The Wave Medium, the Electron, and the Proton - Part 1

Gary D. Simpson
email: gsim100887@aol.com
rev01 - March 30, 2013

Summary

A geometric argument is presented that the true ratio between the rest mass of the proton and the rest mass of the electron is $6 \pi^{5}$. The deviation of the measured value for this ratio from $6 \pi^{5}$ is interpreted to be a relativistic mass correction due to movement through the aether. This aether is a scalar field and consists of electrons in a true rest frame. Based upon the Lorentz Transformation, the velocity of the Earth associated with this motion through the aether is 0.006136 c . This allows for a unification of Special Relativity with Quantum Mechanics. The necessary condition for this unification is that the Lorentz Transform of the observer with respect to the aether must be considered. The hypothesis described herein can be disproved by using an observer in a frame of reference at a velocity significantly different than that of the Earth. The hypothesis presented here might be supported by re-analysis of existing particle accelerator data.

Preface

The author is neither a mathematician nor a physicist. The mathematics in this work is limited to basic trigonometry. The Lorentz Transform is briefly used. This is not a theoretical text concerning quantum mechanics. Instead, the author begins with an assumption regarding the mass ratio between the proton and the electron. The author then develops a model that is consistent with the assumption.

Discussion

Quantum Mechanics and Relativity have coexisted in their present form for roughly 80 years. Each is correct yet each excludes the other. They are both true but there appears to be no way to merge them into a single model. Hotson ${ }^{1,2}$ presents a very eloquent argument that it was a mistake to eliminate the aether. The essence of his argument is that the negative solutions to the Dirac Wave Equation cannot be ignored. He also lists indicators of the complexity of physics and concludes that there was a major error near 1930. The author can add nothing to his arguments other than to state that what is needed is a shared reference point at which Quantum Mechanics and Relativity must produce the same answer. The author believes that the proton is such a reference. It will be argued below that inclusion of the Lorentz Transform of the observer is necessary for Quantum Mechanics to match Relativity.
$6 \pi^{5}$. In April of 1951, Friedrich Lenz ${ }^{3}$ of Düsseldorf, Germany sent a letter to Physical Review noting that the ratio of the mass of the proton to the mass of the electron is very nearly $6 \pi^{5}$. Unfortunately, no supporting theory or reasoning was provided. Perhaps this was thought to be a coincidence. Perhaps this was thought to be unimportant. For whatever reason, this observation appears to have been either ignored, dismissed, or forgotten.

In a previous work ${ }^{4}$, the author independently made the same observation concerning this ratio of particle masses. However, the author does not believe in coincidence in the physical sciences. That work concerned the use of quaternions and vector rotations to produce solutions to the wave equation. The author speculated that somehow rotation was involved and that perhaps particle mass was somehow related to string length. The observation concerning the mass ratio has been an obsession for almost a year. The author is now prepared to provide a feasible explanation for this observation.

Please refer to Figure 1 below. Similar triangles are used to project a line segment of length d onto a line segment of length πd. There is also a circle of diameter d associated with the smaller line segment but it is not visible in the sketch since it is perpendicular to the sketch. It is simple to show that $L_{2} / L_{1}=\pi$ for this to be true. Now suppose that the projected line segment is rotated 90° in addition to being scaled by a factor of π. This is equivalent to multiplication by a quaternion. Performing 4 such multiplications will scale an arbitrary vector by a factor of π^{4} and return it to its original orientation.

One of the beautiful things regarding the wave equation is that a solution to it can be used to produce other solutions if certain criteria are true. Therefore, if you begin with a solution - hopefully the electron is a solution - and scale it by a factor of π^{4}, it is possible that you still have a solution. With respect to the proton, this reasoning still needs a factor of 6π. The factor of π can be rationalized by using the circumference of the circle associated with the projected line segment.

At this point, the reader is perhaps thinking that the author has merely traded one coincidence for several coincidences. The reader might be correct. But consider this. By setting $L_{1}=d$, the length of the
circumference of the circle associated with the initial line segment, the length of L_{2}, and the length of the projected line segment are each equal to $\pi \mathrm{d}$. Therefore, the object shown in Figure 1 can be constructed using 3 strings of arbitrary and equal length πd. The associated half-angle is 26.565° with a value for the tangent of $1 / 2$. Perhaps this tangent value coincides with spin. It is noteworthy that the sum the lengths of the hypotenuse and the opposite side divided by the length of the adjacent side is the golden ratio (i.e., ($1+$ sqrt 5)/2).

An additional way of rationalizing the π^{4} factor utilizes Euler's Identity. This identity states that the sum of e raised to the exponent ir plus 1 equals 0 . By moving the one to the other side of the equation and taking the natural logarithm of both sides, it is then possible to state that in equals the natural logarithm of minus one. Such a statement does not have any physical meaning to the author, but by raising both sides of the equation to the 4 'th power, the part that makes sense becomes simply π^{4}. Each multiplication by in toggles the result between a scalar value and a vector value. The author believes that Figure 1 is really a visual representation of Euler's Identity.

Euler's Identity:

$$
e^{i \pi}+1=0
$$

Rationalizing the factor of 6 is a little more difficult, but still achievable. In the previous work ${ }^{4}$ by the author, the author developed a set of functions that were used to produce vector solutions to the wave equation. There were two such functions for each axis (i.e., x-axis, y-axis, and z-axis). These functions could be added together in pairs to produce real solutions. The functions did not precisely match the structure presented in Figure 1 but the author believes it is possible to modify them to do so. Therefore, the author believes that the needed factor of 6 is the result of adding all of these 6 modified functions together. Part 2 of this work - if there is a Part 2 in the future - will present the required rigorous solution to the wave equation.

In the argument presented above, mass must be proportional to length. However, the electron is believed to be a point particle. Therefore, the distances presented in Figure 1 must either be scalar values with no physical dimension or they must be in a direction that cannot be physically accessed. Perhaps this dimension is time or perhaps it is truly a fourth physical dimension. The author suspects that this is a scalar value and that it is linked to the wave-function used in quantum mechanics.

It is worth repeating this. It is believed that the electron is a point particle. That is, the electron has no physical dimension that can be measured with a measuring stick or a tape measure or anything that has length. Does this mean that the electron is a scalar? It fits the definition of a scalar. The author believes that it is and that this is consistent with the other ideas presented herein.

The published value ${ }^{5}$ for the ratio of the rest mass of the proton to the rest mass of the electron is 1836.15267245(75). Sadly, this value does not precisely match $6 \pi^{5}$. Expressed numerically, the latter value is approximately 1836.118109. At this point, the reader must make a choice. The reader may choose to believe that the argument presented in Figure 1 is false and there is no rationale to explain
the similarity between the two presented values (i.e., that it is a coincidence). Or the reader may choose to believe that this similarity is more than coincidence. The reader could also offer another explanation.

The author does not believe in coincidence - at least not in the physical sciences. Therefore, the author's choice requires an explanation for the deviation between these two values. The author believes that these two values must be equal for Relativity to be in agreement with Quantum Mechanics. Therefore, the author proposes to use the Lorentz Transformation. Application of the transform to the RATIO between the given values implies a velocity of 0.006136 c! This is roughly 64 times larger than the Earth's orbital velocity around the Sun and might explain the previous null results of Michelson-Morley. The author has casually read enough astronomy to recognize that this value is typical for a stellar explosion. As Carl Sagan once said "We are made of star-stuff". The calculated velocity supports that statement. The author will add to this by stating that we are star-stuff surfing on a cosmic wave. And if our reference frame has been travelling without acceleration for 13.6 billion years then it has travelled 80^{+}million light years. Perhaps we actually are near the center of the universe, but not because we are special but rather because we are moving more slowly than the other surfers. One of Newton's Laws states that an object in motion tends to stay in motion unless acted upon by an external force. If our atoms were produced in a stellar explosion then their resulting momentum must be conserved and they must still be moving with respect to their prior frame of reference.

The Lorentz Transform is dimensionless. It is normally applied to mass (or length, or even time) rather than to a ratio of mass ratios. The mass of the electron would be expected to be effected by relative motion in the same proportion as the mass of the proton. There are two implications of applying the transform to the ratio. The first is that our reference frame is moving with respect to something. This something is possibly a scalar field. Secondly and more importantly, for this reasoning to be true, the electron must not be affected by this motion. The electron must be stationary. This leads the author to believe that it is the electron that is constant in all frames of reference and that the electron may very well be the scalar field.

The author asks the reader to believe three things. These are as follows:

1. The true ratio between the rest mass of the proton and the rest mass of the electron is $6 \pi^{5}$. Or alternately that wave mechanics predicts a solution with a rest mass equal to $6 \pi^{5}$ times that of the electron. Presumably this particle must be the proton. The observed mass ratio must match this value for Quantum Mechanics and Relativity to agree. Part 2 of this work will attempt to produce the required solution rigorously.
2. There is a scalar wave medium composed of electrons in a reference frame at absolute rest. This is the aether. The aether interacts with other matter through the wave equation. The value of the wavefunction ψ is the value associated with this scalar electron field.
3. Our rest frame is moving with respect to the aether. This motion accounts for the deviation of the published value of the proton to electron mass ratio from the $6 \pi^{5}$ value. The velocity associated with the Earth's motion is 0.006136 c.

Now let us briefly consider the neutron. This analysis is more uncertain since the author is not confident regarding the true rest mass of the neutron. Suppose that the ratio of the true rest mass of the neutron to the rest mass of the electron is $6 \pi^{5}+2$. The published value ${ }^{6}$ for this ratio is $1838.6836605(11)$. Repeating the above exercise implies a velocity equal to 0.02480 c . This value is not even close to the value predicted by the proton calculation. This was initially very discouraging. However, the velocity ratio between the neutron value and the proton value is 4.04 . So perhaps it is an integer value 4 or perhaps the true value of the ratio is not stated correctly. Conversely, suppose that the velocity calculated from the proton data is applied to the neutron data. That predicts a ratio between the true rest mass for neutron and the electron equal to 1838.65 . The author does not presently understand this effect but the author believes that resolving it will yield insight into β-decay, the periodic table, and perhaps the structure of the cosmos.

How can an aether as described above be experimentally proven? In 2006, it was claimed by Reinhold ${ }^{7}$ et al that the m_{p} / m_{e} mass ratio has increased by $.002 \%$ over the last 12 billion years. If this adjustment is made to the value of $6 \pi^{5}$ then the result becomes 1836.15 . This is accurate to within roughly one part per million. Their work has been vigorously disputed of late with the apparent consensus being that their work was incorrect. Or perhaps you must look at just the right spot. In the opinion of the author, there are only two possible explanations for the value presented by Reinhold. Either they actually measured something that made them draw such a conclusion, or they knew about $6 \pi^{5}$ and hoped to provide falsified supporting evidence for it. Coincidence is simply too much to believe.

The author will offer several possible methods of experimental verification. But before doing so, it is worthwhile to discuss the Lorentz Transform. Consider for a moment three different frames of reference. The first being the aether at absolute rest (for the sake of argument, assume that it exists). The second is that of the Earth, and the third is that of a proton in a particle accelerator on the Earth. Let their velocities be $\mathrm{v}_{0}, \mathrm{v}_{1}$, and v_{2} with v_{0} being equal to zero. The LT for the Earth and for the proton with respect to the aether are as follows:

1
Earth LT:

The reason for writing the proton LT as above is to form the basis for a question. Specifically, does the LT of an observer factor into physical measurements? The author believes that it does and that therefore all attempts to measure directly a velocity with respect to the aether will always fail because the
governing equations for the observer's reference frame will adjust themselves in accordance with the LT of the observer. This is the meaning of Lorentz invariant. Basically, it is a hypothesis that cannot be disproved with only one observer's frame of reference. What is needed is an observer in a reference frame that is significantly different from that of the Earth. Since the author believes that the Earth is travelling at .006 c , disproving this hypothesis would require an observer to determine $\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}$ at a much different velocity such as $0 \%, 2 \%$, or 5% of the speed of light. This is clearly beyond the ability of humanity.

A more likely method would be to re-examine existing data from particle accelerators. The proposed analysis is to allow the velocity (and the LT) of the observer to be a constant but unknown variable in the analysis of data from a particle accelerator. The objective of the analysis then would be to determine if there is an observer velocity at which the various products become simplified or at which the analysis is easier or more clear and straight-forward. It would be a least-squares type of analysis but it would also require some type of human evaluation. For example, is there an observer velocity at which the rest masses of the three quarks of the proton are equal? The best analogy from history is the problem of Copernicus and the epicycles. If the data is available with information such as the date, time, and location, it might be possible to include the motion of the Earth around the Sun. But that motion is small compared to the predicted value of the solar system through the aether.

The reader must make a choice. One path dismisses an observation as coincidence and perhaps ignores a valid solution to the wave equation. The other path resolves this discrepancy but does so at the price of requiring a wave medium composed of electrons at absolute rest. Choose wisely.

Conclusion

The author believes that the true value for the ratio between the rest mass of the proton and the rest mass of the electron is $6 \pi^{5}$. The author believes that the disparity between the published value for this ratio and $6 \pi^{5}$ is the result of movement through a scalar field. Lastly, the electron is not affected by this motion. Therefore, the author believes that the electron and the scalar field are identical. The electron is the scalar field. The scalar field is the electron. They are the aether.

Acknowledgements

The author acknowledges gratefully the works of Don Hotson and Milo Wolff. The author also thanks Charlie Papazian for the book "The Complete Joy of Home Brewing". Relax. Don't worry. Have a homebrew. Lastly, the author acknowledges Friedrich Lenz. Rest in Peace Herr Lenz. Your quest is almost complete.

References

1. Hotson, D., "Dirac's Equation and the Sea of Negative Energy - Part 1", Infinite Energy, Issue 43, 2002.
2. Hotson, D., "Dirac's Equation and the Sea of Negative Energy - Part 2", Infinite Energy, Issue 44, 2002.
3. Lenz, F. Physical Review, May, 1951, p. 554.
4. Simpson, G. "The Wave Equation and Rotation", viXra:1208:0064, vixra.org/abs/1208.0064.
5. "CODATA Value: proton-electron mass ratio". The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. June 2011. http://physics.nist.gov/cgi-bin/cuu/Value?mpsme. Retrieved 2011-06-23.
6. "CODATA Value: neutron-electron mass ratio". The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. 2010. http://physics.nist.gov/cgi-bin/cuu/Value?mnsme.
7. http://www.2physics.com/2006/04/proton-electron-mass-ratio.html. The original citation is as follows: Phys. Rev. Lett. 96, 151101 (2006) [4 pages].

Figure 1

Page 8 of 8

