ψk (x, t) of the basis B = {Ψk (x, t)}
are given by:

Ψk (x, t) = e−iEkt/~φk (x) , (51)

a k-solution for the eigenvalue problem given by the Eq.
(39).

To obtain the general solution for the Eq. (35) [we
are analyzing the cases in which Vp (x, t) = Vp (x), as
discussed above, with no restriction to our fundamental
purpose of this paper]:

i~
∂

∂t
Ψ (x, t) = Vp (x) Ψ (x, t)− ~2

2m

∂2

∂x2
Ψ (x, t) , (52)

we use the superposition principle [of course, the main
principle that distinguishes a quantum mechanical object
from a classically newtonian one, regarding the object per
se]:

Ψ (x, t) =
∑
∀k

akΨk (x, t) =
∑
∀k

ake
−iEkt/~φk (x) , (53)

in virtue of the Eq. (51), members of the basis B =
{Ψk (x, t)}. Of course, the solution given by the Eq. (53)
must satisfy the initial and boundary conditions for the
physical problem established by Vp (x, t) = Vp (x), this
latter acting on the system Ψ (x, t) over the chronological
domain Iq throughout which a q-dialectical description
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holds, the main purpose of this subsection. Hence, the
following condition must hold:

for t0 ∈ Iq :
∑
∀k

ake
−iEkt/~φk (x)

∣∣∣∣∣
t=t0

= Ψ (x, t0) ,

(54)
where Ψ (x, t0) is initially given, prepared. This discus-
sion was accomplished through the march that led from
the Eq. (23) to the Eq. (24), although, there, we had
adopted t0 ≡ 0. Analogous reasoning will lead to:

ake
−iEkt0/~ =

∫ ∞
−∞

φ∗k (x) Ψ (x, t0) dx (55)

=

∫ ∞
−∞

φ∗k (x)

[∑
∀l

ale
−iElt0/~φl (x)

]
dx

=
∑
∀l

ale
−iElt0/~

∫ ∞
−∞

φ∗k (x)φl (x) dx

=
∑
∀l

ale
−iElt0/~δlk

= ake
−iEkt0/~, (56)

from which:

ak = eiEkt0/~
∫ ∞
−∞

φ∗k (x) Ψ (x, t0) dx. (57)

Regarding the boundary conditions [at given spatial po-
sitions], supposing the canonical cases in which one has
got fixed ones ∀t [here, with t ∈ Iq], the consideration
of these boundary conditions within the context of the
time-independent Schrodinger equation, Eq. (50), is to
accomplish the job related to them.

Thus, we accomplish this subsection, obtaining the
general solution, given by the Eq. (53) and its subsidiary
conditions, Eqs. (50) and (57), these for the Eq. (34)
∀ t ∈ Iq [considering Vp (x, t) = Vp (x)]. Now, we pass
to the next subsection, concerned with the chronological
domain t ∈ Ic over which a classical description of the
system Ψ (x, t) turns out to be the inferred one, as the
Nature may dictate.

For t ∈ Ic = [τ,+∞) = R− Iq = R− (−∞, τ):

Throughout the initial considerations of this paper,
mainly within the discussion that led to the obtention of
the Eq. (31), we pointed out the apparent incompatibil-
ity between the complete Schrodinger equation, with its
intrinsical dependence on t, and a characterization that
is necessary to assert an unique an well defined energy,
E, for the physical system under consideration, Ψ (x, t),
when the system turns out to exhibit a description that
is not quantum mechanical. In other words: when the
system is under the description given by the Eq. (22),
fully quantum mechanical in the sense of the system per

se, once it would be under a superposition of states, such
[superposition of] state[s] is not compatible with a purely
classical [Newtonian system]. Taking an instrumentalist
point-of-view, one is constrained to descriptions to phys-
ical systems that emerge from the interactions the de-
signed apparata provide, and a pure quantum mechan-
ical system turns out to have got, intrinsically, by con-
struction, an objective sense, once the description must
be provided by an external axiom having got this spe-
cial function within the theory: Born’s rule. But, if the
Schrodinger equation is a complete description of the sys-
tem dynamics, and one infers that under a description by
superposition, a system have not got a well defined en-
ergy state, [considering only the Schrodinger equation, we
are not arguing: well, if one wants an energy, one should
accomplish a measure, and the Born rule shuts up the
question; under the same reasoning, one may argue the
Schrondiger equation provides well defined eigenstates,
without the necessity of an external axiom to infer the
mathematical existence of such energy eigenvalues] which
one is the more natural manner to handle with the very
fact the Nature dictates there exist well defined states of
energy:

• To create a separated axiom to handle with this ne-
cessity, Born rule?

or:

• To accept the possibility the well defined energy
states should also be described by the Schrodinger
equation as well as the eigenstates are mathe-
matically inferred within the very structure of the
Schrodinger equation, concluding, a fortiori, once
the Nature dictates such c-dialectical description
and once a c-dialectic should follow [remembering
the quantum mechanics turns out cover the clas-
sical physics when one is faced with the neces-
sity of description of the Nature from the micro-
scopic picture, whose constituints are the building
blocks of the macroscopic world] from the quantum-
mechanical description, that the c-dialectical issue
may not be well stated within the dynamical struc-
ture [context of the Schrodinger equation] of the
classical quantum mechanics?

We will accept the second possibility, not as a point-of-
view, but in virtue of the facts the Nature provides in
relation to the c-dialectic for the physical world, with
which one also interprets the Nature, with which one also
constructs physical theories within specific domains of
instrumental validity. These issues are the main purpose
of this subsection. We are to deal with the chronological
domain, Ic, here, the main purpose of this subsection,
but, prior to this, we will consider the fundamental issues
that will lead to the main purpose.

Firstly, before something else, one should define the
very meaning of a system having got a well defined en-
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ergy. Once with this accomplished, then, one should try,
if possible, to accomodate this very meaning within the
context of the Schrodinger equation and, of course, since
the Nature is the very main object of the Physics, within
the physical world, the razor of plausibilities.

In spite of a quantum mechanical description, instru-
mentally, a system exhibits a very well defined physi-
cally valued characteristic iff the very same value for
this characteristic is obtained at each instrumentally ac-
complished measure. This proccess turns out to be a sta-
tistical one, once a miriad of measures [or a satisfactory
quantity of measures to provide a sufficiently rich statis-
tics] turns out to be the necessary method to collect the
data necessary to infer, or not, the data are providing the
same value for the measure that is being putted under the
instrumental scrutinity [within a error gap/bar]. In other
words, the value being scrutinized must exhibit no fluc-
tuations around the mean value, viz., that the standard
deviation from the mean value turns out to statistically
vanish: √

σ2
E = 0⇔ σ2

E = 0, (58)

where E is the value of a physical system being putted
under scrutinity,

√
σ2
E the stantard deviation from the

mean value 〈E 〉 and, σ2
E , is the variance of E:

σ2
E =

〈
E2
〉
− 〈E 〉2 . (59)

The statistical characteristic of the quantum mechan-
ics is putted within the theory via an extra axiom, inde-
pendent of the Schrodinger equation over the axiomatic
structure of the quantum mechanics. The correlation be-
tween statistics and Schroedinger equation borns within
the axiomatic structure of the quantum mechanics via
this very extra axiom: Born’s rule. We will take a posi-
tion regarding the Schrodinger equation and its correla-
tion to statistics via the wave function Ψ (x, t) that rep-
resents a quantum mechanical system, not from an extra
axiom, and, emerging the statistics from the very struc-
ture of the wave function Ψ (x, t), the correlation to the
Schrodinger equation turns out to be automatic, since
the very evolution of the system, of the wave function
Ψ (x, t) representing the physical system in question, is
governed by the very Schrodinger equation. A question
must be answered here:

• But, how can one establish the statistical character-
istic of the quantum mechanics is intrinsical to the
wave function in spite of that extra axiom, viz., in
spite of the Born rule?

We will adopt the position in [1], from which the util-
ity in obtaining the eigenvalue Ek, e.g., from a quantum
mechanical system mathematically represented by:

Ψ (x, t) =
∑
∀k

akΨk (x, t) , (60)

where B = {Ψk} is an orthonormal basis that consists of
eigenstates of a physical quantity, say i~∂/∂t [the consid-
erations in [1] are quite general ones, not constrained to
the Hamiltonian operator, but we are putting our atten-
tion, pragmatically, to the representation we are working
here], is given by:

a∗kak = pk, (61)

where pk is the probability of obtention of Ek, the proba-
bility of obtention of Ψk (x, t) [we will consider the eigen-
values are not degenerated, viz., that our system consists
of a superposition of eigenstates that will not present a
same value of eigenvalue Ek, for purposes of simplicity,
once the cases with degenerated states is handled with
an attention on the subspace, a degenerated subspace for
short, that is generated by those eigenstates that present
a same eigenvalue, which is trivial to handle and to gener-
alize, once the utility of obtention of a given degenerated
eigenvalue turns out to be the probability of obtention of
eigenvectors spanning the degenerated subspace].

Under the utility picture as in [1], the maximal utility
is obtained when there exists the whole set of eigenval-
ues Ek available for obtention, when the information is
maximally available within the physical system mathe-
matically represented by the superposition given by the
Eq. (60). But the maximal utility cannot exceed the
utility encapsulated within the physical system mathe-
matically represented by the superposition given by the
Eq. (60), at least if this system is to be the unique rele-
vant system under scrutinity, once the maximal utility is
the utility of the whole system under scrutinity. When a
measure is accomplished on a system represented by the
Eq. (60), some utility is provided from the system, and
a question emerges:

• The provided utility from the system is an utility of
what?

As said, it is the utility of an eigenvalue obtention, but,
once obtained, the utility of the obtained eigenvalue, from
which the obtained eigenvalue carries with it the obtained
utility. And another question emerges:

• Since an eigenvalue was obtained by the measure,
has got the system, hence, an unique state defined
by this eigenvalue? In other words, the state of
the system after the measure carries the eigenvalue
with it, from which will the system turn out to nec-
essarily carry the utility that was obtained from the
measure?

To answer this question, one must recognize there exists
just one system being measured, from which the system
is the very same. What may change is the state inferred
from the obtained eigenvalue. If this eigenvalue charac-
terizes the state of the system, in virtue of the discussion
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that was carried out leading to the Eq. (31) in the pre-
vious subsection, the system cannot be under a superpo-
sition of eigenstates after the measure, being this latter
case the one to which the obtained eigenvalue would not
suffice to characterize the system after the measure. Fur-
thermore, since the system is the very same prior to the
measure and after it, the system, being the unique rel-
evant system under scrutinity, must preserve its utility,
and the entire maximal utility must be carried by the
system after the measure. Prior to the measure, a given
eigenstate Ek had an utility associated to its obtention,
but this utility cannot be the system utility prior to the
measure, since a superposition of eigenstates cannot be
defined by an unique eigenvalue. Hence, the maximal
utility, the utility of a whole system must be conserved.
In other words, as obtained in [1], Eq. (61) here, the
probability must be conserved. But one may argue the
probability of obtention of Ek is not conserved, since it
would jump to 1 after a measure that uniquely character-
ized the system after the measure. The probability of ob-
tention of an eigenstate may change in virtue of the very
fact such eigenstate would not be uniquely characterizing
the system ∀ t ∈ R = Iq∪Ic. The q-dialectic needs super-
position, since the system is not uniquely characterized
by an unique energy state. The c-dialectic does not need
superposition, once the system is uniquely characterized
by an unique energy state. But the system is the very
same, only the dialectical characterization changes.

Prior to the chronological domain Ic, a given eigen-
state, say Ψk (x, t), carries an utility related to the ob-
tention of its eigenvalue Ek, at any instant t ∈ Iq, which
is obtained from the Eq. (61), where:

ak =

∫ ∞
−∞

Ψ∗k (x, t) Ψ (x, t) dx (62)

=

∫ ∞
−∞

Ψ∗k (x, t)

[∑
∀l

alΨl (x, t)

]
dx

=

∫ ∞
−∞

Ψ∗k (x, t)
∑
∀l

alΨl (x, t) dx

=
∑
∀l

al

∫ ∞
−∞

Ψ∗k (x, t) Ψl (x, t) dx

=
∑
∀l

alδ
l
k

= ak. (63)

But, once the q-dialectical description holds, one has got:

Ψk (x, t) 6= Ψ (x, t) , (64)

once the superposition is necessary by a q-dilalectic, for
t ∈ Iq, and the maximal utility is not obtained from
a∗kak, since the maximal utility is related to the whole
system, and the whole system is not Ψk (x, t) in virtue
of the Eq. (64) ∀ t ∈ Iq, being a∗kak the utility related

to the eigenstate Ψk (x, t). Conversely, since Iq ∩ Ic = ∅,
once the c-dialectic holds, and the system becomes to be
descripted in terms of an unique energy state, one simply
has got the negative of the Eq. (64):

Ψk (x, t) = Ψ (x, t) , (65)

∀ t ∈ Ic, which is a dialectical razor dictated by Nature.

The utility of the whole system S, a∗SaS , under scru-
tinity, ∀ t ∈ Iq ∪ Ic, once the system is the very same,
prior to the measure and after it, follows from:

aS =

∫ ∞
−∞

Ψ∗ (x, t) Ψ (x, t) dx, (66)

i.e.:

a∗SaS = |aS |2 =

∣∣∣∣∫ ∞
−∞

Ψ∗ (x, t) Ψ (x, t) dx

∣∣∣∣2 , (67)

and must be conserved ∀ t ∈ Iq ∪ Ic. Once:

Ψ∗ (x, t) Ψ (x, t) > 0, (68)

The Eq. (67) may read:

a∗SaS =

[∫ ∞
−∞
|Ψ∗ (x, t) Ψ (x, t)| dx

]2

. (69)

But:

a∗SaS =

[∫ ∞
−∞
|Ψ∗ (x, t) Ψ (x, t)| dx

]2

=

[∫ ∞
−∞

∣∣∣|Ψ (x, t)|2
∣∣∣ dx]2

=

[∫ ∞
−∞
|Ψ (x, t)|2 dx

]2

=

[∫ ∞
−∞

Ψ∗ (x, t) Ψ (x, t) dx

]2

=

{∫ ∞
−∞

[∑
∀k

akΨk (x, t)

]∗ [∑
∀l

alΨl (x, t)

]
dx

}2

=

[∑
∀k

∑
∀l

a∗kal

∫ ∞
−∞

Ψ∗k (x, t) Ψl (x, t) dx

]2

=

[∑
∀k

a∗kak

]2

. (70)

But, as showed in [1]:∑
∀k

a∗kak = 1, (71)
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the maximal utility of the quantum system under scruti-
nity [1]. Hence, the Eq. (70) reads:

a∗SaS =

[∫ ∞
−∞
|Ψ∗ (x, t) Ψ (x, t)| dx

]2

=

[∑
∀k

a∗kak

]2

Eq. (71)
= [1]

2

= 1

=
∑
∀k

a∗kak. (72)

Furthermore:

a∗SaS =

∫ ∞
−∞

Ψ∗ (x, t) Ψ (x, t) dx

=

∫ ∞
−∞
|Ψ (x, t)|2 dx. (73)

In fact:

a∗SaS =

∫ ∞
−∞

Ψ∗ (x, t) Ψ (x, t) dx

=

∫ ∞
−∞
|Ψ (x, t)|2 dx

=

∫ ∞
−∞

[∑
∀k

akΨk (x, t)

]∗ [∑
∀l

alΨl (x, t)

]
dx

=

∫ ∞
−∞

∑
∀k

a∗kΨ∗k (x, t)
∑
∀l

alΨl (x, t) dx

=

∫ ∞
−∞

∑
∀k

∑
∀l

a∗kalΨ
∗
k (x, t) Ψl (x, t) dx

=
∑
∀k

∑
∀l

a∗kal

∫ ∞
−∞

Ψ∗k (x, t) Ψl (x, t) dx

=
∑
∀k

∑
∀l

a∗kalδkl

=
∑
∀k

a∗kak

Eq. (71)
= 1

= [1]
2

=

[∑
∀k

a∗kak

]2

Eq. (70)
= a∗SaS . (74)

Hence we have concluded, in virtue of the conservation
of the maximal utility, viz., in virtue of the conservation

of the utility of the system S under scrutinity that:

∀t ∈ Iq ∪ Ic : a∗SaS =
∑
∀k

a∗kak =
∑
∀k

|ak|2

=

∫ ∞
−∞

Ψ∗ (x, t) Ψ (x, t) dx

=

∫ ∞
−∞
|Ψ (x, t)|2 dx = 1. (75)

The result obtained and stated by the Eq. (75) will be
shown from the general solution for the Eq. (34) we are to
complete within this subsection [with Vp (x, t) = Vp (x)].
One should infer the Eq. (34) has two chronological
domains that are mutually exclusive due to a possible
change of dialectical description, and reflect on the very
meaning of the Eqs. (64) and (65). The change is dialec-
tical, the system under scrutinity is the very same.

Now, we are in position to analyze the condition stated
by the Eq. (58) for a system that c-dialectically presents
a well defined energy when scrutinized. In fact, the Eq.
(75) turns out to state the maximal utility, viz., the util-
ity of the whole system being scrutinized, a∗SaS , is given

by an utility density |Ψ (x, t)|2, at a given instant t, ∀ t ∈
Iq ∪ Ic, over the spatial positions x. Since, as derived in
[1], the utility is probability, one may infer from this and
from the Eq. (75), a probability density, ρ (x, t), given
by:

ρ (x, t) = |Ψ (x, t)|2 , (76)

emerges.
We have seen that under a q-dialectical description

that requires a superposition of eigenstates to represent
a physical system, through the march that led to the Eq.
(31), one cannot state the system has got a well defined
energy. Also, under a q-dialectic, the operational descrip-
tion holds, and the energy of an eigenstate Ψk (x, t) fol-
lows from the Schrodinger eigenvalue equation, Eq. (29).
Hence, for eigenstates, both the sides of the following
equation are the very same:∫ ∞

−∞
Ψ∗k (x, t)

[
i~
∂

∂t

]
Ψk (x, t) dx

=

∫ ∞
−∞

Ψ∗k (x, t)EkΨk (x, t) dx

= Ek, (77)

in virtue of the Eq. (75) with Ψ (x, t) → Ψk (x, t), also
by orthonormalization, if one prefers. Furthermore, both
the sides of the following equation are, also, the very
same, for eigenstates:∫ ∞

−∞
Ψ∗k (x, t)

[
i~
∂

∂t

]2

Ψk (x, t) dx

=

∫ ∞
−∞

Ψ∗k (x, t)E2
kΨk (x, t) dx

= E2
k. (78)
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It is trivial to infer from the Eqs. (76), (77) and (78)
that eigenstates obey the condition given by the Eq.
(58) for well defined energy states. In fact, from the Eqs.
(77) and (78), with the Eq. (76), i.e., if the state of the
system is an eigenstate, from which E = Ek, where E is
the energy of the system, the Eq. (58) follows. But the
converse is a little bit tricky to prove. One writes the
state as a superposition by hypothesis:

Ψ (x, t) =
∑
∀k

akΨk (x, t) . (79)

Hence:

i~
∂

∂t
Ψ (x, t) = i~

∂

∂t

∑
∀k

akΨk (x, t)

=
∑
∀k

aki~
∂

∂t
Ψk (x, t)

=
∑
∀k

akEkΨk (x, t) , (80)

and to the following integral, to be:

〈E 〉 !
=

∫ ∞
−∞

Ψ∗ (x, t) i~
∂

∂t
Ψ (x, t) dx

=

∫ ∞
−∞

Ψ∗ (x, t)EΨ (x, t) dx, (81)

it requires, in virtue of the Eqs. (79) and (80):

〈E 〉 =

∫ ∞
−∞

[∑
∀k

akΨk (x, t)

]∗ [∑
∀l

alElΨl (x, t)

]
dx

=

∫ ∞
−∞

∑
∀k

a∗kΨ∗k (x, t)

[∑
∀l

alElΨl (x, t)

]
dx

=

∫ ∞
−∞

∑
∀k

∑
∀l

a∗kalElΨ
∗
k (x, t) Ψl (x, t) dx

=
∑
∀k

∑
∀l

a∗kalEl

∫ ∞
−∞

Ψ∗k (x, t) Ψl (x, t) dx

=
∑
∀k

∑
∀l

a∗kalElδkl

=
∑
∀k

a∗kakEk. (82)

Furthermore, in virtue of the Eq. (80):[
i~
∂

∂t

]2

Ψ (x, t) = i~
∂

∂t

∑
∀k

akEkΨk (x, t)

=
∑
∀k

akEki~
∂

∂t
Ψk (x, t)

=
∑
∀k

akEkEkΨk (x, t)

=
∑
∀k

akE
2
kΨk (x, t) , (83)

and to the following integral to be:

〈
E2
〉 !

=

∫ ∞
−∞

Ψ∗ (x, t)

[
i~
∂

∂t

]2

Ψ (x, t) dx

=

∫ ∞
−∞

Ψ∗ (x, t)E2Ψ (x, t) dx, (84)

it requires, in virtue of the Eqs. (79) and (83):

〈
E2
〉

=

∫ ∞
−∞

[∑
∀k

akΨk (x, t)

]∗ [∑
∀l

alE
2
l Ψl (x, t)

]
dx

=

∫ ∞
−∞

∑
∀k

a∗kΨ∗k (x, t)

[∑
∀l

alE
2
l Ψl (x, t)

]
dx

=

∫ ∞
−∞

∑
∀k

∑
∀l

a∗kalE
2
l Ψ∗k (x, t) Ψl (x, t) dx

=
∑
∀k

∑
∀l

a∗kalE
2
l

∫ ∞
−∞

Ψ∗k (x, t) Ψl (x, t) dx

=
∑
∀k

∑
∀l

a∗kalE
2
l δkl

=
∑
∀k

a∗kakE
2
k. (85)

From the Eqs. (82) and (85), one reaches:

〈
E2
〉
− 〈E 〉2 = σ2

E =
∑
∀k

a∗kakE
2
k −

(∑
∀k

a∗kakEk

)2

,

(86)
which may be written as:

σ2
E =

∑
∀k

a∗kakE
2
k −

∑
∀k

a∗kak 〈E 〉Ek. (87)

Now, one imposes the condition given by the Eq. (58) to
obtain its necessary condition, once E = Ek was already
shown as being a sufficient condition to obey the Eq.
(58). Hence, in virtue of the Eq. (87):

σ2
E =

∑
∀k

a∗kakEk (Ek − 〈E 〉) = 0. (88)

Since we are imposing σ2
E = 0, the Eq. (88):∑

∀k

a∗kakEkEk =
∑
∀k

a∗kakEk 〈E 〉 , (89)

must hold in any situation by hypothesis. This imply the
Eq. (88) must identically vanish, viz., the left-hand side
and the right-hand side of the Eq. (89) are to be identical
ones. Otherwise, one would have to choose a value for
〈E 〉 at each specific situation to satisfy the Eq. (89) [Eq.
(88), equivalently], which is an absurd once the 〈E〉 is
not constrained by the Eq. (88), but a consequence of
the Eq. (82). Hence, to the Eq. (88) identically vanish:

∀k : Ek = 〈E〉 , (90)



11

from which, in virtue of these conclusions regarding the
necessity and the sufficiency for the Eq. (58):

σ2
E = 0⇔ ∀k : Ek = 〈E 〉 = E. (91)

The Eq. (91) translates the characteristic of a c-
dialectic regarding a well defined energy over the chrono-
logical domain t ∈ Ic. Back to the Eq. (34), in virtue of
the Eq. (14), one needs to solve:

i~
∂

∂t
Ψ (x, t) = EΨ (x, t) , (92)

where E is constant. One should grasp the meaning of
the Eq. (91) is not that one cannot consider different
eigenvalues over the entire chronology of the Schrodinger
equation, but, once the physical system has got its de-
scription under a c-dialectic, viz.: ∀t ∈ Ic, this latter be-
ing just a part of the entire chronology, the c-dialectical
description implies a well defined energy E = Ek, in spite
of which k c-dialectically holds, since E = Ek must be
the same despite of k over Ic. Over the mutually ex-
clusive q-dialectical chronology, ∀ t ∈ Iq, the history is
mutually exclusive to the one over Ic, and different eigen-
values may be very well putted under superposition, as
discussed before and obtained in the previous section for
the q-dialectic.

In virtue of the Eq. (20), one should solve the Eq. (92)
via the canonical way, viz.:

i~
∂

∂t
Ψk (x, t) = EkΨk (x, t) , (93)

also noting that the Eq. (91) will turn out to impose
a chronological boundary condition, since the Eq. (91)
holds ∀ t ∈ Ic, in spite of the spatial location x. This
latter assertion will follow from separability, as we will
infer below.

In fact, imposing, again, now ∀ t ∈ Ic, emphasizing:

Ψk (x, t) = fk (t)χk (x) , (94)

∀ t ∈ Ic = [τ,+∞), one has got, in virtue of the Eqs.
(93) and (94):

i~
∂

∂t
[fk (t)χk (x)] = Ekfk (t)χk (x)⇒

i~χk (x)
∂

∂t
fk (t) = Ekfk (t)χk (x)⇒

χk (x)

[
i~
∂

∂t
fk (t)− Ekfk (t)

]
= 0

∀χk(x)6=0

∴

i~
∂

∂t
fk (t) = i~

d

dt
fk (t) = Ekfk (t) , (95)

from which one infers ∀χk (x) 6= 0 ∈ C, the solution of the
relevant differential equation that turns out to emerge to
be solved, Eq. (95), did not require any correlation to a
solution related to a differential equation for χk (x), as for

the q-dialectical domain, this latter related to the Eqs.
within the Eq. (42), viz.: Eqs. (43) and (44) correlated
by the separation constant Ek, as discussed throughout
the previous section. Hence, one trivially solves the Eq.
(95), i.e.:

i~
dfk (t)

fk (t)
= Ekdt⇒

i~
∫ t

τ

dfk (t)

fk (t)
= Ek

∫ t

τ

dt⇒

i~ ln [fk (t)]|tτ = Ekt|tτ ⇒
i~ ln [fk (t)]− i~ ln [fk (τ)] = Ekt− Ekτ ⇒
i~ {ln [fk (t)]− ln [fk (τ)]} = Ekt− Ekτ ⇒

ln [fk (t)]− ln [fk (τ)] =
Ekt

i~
− Ekτ

i~
⇒

ln

[
fk (t)

fk (τ)

]
=

Ekt

i2~
i− Ekτ

i2~
i⇒

ln

[
fk (t)

fk (τ)

]
= − iEkt

~
+
iEkτ

~
⇒

fk (t)

fk (τ)
= eiEkτ/~e−iEkt/~ ∴

(96)

fk (t) = fk (τ) eiEkτ/~e−iEkt/~, (97)

from which and from the Eq. (94):

Ψk (x, t) = fk (τ) eiEkτ/~e−iEkt/~χk (x) , (98)

∀χk (x) 6= 0 ∈ C. Now, also in virtue of the Eq. (20),
one applies a superposition as valid for a quantical cause,
asseverating the condition given by the boundary classi-
cality that will be instrumentally imposed, given by the
Eq. (91), will turn out to accomplish the effect given
by the right-hand side of the Eq. (20); dialectically, the
effect, given by the razor for dialectics: Nature, from
which, firstly:

Ψ (x, t) =
∑
∀k

γkΨk (x, t)

Eq. (98)
=

∑
∀k

γkfk (τ) eiEkτ/~e−iEkt/~χk (x) ,

(99)

where the γk’s, ∀ k, are the coefficients of the superposi-
tion. Now, defining, with no loss of generality:

γkfk (τ) eiEkτ/~ ≡ a+
k ∈ C, (100)

one simply rewrites the Eq. (99), for the solution of the
Eq. (34) ∀ t ∈ Ic:

Ψ (x, t) =
∑
∀k

a+
k e
−iEkt/~χk (x) , (101)
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with no imposition, yet, of the condition given by the
Eq. (91). Now, in virtue of the Eqs. (91) and (101), a
c-dialectical description ∀ t ∈ Ic = [τ,+∞) implies:∑

∀k

a+
k e
−iEkt/~χk (x) = e−iEct/~χc (x) , (102)

∀ c ∈ {k}, being c c-classically fixed ex post, from which
one concludes that:

a+
k e
−iEkt/~ = δcke

−iEkt/~, (103)

where δck is the Kronecker delta: δck = 1 for c = k, δck = 0
otherwise, from which ∀ t ∈ Ic:

a+
k = δck. (104)

Back to the Eq. (101), one obtains the solution for the
Eq. (34) over the c-dialectical domain Ic:

Ψ (x, t) =
∑
∀k

δcke
−iEkt/~χk (x)

= δcce
−iEct/~χc (x) = e−iEct/~χc (x) .

(105)

Hence, one reaches the general solution of the Eq. (34),
for Vp (x, t) = Vp (x), as discussed before, in virtue of the
Eqs. (50), (53), (57) [these over the chronology Iq] and
(105) [this over the chronology Ic], i.e.:

∀t ∈ Iq ∪ Ic = (−∞, τ) ∪ [τ,+∞) = R : Ψ (x, t) = (1− δtt̄)
∑
∀k

ake
−iEkt/~φk (x) + δtt̄

∑
∀k

δcke
−iEkt/~χk (x) , (106)

given the Eqs. (50), (53), (54), (57) [these over Iq, to
establish the physical problem generating the ak coeffi-
cients], and the Eqs. (13) and (14). In the next section,
we will verify the validity of the probability conservation
for the entire chronology.

ON THE PROBABILITY CONSERVATION OVER
t ∈ Iq ∪ Ic

Putting the solution for the Eq. (34), given by the Eq.
(106), within the Eq. (75), one has got:

a∗SaS =

∫ ∞
−∞

[
(1− δtt̄)

∑
∀k

ake
−iEkt/~φk (x) + δtt̄

∑
∀k

δcke
−iEkt/~χk (x)

]∗
×

×

[
(1− δtt̄)

∑
∀l

ale
−iElt/~φl (x) + δtt̄

∑
∀l

δcl e
−iElt/~χl (x)

]
dx = 1

(107)

For t ∈ Iq, one has, in virtue of the Eq. (13), that δtt̄ = 0,
from which the Eq. (107) reads:
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a∗SaS =

∫ ∞
−∞

[∑
∀k

ake
−iEkt/~φk (x)

]∗∑
∀l

ale
−iElt/~φl (x) dx

=

∫ ∞
−∞

∑
∀k

∑
∀l

a∗kale
−i(El−Ek)t/~φ∗k (x)φl (x) dx

=
∑
∀k

∑
∀l

a∗kale
−i(El−Ek)t/~

∫ ∞
−∞

φ∗k (x)φl (x) dx

=
∑
∀k

∑
∀l

a∗kale
−i(El−Ek)t/~δkl

=
∑
∀k

a∗kake
−i(Ek−Ek)t/~δkk

=
∑
∀k

a∗kak
Eq. (71)

= 1. (108)

Hence:

∀t ∈ Iq :

∫ ∞
−∞

Ψ∗ (x, t) Ψ (x, t) dx =
∑
∀k

a∗kak = 1.

(109)

For t ∈ Ic, one has, in virtue of the Eq. (14), that δtt̄ = 1,
from which the Eq. (107) reads:

a∗SaS =

∫ ∞
−∞

[∑
∀k

δcke
−iEkt/~χk (x)

]∗∑
∀l

δcl e
−iElt/~χl (x) dx

=

∫ ∞
−∞

∑
∀k

∑
∀l

δckδ
c
l e
−i(El−Ek)t/~χ∗k (x)χl (x) dx

=
∑
∀k

∑
∀l

δckδ
c
l e
−i(El−Ek)t/~

∫ ∞
−∞

χ∗k (x)χl (x) dx

=
∑
∀k

∑
∀l

δckδ
c
l e
−i(El−Ek)t/~δkl

=
∑
∀k

δckδ
c
ce
−i(Ec−Ek)t/~δkc

=
∑
∀k

(δck)
2
e−i(Ec−Ek)t/~

= (δcc)
2
e−i(Ec−Ec)t/~

= (δcc)
2

= (1)
2

= 1, (110)

where the separated solutions χk (x), for t ∈ Ic, are or-
thonormalized taken:∫ ∞

−∞
χ∗k (x)χl (x) dx = δkl. (111)

From the Eqs. (108) and (110), the probability is con-
served ∀ t. Also, one may take:

χk (x) ≡ φk (x) , (112)

within the Eq. (106), in virtue of the arbitrarity related
to the separated functions χk (x), as discussed in the pre-
vious section, once the eigenfunctions φk (x) are orhonor-
malized, obviously satisfying the Eq. (111), from which
the general solution of the Eq. (34), Eq. (106), turns out
to read:
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∀t ∈ Iq ∪ Ic = (−∞, τ) ∪ [τ,+∞) = R : Ψ (x, t) =
∑
∀k

[(1− δtt̄) ak + δtt̄δ
c
k] e−iEkt/~φk (x) . (113)

From the Eq. (113), one takes the general coefficient of
superposition ∀ t:

βk = [(1− δtt̄) ak + δtt̄δ
c
k] , (114)

to which one also infers:

∑
∀k

β∗kβk =
∑
∀k

[(1− δtt̄) ak + δtt̄δ
c
k]
∗

[(1− δtt̄) ak + δtt̄δ
c
k] =

∑
∀k

[(1− δtt̄) a∗k + δtt̄δ
c
k] [(1− δtt̄) ak + δtt̄δ

c
k]

=
∑
∀k

[
(1− δtt̄)

2
a∗kak + δtt̄ (1− δtt̄) a∗kδck + δtt̄ (1− δtt̄) akδck + (δtt̄)

2
(δck)

2
]

= (1− δtt̄)
2
∑
∀k

a∗kak + δtt̄ (1− δtt̄)
∑
∀k

δck (a∗k + ak) + (δtt̄)
2
∑
∀k

(δck)
2

= (1− δtt̄)
2

+ 2δtt̄ (1− δtt̄)
∑
∀k

δckRe [ak] + (δtt̄)
2
, (115)

where we have used the Eq. (71) [remembering the ak’s
are the coefficients of superposition over the q-dialectical
domain, i.e., ∀ t ∈ Iq] and the fact that δck is the Kro-
necker delta [from which δck = 1 for c = k, δck = 0 other-
wise]. The second term in the right-hand side of the Eq.
(115) vanishes, once Iq ∩ Ic = ∅ [cf. the Eqs. (13) and
(14)] in spite of Re [ak], the real part of ak [3]. Hence,
the Eq. (115) reads:∑
∀k

β∗kβk = (1− δtt̄)
2

+ (δtt̄)
2

= |(1− δtt̄) + i (δtt̄)|
2
.

(116)
Of course the Eq. (116) is coherent, since, in virtue of
the Eqs. (13) and (14):

∀t ∈ Iq = (−∞, τ) : δtt̄ = 0
Eq. (116)⇒

∑
∀k

β∗kβk = 1,

(117)
or :

∀t ∈ Ic = [τ,+∞) : δtt̄ = 1
Eq. (116)⇒

∑
∀k

β∗kβk = 1,

(118)
i.e., the probability is conserved, as previous and equiv-
alently demonstred through the marches that led to the
Eqs. (108) and (110). Furthermore, it is instructive to
infer the coherence of the Eq. (116) via the imposition:∑

∀k

β∗kβk = (1− δtt̄)
2

+ (δtt̄)
2

= 1, (119)

from which:

1− 2δtt̄ + (δtt̄)
2

+ (δtt̄)
2

= 1⇒
2 (δtt̄)

2 − 2δtt̄ = 0⇒
2δtt̄ (δtt̄ − 1) = 0⇒
δtt̄ (δtt̄ − 1) = 0. (120)

Hence, the Eq. (120) has the solution-set:

δtt̄ ∈ {0, 1} , (121)

in accordance with the Eqs. (13) and (14), also asseverat-
ing the mutual exclusivity between the chronological sets:
Iq ∩ Ic = ∅, in that sense that was so well emphasized
through a chapter by the Prof. Dr. Niels Bohr in [4],
profoundly connected to the [Natural] Complementarity
Principle of Bohr: the corpuscular and wavelike aspects
are complementary ones, so that both are necessary ones,
but they cannot be simultaneously observed.

CONSIDERATIONS AT t = τ

Under a distribution context, throughout this section,
we will investigate the structure of the Schrodinger equa-
tion, within the resonings of this paper, around t = τ ,
which we have got considered as being the instant from
which the physical system under scrutinity turns out to
present a c-dialectical description.

Firstly, the solution we have obtained, given by the Eq.
(113), reads:



15

∀t ∈ Iq ∪ Ic = (−∞, τ) ∪ [τ,+∞) = R : Ψ (x, t) =
∑
∀k

[(1− δtt̄) ak + δtt̄δ
c
k] e−iEkt/~φk (x) , (122)

from which, for the energy operator i~∂/∂t, we are firstly
interested in the quantity:

i~ [Ψ (x, τ + θ/2)−Ψ (x, τ − θ/2)] (1/θ)
!∼=

!∼= i~
∂

∂t
Ψ (x, t)

∣∣∣∣
t=τ

, (123)

at t = τ , with
!∼= meaning 0 < θ → 0. Hence, from the

Eqs. (122) and (123), one has got:

i~
∂

∂t
Ψ (x, t)

∣∣∣∣
t=τ

!∼= i~

{{∑
∀k

[(
1− δ(τ+θ/2)t̄

)
ak + δ(τ+θ/2)t̄δ

c
k

]
e−iEk(τ+θ/2)/~φk (x) +

−
∑
∀k

[(
1− δ(τ−θ/2)t̄

)
ak + δ(τ−θ/2)t̄δ

c
k

]
e−iEk(τ−θ/2)/~φk (x)

}
1

θ

}

= i~

{{∑
∀k

δcke
−iEk(τ+θ/2)/~φk (x)−

∑
∀k

ake
−iEk(τ−θ/2)/~φk (x)

}
1

θ

}
,

(124)

where we have used the Eqs. (13) and (14). Now, apply-
ing Taylor series to represent:

e−iEk(τ+θ/2)/~ = e−iEkτ/~e−iEkθ/(2~)

= e−iEkτ/~

[∑
∀l

1

l!

(
− iEkθ

2~

)l]
;

(125)

e−iEk(τ−θ/2)/~ = e−iEkτ/~eiEkθ/(2~)

= e−iEkτ/~

[∑
∀l

1

l!

(
iEkθ

2~

)l]
,

(126)

one reaches, in virtue of the Eq. (124):

i~
∂

∂t
Ψ (x, t)

∣∣∣∣
t=τ

!∼= i~

{{∑
∀k

δcke
−iEkτ/~

[∑
∀l

1

l!

(
− iEkθ

2~

)l]
φk (x)−

∑
∀k

ake
−iEkτ/~

[∑
∀l

1

l!

(
iEkθ

2~

)l]
φk (x)

}
1

θ

}
.

(127)

Since θ → 0:

[
1

θ

∑
∀l

1

l!

(
− iEkθ

2~

)l]
=
∑
∀l

1

l!

(
− iEk

2~

)l
θl−1 =

[
1

θ
+

(
− iEk

2~

)]
+
∑
∀l≥2

1

l!

(
− iEk

2~

)l
θl−1

!∼=
1

θ
− iEk

2~
; (128)
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[
1

θ

∑
∀l

1

l!

(
iEkθ

2~

)l]
=
∑
∀l

1

l!

(
iEk
2~

)l
θl−1 =

[
1

θ
+

(
iEk
2~

)]
+
∑
∀l≥2

1

l!

(
iEk
2~

)l
θl−1

!∼=
1

θ
+
iEk
2~

. (129)

Substituting the results from the Eqs. (128) and (129) within the Eq. (127), one reaches:

i~
∂

∂t
Ψ (x, t)

∣∣∣∣
t=τ

!∼= i~
∑
∀k

δck

(
1

θ
− iEk

2~

)
e−iEkτ/~φk (x)− i~

∑
∀k

ak

(
1

θ
+
iEk
2~

)
e−iEkτ/~φk (x)

= i~
∑
∀k

(
δck − ak

θ

)
e−iEkτ/~φk (x) +

∑
∀k

1

2
Ek (δck + ak) e−iEkτ/~φk (x)

= i~
∑
∀k

(
δck − ak

θ

)
e−iEkτ/~φk (x) +

∑
∀k

Ek

(
δck −

1

2
δck +

1

2
ak

)
e−iEkτ/~φk (x)

=
∑
∀k

Ekδ
c
ke
−iEkτ/~φk (x) +

1

2

∑
∀k

(ak − δck)Eke
−iEkτ/~φk (x) +

∑
∀k

i~
(
δck − ak

θ

)
e−iEkτ/~φk (x)

=
∑
∀k

Ekδ
c
ke
−iEkτ/~φk (x) +

∑
∀k

i~
[

(δck − ak)

θ
− (δck − ak)

2

Ek
i~

]
e−iEkτ/~φk (x)

=
∑
∀k

Ekδ
c
ke
−iEkτ/~φk (x) +

∑
∀k

i~
(δck − ak)

θ

(
1 + i

Ek
2~
θ

)
e−iEkτ/~φk (x) (130)

=
∑
∀k

Ekδ
c
ke
−iEkτ/~φk (x) +

∑
∀k

i~
dβk
dt

∣∣∣∣
t=τ

z (θ) e−iEkτ/~φk (x) , (131)

where:

z (θ) ≡ 1 + i
Ek
2~
θ

!∼= 1; (132)

and:

βk|t=τ+ = δck, (133)

βk|t=τ− = ak; (134)

τ+ = τ +
θ

2
, τ− = τ − θ

2
, (135)

in virtue of the Eqs. (13), (14) and (114), from which:

dβk
dt

∣∣∣∣
t=τ

!∼=
(δck − ak)

θ
. (136)

Hence, the Eq. (131) turns out to read, as θ → 0:

i~
∂

∂t
Ψ (x, t)

∣∣∣∣
t=τ

=
∑
∀k

Ekδ
c
ke
−iEkτ/~φk (x) +

∑
∀k

i~
dβk
dt

∣∣∣∣
t=τ

e−iEkτ/~φk (x) . (137)

In fact, in virtue of the Eq. (113):



17

i~
∂

∂t
Ψ (x, t) = i~

∂

∂t

∑
∀k

βke
−iEkt/~φk (x)

Eq. (114)
= i~

∂

∂t

∑
∀k

[(1− δtt̄) ak + δtt̄δ
c
k] e−iEkt/~φk (x)

= i~
∑
∀k

{
[(1− δtt̄) ak + δtt̄δ

c
k]
∂

∂t

[
e−iEkt/~φk (x)

]
+ e−iEkt/~φk (x)

∂

∂t
[(1− δtt̄) ak + δtt̄δ

c
k]

}
= i~

∑
∀k

{
[(1− δtt̄) ak + δtt̄δ

c
k]

[
φk (x)

∂

∂t

(
e−iEkt/~

)]
+ e−iEkt/~φk (x)

[
ak

∂

∂t
(1− δtt̄) + δck

∂

∂t
δtt̄

]}
= i~

∑
∀k

{
[(1− δtt̄) ak + δtt̄δ

c
k]

[(
− iEk

~

)
e−iEkt/~φk (x)

]
+ e−iEkt/~φk (x)

[
−ak

∂

∂t
δtt̄ + δck

∂

∂t
δtt̄

]}
=
∑
∀k

[(1− δtt̄) ak + δtt̄δ
c
k]Eke

−iEkt/~φk (x) +
∑
∀k

i~
[
(δck − ak)

∂

∂t
δtt̄

]
e−iEkt/~φk (x) ∴

i~
∂

∂t
Ψ (x, t)

∣∣∣∣
t=τ

=
∑
∀k

[(1− δτ t̄) ak + δτ t̄δ
c
k]Eke

−iEkτ/~φk (x) +
∑
∀k

i~ (δck − ak)
∂

∂t
δtt̄

∣∣∣∣
t=τ

e−iEkτ/~φk (x)

=
∑
∀k

Ekδ
c
ke
−iEkτ/~φk (x) +

∑
∀k

i~ (δck − ak)
∂

∂t
δtt̄

∣∣∣∣
t=τ

e−iEkτ/~φk (x) , (138)

since:

δτ t̄ = 1, (139)

in virtue of the Eq. (14). Furthermore:

∂

∂t
δtt̄ =

d

dt
δtt̄ = δ (t− τ) , (140)

where δ (t− τ) is the Dirac delta function, to be discussed
below in terms of delta sequences, but, for now, we will
simply write down:

δ (x) = ∞, for x ∈ R ∧ x = 0; (141)

δ (x) = 0 , for x ∈ R ∧ x 6= 0, (142)

which raises the high peak sifting property of transition
between dialectical descriptions for the physical system,
which would be referred as a discontinuous transition un-
der the usual definition for continuous functions, but,
once understood as a distribution, it is the highly con-
centrated behaviour that naturally occurs, which is quite
common in Nature. Hence, from the Eqs. (137), (138)
and (140), one obtains:

d

dt
βk

∣∣∣∣
t=τ

= (δck − ak)
d

dt
δtt̄

∣∣∣∣
t=τ

= (δck − ak) δ (t− τ)|t=τ ,

(143)
where:

∂

∂t
δtt̄

∣∣∣∣
t=τ

=
d

dt
δtt̄

∣∣∣∣
t=τ

= δ (t− τ)|t=τ = δ (0s)

= s−1δ (0) , (144)

i.e., a highly concentrated distribution over the chrono-
logical set (−∞, τ) ∪ [τ,+∞).

Within the ordinary physics, one may construct the
Dirac delta function via delta sequences to study its
highly peaked sifting property, but one is usually not
so quite interested in the details that occur at, say, in
an analogy with our case being discussed in this paper,
τ , i.e., e.g., an instantaneous localized force, i.e., an im-
pulsive force that frequently occur in classical mechanics,
may be directly modelled by the use of the delta func-
tion, once the physical relevance turns out to be the lin-
ear momentum variation, the impulse obtained by the
integration of the impulsive force modelled by the delta
function which neglects the details around the instant τ
at which the impulsive force is applied. This is a mechan-
ically idealized scenario, and, so far one is not interested
in the details within the impulsive process, the delta func-
tion turns out to be a quite good mathematical object to
mathematically describe this localized phenomenon.

But in our case being discussed in this paper we will be
interested in the details around τ , which will be discussed
in the next section.

ON THE COLLAPSE OF THE WAVE FUNCTION

Let Ψ (x, t) be the wave function of a quantum object.
What is the utility for an observer i, concerning this wave
function as a representation of a quantum object? The
level of representation must be the mathematical one,
since this is the spirit of the mathematics in physics. By
the way, the answer is within the question. Any observer
would agree: the utility of Ψ (x, t) is the representation
of a quantum object. In a mathematical representation
of a quantum object, a basis must be choosen. In any
case, choosen or given/prescribed, the quantum object is
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absolute in existence, i.e., remains the same quantum ob-
ject, remains independent of the basis choosen or given by
anything external to it. Since the quantum object to be
mathematically represented is absolute, a choosen basis
must be equivalent to a given/prescribed one regarding
this mathematical representation of Ψ (x, t), ∀ observers
i. Hence, the utility of Ψ (x, t)’s mathemathical represen-
tation must be exactly the same as the utility of Ψ (x, t)’s
mathematical representation given a basis [5]. Now, we
reformulate, equivalently, our question: Given a basis,
what is the utility of the mathematical representation of
Ψ (x, t) for an observer? Any observer would agree: The
utility is on the knowledge of the set of coefficients of the
representation in the given basis, since one would not
be able to mathematically construct a quantum object
without these coefficients ([1], in Sect. 6).

This said, once the dialectics remains unchanged:

d

dt
βk = 0, (145)

for an object Ψ (x, t) mathematically represented by:

Ψ (x, t) =
∑
∀k

βkΨk (x, t) . (146)

Now, to change the dialectics, lets suppose an influence
f (t) acts on the system under scrutinity within the in-
terval (τ − θ/2, τ + θ/2), θ ∈ (0,+∞), so that:

d

dt
βk = f (t) , τ − θ

2
< t < τ +

θ

2
. (147)

Hence, one has, for the physical system under scrutinity:

d

dt
βk = 0, t < τ − θ

2
; (148)

d

dt
βk = f (t) , τ − θ

2
< t < τ +

θ

2
; (149)

d

dt
βk = 0, t > τ +

θ

2
, (150)

once well defined dialectics hold within (−∞,+∞) −
(τ − θ/2, τ + θ/2), but not necessarily the same ones.
The Eqs. (148) and (150) have got the following solu-
tions:

βk = ak, ak ∈ C, t < τ − θ

2
; (151)

βk = ck, ck ∈ C, t > τ +
θ

2
, (152)

where ak and ck are constants providing their respec-
tive constant dialectics within their respective dialectical
domains. Since there is dialectical change due to f(t)
within the interval (τ − θ/2, τ + θ/2), one cannot refer
to an unique dialectical characterization within this in-
terval, and it seems inteligibility lacks. Integrating the

Eq. (149), one has got:∫ τ+θ/2

τ−θ/2
dβk =

∫ τ+θ/2

τ−θ/2
f (t) dt⇒

βk (τ + θ/2) = βk (τ − θ/2) +

∫ τ+θ/2

τ−θ/2
f (t) dt

(153)

Once one expects spacetime as being homogeneous, spe-
cially in relation to the chronological domain, since there
is no reason to suppose a measure that is accomplished
at a given instant τ turns out to be different from any
other measure at any other instant within (−∞,+∞),
mantained the conditions for reprodutibility, viz., man-
tained the same characteristics of any of the identical
designed apparata that eventually is used to scrutinize
the physical system under consideration. In fact, under
chronological homogeneity, the assertion that for a given
instant at t for a measure that will be accomplished at
a future instant τ in relation to t one has got its future
symmetrical instant τ + (τ − t) = 2τ − t in relation to τ
such that:

• the [preterit, in relation to τ ] chronologically prob-
abilistical weight:

π (t→ τ) =
dt

τ − t
, (154)

and:

• the [future, in relation to τ ] chronologically proba-
bilistical weight:

π [τ → (2τ − t)] =
dt

(2τ − t)− τ
=

dt

τ − t
, (155)

as being the same ones, as required by an assump-
tion of chronological homogeneity, viz., having got the
same chronological partition dt > 0 [since one takes
|d (τ − t)| = |−dt| = dt, and t increases, and, also, it
is the norm of an elementary piece of chronological in-
terval τ − t that matters to calculate the chronological
probability within each of the above mentioned intervals]
over identically symmetrical [in relation to τ ] intervals:

τ − t = (2τ − t)− τ. (156)

Hence, once considering t will symmetrical and futurely
vary through τ from its presently instantaneous distance
θ (t) /2 = τ − t from τ , at t < τ , being τ arbitrary, the
symmetrically averaged value of dβk/dt over (t, 2τ − t)
turns out to read:〈

dβk
dt

〉
(t,2τ−t)

=

(∫ τ

t

+

∫ 2τ−t

τ

)
dβk
dξ

dξ

τ − ξ

=

(∫ τ

t

+

∫ 2τ−t

τ

)
β̇k (ξ)

dξ

τ − ξ
,

(157)
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where the superscripted dot represents the total differen-
tiation in relation to time [ξ]. β̇k (ξ) is being considered
as a function of ξ. With a change of variable:

u (ξ) ≡ 2τ − ξ, (158)

the second integration at the right-hand side of the Eq.
(157) turns out to read:∫ 2τ−t

τ

β̇k (ξ)
dξ

τ − ξ
=

∫ u(2τ−t)

u(τ)

β̇k (ξ (u))
dξ (u)

τ − ξ (u)

=

∫ t

τ

β̇k (2τ − u)
(−du)

u− τ

=

∫ τ

t

β̇k (2τ − u)
du

u− τ

=

∫ τ

t

−β̇k (2τ − u)
du

τ − u
.

(159)

Now, the variable u, in virtue of the Eq. (159), varies
exactly as the variable ξ in the first integral at the right-
hand side of the Eq. (157), viz., from t to τ , the reason
by which one may relable u → ξ within the right-hand
side of the Eq. (159), rewriting:∫ 2τ−t

τ

β̇k (ξ)
dξ

τ − ξ
=

∫ τ

t

−β̇k (2τ − ξ) dξ

τ − ξ
. (160)

Henceforth, from the Eq. (160), the Eq. (157) reads:〈
dβk
dt

〉
(t,2τ−t)

=

∫ τ

t

[
β̇k (ξ)− β̇k (2τ − ξ)

] dξ

τ − ξ
.

(161)
Now, one turns out to be interested in an existence

condition E such that:

E ⇔ ∃
〈
dβk
dt

〉
(t,2τ−t)

, (162)

under the chronological homogeneity we are considering,
which, physically, consubstantiates the existence of wave-
like objects [mathematically represented wavelike objects
as the ones in the Eq. (146), for which the superposition
coefficients matter]. For this purpose, we define a new
variable:

ζ ≡ τ − ξ ⇒ dξ = −dζ, (163)

[τ is a constant with time dimension] allowing to rewrite
the Eq. (161):〈
dβk
dt

〉
(t,2τ−t)

=

∫ 0

τ−t

[
β̇k (τ − ζ)− β̇k (τ + ζ)

] (−dζ)

ζ

=

∫ τ−t

0

[
β̇k (τ − ζ)− β̇k (τ + ζ)

] dζ
ζ

=

∫ τ−t

0

[
β̇k (τ − ζ)− β̇k (τ + ζ)

]
d ln |ζ|.

(164)

Using the first mean value theorem, deliberately, for the
integration at the right-hand side of the Eq. (164), one
reaches:〈

dβk
dt

〉
(t,2τ−t)

=
[
β̇k
(
τ − ζ̄

)
− β̇k

(
τ + ζ̄

)]
ln |ζ||τ−t0 ,

(165)
where

(
ζ̄ > 0

)
∈ (0, τ − t), which suggests a weaker con-

dition for E [cf. Eqs. (161), (162) and (165) and the
inherent discussion]:

β̇k (τ + ζ) = β̇k (τ − ζ) , (166)

with (ζ > 0) ∈ (0, τ − t), i.e., being the function, β̇k (ξ),
even, symmetric, in relation to τ . A stronger condition
would read:

β̈k (ξ) =
d2

dξ2
βk (ξ) = 0, ∀ ξ ∈ (t, 2τ − t) , (167)

for which, β̇k (ξ), is, also, an even function. If an instant
τ turns out to be special in any sense, i.e., if τ turns
out to separate two chronologically homogeneous regions,
over τ ’s left and over τ ’s right, so that τ would be being
a chronologically local boundary for different dialectics,
one over (t, τ) and the other over (τ, 2τ − t), ∀ t, it would
become a case for the condition stated by the Eq. (166);
otherwise, the condition given by the Eq. (166) would
apply ∀ τ , since there would not be any special τ , or,
which is the same, with every τ identically special, a case
in which a constant function β̇k (ξ) would be required,
the content of the Eq. (167) to satisfy the condition
established by the Eq. (166), ∀ τ , and not just for an
unique one. Now, we will study, more carefully, the Eq.
(157) from a more general condition.

To begin with, the Eq. (157) may, in fact, be un-
derstood as being generated by the following differential
equation for dβk/dt [we are back to the original notation
for time, t, instead of ξ, since we are to work out the
infinitesimal version of the Eq. (157) around τ (being τ
arbitrary), as, below, we are to see and to define]:

d

dt
β̇k =

β̇k
τ − t

= − β̇k
t− τ

, (168)

where the interpretation for
〈
β̇k

〉
, left-hand side of the

Eq. (157), emerges under the construction we discussed,
leading to the integration of the Eq. (168), which is the
infinitesimal version of that former Eq. (157), around τ ,
where:

d

dt
βk ≡ β̇k, (169)

viz., as before, the superscripted dot represents the to-
tal differentiation in relation to time. The Eq. (157) is
elementary, singular, due to the following aspects:
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• (i): Is singular, since the integral related to it is
critical at τ [cf. the previous discussion leading
to the Eqs. (165), (166) and (167), as well as the
right-hand side of the Eq. (168) which turns out to
originate that discussion on criticality];

• (ii): Is singular, once the probability distribution
given by the Eq. (154) [and (155)] is unique, viz.,
does not depend on which [specific] τ is choosen to
accomplish a measure [one infers it symmetrically
depends on the chronological distance to τ ], once
the chronological domain is taken as homogeneous,
from which the solution of the Eq. (168) will not
depend on specific initial conditions, viz., it must
remain valid under any specific situaton [if one want
to make a reference to Born’s rule here, for instruc-
tive purposes, one turns out to infer this rule es-
tablishes the probabilistical meaning for measures,
given a solution for the Schrodinger equation, with
no reference to specific instants; the homogeneity,
here, is related to the fact that, under Born’s rule,
there is not any chronological bias. But, in fact,
there is a chronological bias in the sense the wave

function turns out to change its dialectical descrip-
tion in virtue of a potential energy operator related
to this change of description at τ : it seems some
sort of paradoxical objectivity raises, which will be
discussed and solved within this section];

• (iii): Is singular, once the Eq. (168) will turn out
to be compatible with the characteristic of a dis-
tribution, as we will see, even with its [apparent]
incompatibility with continuity in the usual math-
ematical sense.

We start with the verification of the assertion we have
pointed out by the item (iii) above. To verify that β̇k (t) is
compatible with a distribution characteristic, we, firstly,
will solve the Eq. (168). Its solution reads:

β̇k (t) =
γk
|t− τ |

=
γk√

(t− τ)
2
, (170)

with γk ∈ C, as one may verify by substitution. In fact,
the left-hand side of the Eq. (168) reads:

d

dt
β̇k

Eq. (170)
=

d

dt

(
γk
|t− τ |

)
=

d

dt

 γk√
(t− τ)

2

 = γk
d

dt

{[
(t− τ)

2
]−1/2

}
= γk

(
−1

2

)[
(t− τ)

2
]−3/2

(2) (t− τ)

= −γk
t− τ[

(t− τ)
2
]3/2 = −γk

t− τ[√
(t− τ)

2

]3 = −γk (t− τ)

|t− τ |3
, (171)

and the right-hand side of the Eq. (168) also reads:

− β̇k
t− τ

Eq. (170)
= − γk

(t− τ) |t− τ |
= − γk

(t− τ) |t− τ |
t− τ
t− τ

= − γk (t− τ)

(t− τ)
2 |t− τ |

= − γk (t− τ)

|t− τ |2 |t− τ |
= −γk (t− τ)

|t− τ |3
.

(172)

The Eqs. (171) and (172) lead to the Eq. (168), as
required. We may verify the condition required for βk (ξ)
as being an even function in relation to τ , Eq. (166), is
satisfied by the solution given by the Eq. (170):

β̇k (τ + ζ) =
γk
|ξ − τ |

∣∣∣∣
ξ=τ+ζ

=
γk

|(τ + ζ)− τ |
=
γk
|ζ|
,

β̇k (τ − ζ) =
γk
|ξ − τ |

∣∣∣∣
ξ=τ−ζ

=
γk

|(τ − ζ)− τ |
=

γk
|−ζ|

.

Hence:

β̇k (τ + ζ) = β̇k (τ − ζ) =
1

ζ
> 0, (173)

since ζ > 0 [cf. the discussion inherent to the march
that led to the the Eq. (166), from the Eq. (154)]. The
distribution characteristic related to the Eq. (168) arises
from the singular characteristic we have pointed out by
the items (i), (ii) and (iii) above, but one must analyze
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this issue through a deeper mathematical property: the
singular characteristic per se. The fundamental equation
to obtain this distribution behaviour is not the solution
given by the Eq. (170) for the Eq. (168), i.e., it is the Eq.
(168) per se that generates, as we will see. In fact, an in-
herent paradox turs out to arise, at a first glance, and we
will explain why. Here is the paradox: one deliberately
rewrites the Eq. (168):

(ξ − τ) dβ̇k (ξ) = −β̇k (ξ) dξ = −dβk (ξ)

dξ
dξ, (174)

which, by an integration over ξ ∈ (t, 2τ − t), leads to:∫ 2τ−t

t

(ξ − τ) dβ̇k (ξ) =

∫ 2τ−t

t

−β̇k (ξ) dξ, (175)

which, after integrating by parts the left-hand side of the
Eq. (175): ∫

µdν = µν −
∫
νdµ, (176)

with:

µ ≡ ξ − τ, (177)

dν ≡ dβ̇k (ξ) , (178)

yields:∫ 2τ−t

t

−β̇k (ξ) dξ = (ξ − τ) β̇k (ξ)
∣∣∣2τ−t
t

+

−
∫ 2τ−t

t

β̇k (ξ) d (ξ − τ) ,

= (ξ − τ) β̇k (ξ)
∣∣∣2τ−t
t

+

−
∫ 2τ−t

t

β̇k (ξ) dξ.

(179)

Hence:

(ξ − τ) β̇k (ξ)
∣∣∣2τ−t
t

= 0, (180)

which is an absurd, since, with the Eq. (170) [also an
absurd by consideration on parity of β̇k (ξ), by the Eqs.
(166) and (173)]:

(ξ − τ) β̇k (ξ)
∣∣∣2τ−t
t

= (ξ − τ)
γk
|ξ − τ |

∣∣∣∣2τ−t
t

= γk
[(2τ − t)− τ ]

|(2τ − t)− τ |
− γk

t− τ
|t− τ |

= γk
τ − t
|τ − t|

− γk
t− τ
|t− τ |

= γk
τ − t
|τ − t|

+ γk
τ − t
|τ − t|

= 2γk
τ − t
|τ − t|

= 2γk,

(181)

since, as discussed, τ > t [remember we have been con-
sidering τ as an future event for t at t; the reason by
which we must relable the chronological variable, ξ in-
stead of t, when needed]. By the Eqs. (180) and (181),
one faces a paradox. One would argue γk = 0 circum-
vents the paradox, but, unfortunatelly, this argument is
to assert an unique solution for the Eq. (168), in our
context, just the trivial one. There is a richer argument
for the circumvention, as we are to also develop within
the next lines of this section.

The word is singularity, as it very seems. One may ask
if the solution for the Eq. (168), given by the Eq. (170),
is obeying this former Eq. (168) in any sense, once the
Eq. (170) really obeys the Eq. (168) and avoids the es-
tablishment of a particular constant of integration: since
τ is arbitrary and appears within the Eq. (168), viz.,
appears in this generating differential equation, which is
not a behaviour for a constant of integration [of course,
the constant of integration seems to be γk, but the situa-
tion is not typical, and for the sake of digression, we are
considering all the arbitrary, say, parameters]; since γk,
which may, clearly, be arbitrary within the march that
led to the verification that the Eq. (170) is solution for
the Eq. (168), via the obtained Eqs. (171) and (172), ∀
γk ∈ C, avoids its establishment:

• Unfortunatelly, it turned out to lead to that, say,
paradoxical restriction for γk: γk = 0.

The source of this paradox resides in the use of the Eq.
(176), which borns from the rule for differentiation:

d

dξ
[µ (ξ) ν (ξ)] = µ (ξ)

d

dξ
ν (ξ) + ν (ξ)

d

dξ
µ (ξ) , (182)

which is legitimate under the assumption the function
being differentiated, µ (ξ) ν (ξ), is continuous within the
domain for which this function is being differentiated. In
other words, the left-hand side of the Eq. (182) must
exist, once one would be mathematically considering a
rule of existence for an object that lacks over the entire
domain for differentiation, leading to a paradox, as it
led. Again, from the elementary calculus, one knows the
necessary condition for the existence of the derivative of
a function at a given point of its domain is the continuity
of the function at the point, viz., mathematically:

∃ d

dξ
f (ξ)

∣∣∣∣
ξ=τ

⇒ lim
ξ→τ

f (ξ) = f

(
lim
ξ→τ

ξ

)
(183)

⇒ lim
ξ→τ−

f (ξ) = lim
ξ→τ+

f (ξ) , (184)

where τ ∈ D
(
ξ
f→ f (ξ)

)
, being ξ ∈ D

(
ξ
f→ f (ξ)

)
the

domain points of the funtion f (ξ). The right-hand side
of the Eq. (184) is just one of the necessary conditions
for the right-hand side of the Eq. (183) [∃ f (τ) and
limξ→τ f (ξ) = f (τ) are the remaining ones, and the
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three are encapsulated within the right-hand side of the
Eq. (183)]. Thus, from the Eq. (184):

lim
ξ→τ−

f (ξ) 6= lim
ξ→τ+

f (ξ)⇒ @
d

dξ
f (ξ)

∣∣∣∣
ξ=τ

. (185)

Now, with:

f (ξ) = µ (ξ) ν (ξ) =

µ(ξ)︷ ︸︸ ︷
(ξ − τ)

γk
|ξ − τ |︸ ︷︷ ︸
ν(ξ)

, (186)

one has got:

lim
ξ→τ−

f (ξ) = lim
ξ→τ−

γk
ξ − τ
|ξ − τ |

= γk lim
h→0

(τ − h)− τ
|(τ − h)− τ |

= γk lim
h→0

(−h)

|−h|
= γk lim

h→0
− h

|h|

= γk lim
h→0
− h

h
= γk lim

h→0
− 1 = γk (−1)

= −γk, (187)

where h ∈ (0,+∞) [with dimension of time], and, analo-
gously, one also has got:

lim
ξ→τ+

f (ξ) = lim
ξ→τ+

γk
ξ − τ
|ξ − τ |

= γk lim
h→0

(τ + h)− τ
|(τ + h)− τ |

= γk lim
h→0

h

|h|
= γk lim

h→0

h

h

= γk lim
h→0

1

= γk, (188)

where, again, h ∈ (0,+∞) [with dimension of time]. Once
again, with γk 6= 0, one concludes from the Eqs. (185),
(187) and (188) that:

@
d

dξ
[µ (ξ) ν (ξ)]

∣∣∣∣
ξ=τ

. (189)

It very seems the constant γk is an intrinsical property
of a family of solutions related to the Eq. (170) [relating
Eq. (170) to a family of solutions, being the Eq. (170)
a singular solution that avoids establishment from such
family], that cannot be established, given a particular
point, namely ξ = τ , from the Eq. (168), hence, pointing
to the possibility of a singular solution for the Eq. (168).
One observes that the Eq. (170) will also obey the fol-
lowing differential equation, which is the very same as
the Eq. (168):

η (ξ)

[
d

dξ
β̇k (ξ) +

β̇k (ξ)

ξ − τ

]
= 0, (190)

provided η (ξ) 6= 0. To raise the singularity, one observes
the highest order for a pole at ξ = τ follows from the Eq.

(171) [and, equivalently, from the Eq. (172)], from which
ξ = τ turns out to be a pole of second order. Hence, the
imposition:

η (ξ) (ξ − τ)
2

= η (ξ) |ξ − τ |2 ∝ 1, (191)

is sufficient to remove the singularity due to a second
order pole, being the proporcionality achieved by a con-
stant, say κ [which must be a non vanishing one, since
η (ξ) 6= 0], that will be absorbed below, since the Eq.
(190) may be equivalently rewritten as:

d

dt
β̇k (ξ) = −η (ξ)

η (ξ)

β̇k (ξ)

ξ − τ

= [−η (ξ)]

[
1

η (ξ)

]
β̇k (ξ)

ξ − τ

= [−η (ξ)]

[
(ξ − τ)

2

κ

]
β̇k (ξ)

ξ − τ

=

[
−η (ξ)

κ

]
(ξ − τ) β̇k (ξ) ,

from which, henceforth, the Eq. (190) turns out to read:

d

dt
β̇k (ξ) = η̃ (ξ) (ξ − τ) β̇k (ξ) . (192)

Of course, the Eq. (192) is identical to the Eq. (168), but
in a context one tries to determine emergent solutions for
the Eq. (192) with these solutions being particular cases
of a general solution G (ξ), provided the Eq. (170) is also
a solution, albeit unique, singular, for the Eq. (192) [and,
which is the same, for the Eq. (168)]. These facts are to
be putted within a sufficiently rigorous framework within
the subsequent lines of this section. The general solution
for the Eq. (192) may be putted under the form:

G
(
β̇k, ξ, C

)
= 0, (193)

where C is a constant of integration, so that: particular-
izing a value for C gives a particular solution for the Eq.
(192), albeit the Eq. (170) could not be obtained from
any particular C. In principle, one asserts, the Eq. (193)
is such that it may be inverted for C, viz., that it may be
rewritten as:

C = C (ξ) = C
(
β̇k (ξ) , ξ

)
. (194)

For a given particular solution for the Eq. (192), the
Eq. (194) would establish an unique, a fixed constant for
the considered particular solution, provided some specific

point, say S, with coordinates
(
ξS , β̇k (ξS)

)
, so that:

CS = C (ξS) = C
(
β̇k (ξS) , ξS

)
, (195)

i.e., the constant of integration has turned out to be fixed,
generating the particular solution:

GS

(
β̇k, ξ, CS

)
= 0, (196)
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via the Eq. (193). This process of specification for the
obtention of a particular solution would generate all the
possible solutions for the Eq. (192), obeying their specific
initial conditions via Eq. (195), except for an unique, a
singular solution, which, in our case, very seems to be
given by the Eq. (170), which needs to be verified. Spec-
ification would lack for singular solution. Furthermore,
once the singular solution also obeys its generating dif-
ferential equation, the points pertaining to the singular
solution also pertain to particular solutions, so that C (ξ)
would not be a constant over the singular solution, albeit
constant at each non-singular particular solution. Given
these considerations, the Eq. (192):

d

dt
β̇k (ξ) = η̃ (ξ (C)) (ξ − τ) β̇k (ξ)

= η̃ (C) (ξ − τ) β̇k (ξ) , (197)

turns out to have got two distinct but complementary
contexts:

• The singular context, for which C (ξ) varies, and
η̃ (ξ) also varies, but it is not felt [at least under an
explicit sense] by the singular solution, once η (ξ)
cancels out within the Eq. (190), generating the
Eq. (168) which is obeyed by the singular solution,
namely, in our case, by the Eq. (170);

• The general solution context, which encapsulates
all the particular solutions, but not the singular
one, a context for which C (ξ) varies only over dis-
tinct particular solutions, being a fixed parameter
for a particular solution for the Eq. (192); thus,
each particular solution turns out to obey the Eq.
(192) with a fixed η̃ (ξ).

Here, one needs to put these characteristics under a con-
crete mathematical formulation.

Firstly, one denotes the singular solution for the Eq.
(197) [which is the very same Eq. (192), remembering
C = C (ξ), under the singular context] by:[

β̇k (ξ)
]

Singular
≡ s (ξ) . (198)

Now, since a point S, with coordinates (ξS , s (ξS)), that
pertain to the singular solution also pertain to some
particular solution for which the constant of integration
reads CS = C (s (ξS) , ξS), due to the Eq. (194), the
set of coordinated points {(ξ, s (ξ))} which gives the en-
tire singular solution determines a miriad of constants
of integration C (s (ξ) , ξ), viz., the points pertaining to
the singular solution pertain, each, to a given particular
solution, the reason why one cannot specify the singu-
lar solution by a particularization of C, once a miriad
of particular solutions is necessary to geometrically give
the entire singular solution. Hence, the equation for the

singular solution turns out to be geometrically given by
its miriad of points (ξ, s (ξ)) obeying:

G (s (ξ) , ξ, C (s (ξ) , ξ)) = 0, (199)

since these are the points pertaining, one by one, to some
particular solution which, particularly, is given by the Eq.
(193). Furthermore, considering C (s, ξ) [s = s (ξ)] as
being differentiable, non entirely constant nor by pieces
[once the singular solution would, entirely or by pieces,
degenerate into a particular solution], one differentiates
the equation for the singular solution, the Eq. (199), in
relation to ξ, i.e.:

d

dξ
G (s, ξ, C) =

∂G

∂s

ds

dξ
+
∂G

∂ξ

dξ

dξ
+
∂G

∂C

dC

dξ

=
∂G

∂s

ds

dξ
+
∂G

∂ξ
+
∂G

∂C

dC

dξ

= 0. (200)

But, for the singular solution, which is the case:

dC

dξ
=

d

dξ
C (s, ξ) =

∂C

∂s

ds

dξ
+
∂C

∂ξ

dξ

dξ

=
∂C

∂s

ds

dξ
+
∂C

∂ξ
. (201)

Thus, from the Eqs. (200) and (201):

d

dξ
G (s, ξ, C) =

∂G

∂s

ds

dξ
+
∂G

∂ξ
+

+
∂G

∂C

(
∂C

∂s

ds

dξ
+
∂C

∂ξ

)
= 0. (202)

For a particular solution, implying a particular C, that
shares a same point with the singular solution, the Eq.
(202) reads:

∂G

∂s

ds

dξ
+
∂G

∂ξ
= 0. (203)

The Eq. (203) is valid for any particular solution, since it
also follows from the Eq. (193), once C remains constant
along any particular solution. At a sharing point, the
Eq. (203) is valid for the singular solution, once both
the solutions must satisfy the Eq. (197), implying they
share the same derivative, the same coordinates [hence,
the same C], instantaneously at the sharing point. This
reasoning for each point of the singular solution leads to
the conclusion the Eq. (203) is valid for all the points
of the singular solution, hence for the singular solution
itself. Henceforth, the Eq. (202) turns out to read:

∂G

∂C

(
∂C

∂s

ds

dξ
+
∂C

∂ξ

)
= 0. (204)

Since:

C (s, ξ) = C (s (ξ) , ξ) 6= constant, (205)
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for the singular solution, viz., along the singular solution,
one has got:

∂C

∂s

ds

dξ
+
∂C

∂ξ
6= 0. (206)

Hence, the singular solution must also satisfy:

∂

∂C
G (s, ξ, C) = 0. (207)

Collecting these results, we have got:

• A differential equation for which the singularity was
raised, Eq. (197):

d

dξ
β̇k (ξ) = η̃ (C) (ξ − τ) β̇k (ξ) , (208)

which is to be solved to give its general solution, its
family of particular solutions, Eq. (193):

G
(
β̇k, ξ, C

)
= 0; (209)

• A singular solution s (ξ) for the Eq. (208) which
is obtained from both the impositions, Eqs. (199)
and (207):

G (s, ξ, C) = 0, (210)

∂

∂C
G (s, ξ, C) = 0. (211)

To solve the Eq. (208), one rewrites:

dβ̇k

β̇k
= η̃ (C) (ξ − τ) dξ, (212)

integrates:∫
dβ̇k

β̇k
=

∫
η̃ (C) (ξ − τ) dξ =

∫
η̃ (C) (ξ − τ) d (ξ − τ) ,

(213)
leading to:

ln β̇k =
1

2
η̃ (C) (ξ − τ)

2
+ constant. (214)

Writing:

constant ≡ lnC, (215)

where C 6= 0 is a constant of integration, one reaches, for
the Eq. (214):

β̇k (ξ) = Ceη̃(C)(ξ−τ)2/2, (216)

from which, one may establish:

G
(
β̇k, ξ, C

)
= β̇k − Ceη̃(C)(ξ−τ)2/2 = 0, (217)

as demanded by the Eq. (209) for the general solution of
the Eq. (208). One may equally well establish, from the
Eq. (214), instead of from the Eq. (216):

G
(
β̇k, ξ, C

)
= ln β̇k −

1

2
η̃ (C) (ξ − τ)

2 − lnC = 0,

(218)

since both the Eqs., (217) and (218), are general solutions
for the Eq. (208). We will use the Eq. (218) to find the
singular solution for the Eq. (208) from the Eqs. (210)
and (211), albeit one may equally well use the Eq. (217)
if prefers. Hence, from the Eq. (218), the Eq. (210)
reads:

G (s, ξ, C) = ln s− 1

2
η̃ (C) (ξ − τ)

2 − lnC = 0. (219)

Now, applying the Eq. (211) to the Eq. (219), one
reaches:

∂

∂C
G (s, ξ, C) =

∂

∂C

[
ln s− 1

2
η̃ (C) (ξ − τ)

2 − lnC

]
= −1

2
(ξ − τ)

2 dη̃ (C)

dC
− 1

C
= 0. (220)

Remembering that within the march that led from the
Eq. (191) to (192) we had defined:

η̃ (ξ) ≡ −η (ξ)

κ

Eq. (191)
= − 1

κ

κ

(ξ − τ)
2 = − 1

(ξ − τ)
2 ,

(221)
where κ is the constant of proporcionality used in the Eq.
(191), one also reaches:

(ξ − τ)
2

= − 1

η̃ (ξ)
= − 1

η̃ (ξ (C))
= − 1

η̃ (C)
. (222)

Henceforth, by the Eqs. (220) and (222) one has got:

−1

2

[
− 1

η̃ (C)

]
dη̃ (C)

dC
− 1

C
= 0, (223)

which leads to the following differential equation relating
η̃ (C) and C:

1

η̃ (C)

dη̃ (C)

dC
=

2

C
. (224)

To the integration of the Eq. (224), one rewrites:

dη̃ (C)

η̃ (C)
= 2

dC

C
, (225)

and integrates: ∫
dη̃ (C)

η̃ (C)
= 2

∫
dC

C
. (226)
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From the Eq. (222) one concludes that η̃ (C) ∈ R [with
dimension of time−2]. Hence, the Eq. (226) reads:

ln |η̃ (C)| = ln
(
C2
)
− lnλ = ln

(
C2

λ

)
, (227)

where λ ∈ C. Thus, the Eq. (227) leads to:

ln

[
λ
|η̃ (C)|
C2

]
= 0, (228)

from which:

C2 = λ |η̃ (C)| Eq. (221)
=

λ

(ξ − τ)
2 , (229)

and, also:

|η̃ (C)| = C2

λ
, (230)

which is a positive real number, from which one concludes
that:

η̃ (C) = −C
2

λ
, (231)

since η̃ (C) < 0 by the Eq. (221) and the Eq. (230) must
be satisfied. Hence, in virtue of the Eq. (231), the Eq.
(212) reads:

d

dξ
β̇k (ξ) = −C

2

λ
(ξ − τ) β̇k (ξ) , (232)

satisfied the Eq. (230):

C2

λ
∈ (0,+∞) . (233)

Hence the general solution for the Eq. (232), by the Eqs.
(216) and (231), is given by:

β̇k (ξ) = Ce−(C2/λ)(ξ−τ)2/2. (234)

To obtain the singular solution s (ξ) for the Eq. (232),
one writes:

s (ξ) = C (ξ) e−{[C(ξ)]2/λ}(ξ−τ)2/2, (235)

in virtue of the the Eq. (234), which turns out to read:

s (ξ) =

√
λ

|ξ − τ |
e−{1/(ξ−τ)2}(ξ−τ)2/2

=

√
λ

|ξ − τ |
e−1/2

=

√
λ/e

|ξ − τ |
, (236)

by the Eq. (229) for C (ξ):

[C (ξ)]
2

=
λ

(ξ − τ)
2 ⇒ C (ξ) =

√
λ√

(ξ − τ)
2

=

√
λ

|ξ − τ |
,

(237)
remembering λ ∈ C. Now, one is ready to obtain the dif-
ferential equation that has got its general solution given
by the Eq. (234), and, also, having got the Eq. (236) as
its singular solution. To accomplish this, one uses the Eq.
(232) and its general solution given by the Eq. (234) to
write the resultant differential equation satisfying both
these equations with no explicit constant of integration,
since a given differential equation must be the same in
spite of a particular value for the constant of integra-
tion, viz., one has got a family of solutions, not a family
of differential equations [the Eq. (232) is explicitizing
the constant of integration, from which, hence, it is not,
purely, the differential equation we are looking for, albeit
the Eq. (234) satisfies it]. From the Eq. (231), we have
got:

ln [η̃ (C)] = ln

(
−C

2

λ

)
= ln

(
− 1

λ

)
+ ln

(
C2
)

= ln

(
− 1

λ

)
+ 2 lnC, (238)

from which:

ln [η̃ (C)]− ln

(
− 1

λ

)
= 2 lnC ⇒

ln

[
η̃ (C)÷

(
− 1

λ

)]
= 2 lnC ⇒

ln [−λη̃ (C)] = 2 lnC ⇒

lnC =
1

2
ln [−λη̃ (C)]. (239)

From the Eqs. (214), (215) and (239), one reaches:

ln β̇k =
1

2
η̃ (C) (ξ − τ)

2
+

1

2
ln [−λη̃ (C)]. (240)

From the Eq. (208), one catches up:

η̃ (C) =
dβ̇k
dξ

1

(ξ − τ) β̇k
. (241)

From the Eqs. (240) and (241), one also reaches:



26

ln β̇k =
1

2
(ξ − τ)

2 dβ̇k
dξ

1

(ξ − τ) β̇k
+

1

2
ln

[
−λdβ̇k

dξ

1

(ξ − τ) β̇k

]

=
1

2
(ξ − τ)

d

dξ
ln β̇k +

1

2
ln

[
−λ

(ξ − τ)

d

dξ
ln β̇k

]
⇒

ln

[(
β̇k

)2
]

= (ξ − τ)
d

dξ
ln β̇k + ln

[
−λ

(ξ − τ)

d

dξ
ln β̇k

]
⇒

0 = (ξ − τ)
d

dξ
ln β̇k + ln

 −λ
(ξ − τ)

(
d

dξ
ln β̇k

)
1(
β̇k

)2

⇒
ln

 −λ
(ξ − τ)

(
d

dξ
ln β̇k

)
1(
β̇k

)2

 = − (ξ − τ)
d

dξ
ln β̇k ⇒

−λ
(ξ − τ)

(
d

dξ
ln β̇k

)
1(
β̇k

)2 = e−(ξ−τ) ddξ ln β̇k , (242)

from which one reaches the differential equation for which
the Eq. (234) is the general solution and the Eq. (236)
is the singular solution:

−λ d
dξ

ln β̇k =
(
β̇k

)2

(ξ − τ) exp

[
− (ξ − τ)

d

dξ
ln β̇k

]
.

(243)
Before going further, we will verify this assertion really

holds, viz., that both the Eqs., (234) [as the general so-
lution] and (236) [as the singular solution that does not
depend on C, and connot be obtained from the general
solution], are solutions for the Eq. (243). This is accom-
plished by substitution. Firstly, the left-hand side of the
Eq. (243), using the singular solution given by the Eq.
(236), reads:

−λ d
dξ

ln [s (ξ)] = −λ 1

s (ξ)

d

dξ
s (ξ) = −λ |ξ − τ |√

λ/e

d

dξ

[ √
λ/e

|ξ − τ |

]
= −λ |ξ − τ |√

λ/e

d

dξ


√
λ/e√

(ξ − τ)
2


= −λ |ξ − τ |√

λ/e

√
λ/e

d

dξ

[
(ξ − τ)

2
]−1/2

= −λ |ξ − τ | (−1/2)
[
(ξ − τ)

2
]−3/2 d

dξ

[
(ξ − τ)

2
]

= −λ |ξ − τ | (−1/2)
[
(ξ − τ)

2
]−3/2

(2) (ξ − τ) = λ
|ξ − τ |[

(ξ − τ)
2
]3/2 (ξ − τ) = λ

|ξ − τ | (ξ − τ){[
(ξ − τ)

2
]1/2}3

= λ
|ξ − τ | (ξ − τ)

|ξ − τ |3
= λ

(ξ − τ)

|ξ − τ |2
. (244)

Now, the right-hand side of the Eq. (243), also using the singular solution given by the Eq. (236), reads:
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s2 (ξ) (ξ − τ) exp

{
− (ξ − τ)

d

dξ
ln [s (ξ)]

}
=

λ/e

|ξ − τ |2
(ξ − τ) exp

{
− (ξ − τ)

[
− (ξ − τ)

|ξ − τ |2

]}

=
λ/e

|ξ − τ |2
(ξ − τ) exp

[
(ξ − τ)

2

|ξ − τ |2

]

=
λ/e

|ξ − τ |2
(ξ − τ) exp

[
|ξ − τ |2

|ξ − τ |2

]
=

λ/e

|ξ − τ |2
(ξ − τ) e1

=
λ/e

|ξ − τ |2
(ξ − τ) e = λ

(ξ − τ)

|ξ − τ |2
. (245)

Hence, from the Eqs. (244) and (245), we conclude the
Eq. (236) is [singular] solution for the Eq. (243). Now,

the left-hand side of the Eq. (243), using the general
solution given by the Eq. (234), reads:

−λ d
dξ

ln β̇k = −λ d
dξ

ln
[
Ce−(C2/λ)(ξ−τ)2/2

]
= −λ d

dξ

{
lnC + ln

[
e−(C2/λ)(ξ−τ)2/2

]}
= −λ d

dξ

[
lnC − C2

λ

(ξ − τ)
2

2

]
=
C2

2

d

dξ

[
(ξ − τ)

2
]

=
C2

2
(2) (ξ − τ)

= C2 (ξ − τ) . (246)

For the right-hand side of the Eq. (243), also using the general solution given by the Eq. (234), one has got:

(
β̇k

)2

(ξ − τ) exp

[
− (ξ − τ)

d

dξ
ln β̇k

]
= C2e−(C2/λ)(ξ−τ)2 (ξ − τ) e−(ξ−τ)(−C2/λ)(ξ−τ)

= C2 (ξ − τ) e−(C2/λ)(ξ−τ)2+(C2/λ)(ξ−τ)2 = C2 (ξ − τ) e0

= C2 (ξ − τ) . (247)

Hence, from the Eqs. (246) and (247), we conclude the
Eq. (234) is the [general] solution for the Eq. (243). Now
we will discuss physical interpretation and implications.

From the Eq. (229), within the context of the general
solution, Eq. (234), for the Eq. (243), a given constant
of integration C turns out to be defined by some ξ co-
ordinate that uniquely characterizes a specific particular
solution pertaining to the family [Eq. (234)]. Since the
Eq. (234) is a family of gaussian curves and an inflection
point is obtained from the condition:

d2

dξ2
β̇k (ξ) = 0, (248)

one has got for the family, Eq. (234):

d2

dξ2

[
Ce−(C2/λ)(ξ−τ)2/2

]
= 0, (249)

from which:
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d

dξ

{
d

dξ

[
Ce−(C2/λ)(ξ−τ)2/2

]}
=

d

dξ

{
Ce−(C2/λ)(ξ−τ)2/2 d

dξ

[
−
(
C2

λ

)
(ξ − τ)

2

2

]}

=
d

dξ

{
Ce−(C2/λ)(ξ−τ)2/2

[(
−C

2

λ

)](
1

2

)
d

dξ
(ξ − τ)

2

}
=

d

dξ

{
Ce−(C2/λ)(ξ−τ)2/2

[(
−C

2

λ

)](
1

2

)
(2) (ξ − τ)

}
= −C

3

λ

d

dξ

[
(ξ − τ) e−(C2/λ)(ξ−τ)2/2

]
= −C

3

λ

{
e−(C2/λ)(ξ−τ)2/2 + (ξ − τ) e−(C2/λ)(ξ−τ)2/2 d

dξ

[
−
(
C2

λ

)
(ξ − τ)

2

2

]}

= −C
3

λ

{
e−(C2/λ)(ξ−τ)2/2 + (ξ − τ) e−(C2/λ)(ξ−τ)2/2

[
−
(
C2

λ

)
(2)

(ξ − τ)

2

]}
= −C

3

λ
e−(C2/λ)(ξ−τ)2/2

{
1 + (ξ − τ)

[
−
(
C2

λ

)
(2)

(ξ − τ)

2

]}
= −C

3

λ
e−(C2/λ)(ξ−τ)2/2

[
1− C2

λ
(ξ − τ)

2

]
= 0

(250)

Hence, from the Eq. (250), one concludes that the coor-
dinate ξc, critical one, at which a gaussian of the family
given by the Eq. (234) has got an inflection point follows
from:

1− C2

λ
(ξc − τ)

2
= 0, (251)

from which, henceforth:

C2

λ
=

1

(ξc − τ)
2 , (252)

i.e., the constant of integration for a given particular
gaussian of the family given by the Eq. (234) is deter-
mined by inflection point coordinate ξc. From the Eq.
(252), one concludes there are two inflection points, being
the ξc coordinate of each obtained from the Eq. (252):

ξc = τ ±
√

λ

C2
. (253)

Hence, the deviation, σ, of the ξc coordinate of the in-
flection point in relation to τ turns out to be:

σ ≡ |ξc − τ | =

∣∣∣∣∣±
√

λ

C2

∣∣∣∣∣ =

√
λ

C2
∈ R∗+, (254)

in virtue of the Eq. (230). Henceforth, from the Eq.
(254):

1

σ2
=
C2

λ
, (255)

and the Eq. (234) turns out to read:

β̇k (ξ) =

√
λ

σ2
e−(ξ−τ)2/(2σ2), (256)

remembering λ ∈ C. Now, one infers the singular solution
given by the Eq. (236) and the family of gaussians given
by the Eq. (234) [also, equivalently, by the Eq. (256)]
share the inflection points of the gaussians. If one plots
just the inflection points of each gaussian of the family
[Eq. (256)], the whole set of these inflection points turns
out to be, exactly, the singular solution [curve]. In fact,
for ξ = ξc, the Eq. (256) gives:

β̇k (ξc) = β̇k (τ ± σ) =

√
λ

σ2
e−(τ±σ−τ)2/(2σ2)

=

√
λ

σ2
e−1/2 =

√
λ/e√
σ2

=

√
λ/e

|ξc − τ |
, (257)

where we have used the Eq. (254). And, also, by the Eq.
(236):

s (ξc) =

√
λ/e

|ξc − τ |
, (258)

which confirms the Eq. (257). Henceforth, the singular
solution [Eq. (236)] and the members of the family of
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gaussians [Eq. (256)] share the points S:

S =

(
ξc,

√
λ/e

|ξc − τ |

)
, (259)

which is also the singular solution curve given by the Eq.
(236), as said, and asseverated:

{S} = {(ξc, s (ξc))} . (260)

Now there seems to exist an important consequence for
that Eq. (168) that came from the considerations on
the Eqs. (154) and (155): its solution, being singular,
turns out to require a family of gaussians [as discussed
before, a miriad of gaussians is necessary to establish the
solution, since the solution, being singular, cannot be
established by an unique member of the general solution]
which turns out to be a family of particular gaussians at
different instants, which seems to require a dynamics for
the collapse of the wave function. To better visualize,
consider the graphs plotted below: Fig. 1 starts with
σ →∞, with the sequence of remaining Figs., from Fig.
2 to Fig. 12, representing a decreasing σ, which turns out
to lead to the collapse as σ → 0, at which a measuring
instant τ turns out to be a well defined present instant
τ .

Fig. 1: Eq. (236) [Orange], were we have renamed:
β̇k ≡ f , and ξ ≡ x. Eq. (256) [Green], were we have
renamed: s ≡ h, and ξ ≡ x. We have taken τ = 0.

σ →∞.

Fig. 2: The same as for the Fig. 1, but σ decreased.

Fig. 3: The same as for the Fig. 2, but σ decreased.

Fig. 4: The same as for the Fig. 3, but σ decreased.

Fig. 5: The same as for the Fig. 4, but σ decreased.

Fig. 6: The same as for the Fig. 5, but σ decreased.

Fig. 7: The same as for the Fig. 6, but σ decreased.
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Fig. 8: The same as for the Fig. 7, but but σ decreased.

Fig. 9: The same as for the Fig. 8, but σ decreased.

Fig. 10: The same as for the Fig. 9, but σ decreased.

Fig. 11: The same as for the Fig. 10, but σ decreased.

Fig. 12: The same as for the Fig. 11, but σ decreased.

Back to the Eq. (236), and, since the points of this curve
are the critical points of the gaussians, one may write
this Eq. (236) as a function of σ, i.e., by the Eqs. (236),
(260) and (254):

s (ξ)
Eq. (260)

= s (ξc) = s(ξc (σ)) ≡
√
λ/e

σ
. (261)

For purposes of gaussian normalization, which will be
discussed below, we will rewrite:

√
λ ≡
√
r
√
λ̃, (262)

with:

√
r ∈ R∗+, (263)

remembering that λ ∈ C, as discussed before. Hence,
with the Eq. (262), the Eq. (261) turns out to read:

s(ξc (σ)) =

√
λ̃

σ
√
e/r

. (264)

Now, by the Eq. (136), which is the singular solution
s (ξ) [cf., also, the Eq. (170) and its entire context] for:

θ ≡ σ
√
e/r → 0, (265)

[since we are interested in the limit for the Eq. (136),
the above definition, Eq. (265), for θ, is mathematically
equivalent] one obtains:√

λ̃ = δck − ak, (266)

which is a complex number. Henceforth, from the Eqs.
(262) and (266), the Eq. (256) reads:

β̇k (ξ) =
d

dt
βk (ξ) = (δck − ak)

√
r

σ2
e−(ξ−τ)2/(2σ2).

(267)
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equation: 2δtt̄ (1− δtt̄) {1−Re [ac]} = 0, which is valid in
spite of Re [ac], in virtue of the Eqs. (13) and (14), from
which Re [ac] does not need to be 1, asseverating: to that
raised fortuitous criticisms, respectfully.
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[5] One may argue that Ψ (x, t) could be treated in an abstract
fashion, in an analogy with tensors in abstract forms, with
no need of a basis. Such argument is void, since measures
are to be performed by observers. As we argued, the utility
would remain independent of any inserted basis.


