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The logical structure of the standard model is isomorphic to the geometric structure of the modi-
fied cosmological model (MCM). We introduce a new particle representation scheme and show that it
is invariant under CPT. In this representation spin arises as an ordinary physical process. The final
character of the Higgs boson is predicted. Wavefunction collapse, the symmetry (anti-symmetry) of
the wavefunction and some recent experimental results are discussed.

“Everything should be made as simple as pos-
sible, but not simpler.”

∼ Einstein

As the story goes, Oersted observed deflections of his
compass needle in a thunderstorm and went on to dis-
cover the first hints of electromagnetism. The theory of
this phenomenon was developed over the years culminat-
ing in “the best theory we have:” quantum electrody-
namics. The agreement of this theory with experiment
is very good and many of the things in our modern tech-
nological society are built on our good understanding of
electromagnetic phenomena. However, we still do not
have a theory for the lightning that spurred Oersted’s
inquiry. It is not known what physical process can lead
to large scale accumulation of charge in the atmosphere.

We know what lightning is but not why lightning is. So
it is with the standard model. We know what it is but not
why it is. In an attempt to answer the latter question,
we offer a particle representation scheme accounting for
the particle zoo as a geometric property of the modified
cosmological model (MCM).

The elementary particles of the standard model are
considered fundamental and they live in an artificial
gravitational background. In a proper theory of every-
thing, the members of the standard model should be
described as quanta of spacetime where some particu-
lar circumstance differentiates one particle from another.
The MCM quantum of spacetime is a Minkowski diagram
where the extent L of space and duration D of time are
related by the ratio D = 2ϕL. When the specific values
D = ϕ and L = 1/2 are selected we see that Einstein’s
equations and the fine structure constant share a causal
origin [1]. This unity is in good agreement with the ex-
pected functionality of a complete quantum theory.

To model all the particles as spacetime quanta our first
consideration is on the nature of the duration D. The
Minkowski diagram is spanned by {xi, t} but we have
two candidates for the timelike vector. Should we choose
the chronological time x0 or the chirological time ξ4? In
[2] we have shown that the high-dimensional dynamics of
MCM cosmology are easily visualized in a 3D Poincaré
section spanned by {xi, x0, ξ4}. In this representation
there is no preferred choice for D so to move forward we

maintain the logical program of the MCM: where multi-
ple possibilities can exist, all possibilities do exist.

The orthogonal triad {xi, x0, ξ4} defines eight octants
separated by three sets of four planar quadrants. The
quadrants in the x0–ξ4 plane are not spacetimes because
that plane is orthogonal to space. This leaves us with
eight quadrants which can serve as spacetime quanta,
i.e., there are eight locations to place a Minkowski dia-
gram where xi will run from 0 to 1/2 and t from 0 to ϕ.
The value xi = 1/2 is easily identified with spin-1/2 so
we identify these quadrants with the elementary matter
fermions and later we will consider the bosons.

Of the eight potentially useful quadrants four are re-
flections about xi. These reflections will be associated
with spin up and spin down for a particular fermion leav-
ing us with four independent configurations: two with
t = x0 and two with t = ξ4. Among these species, the
individual quanta can be separated according to whether
their axes form a left- or right-handed triad with the sec-
ond temporal dimension. This is illustrated in figure 1.

A Minkowski diagram alone is useless in the pursuit of
quantum gravity. Therefore, we also consider the state
spaces {ℵ,H,Ω} [1, 2]. For each quantum in figure 1 we
may assign any one of the three members of the MCM
Gel’fand triple. Keeping with our convention that each
quantum is a matter fermion, we have generated three
families of four fermions, where each family contains two

FIG. 1: Of the eight spacetime quadrants defined by
{xi, x0, ξ4}, reflections on xi are associated with a reversal of
spin direction. Two quanta are formed from xi–x0 spacetime
and two from xi–ξ4. Within these species each of the mem-
bers can be differentiated by their orientation with respect to
the other time dimension.
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FIG. 2: Three families of spin-1/2 fermions and four spin-1
bosons. Each fermion family contains two distinct species.
This representation shows the isomorphism of the MCM with
the standard model of particle physics.

distinct species as seen in figure 2.
The structure of the Gel’fand triple is such that ℵ ⊂

H ⊂ Ω and therein we find a motivation for the increasing
masses of the particles across the families. Furthermore,
the dimension ξ4 is a composite construction readily iden-
tified with the quarks. The properties of ξ4 are developed
extensively in [2].

ξ4 ≡ ξ4+ ⊗∅⊗ ξ4− (1)

The composite ξ4 is made from three distinct pieces
and it is the only “dimension” to connect the three man-
ifolds {ℵ,H,Ω}. This three-fold structure mimics the
three color charges of QCD.

Observable dynamics in Nature preferentially take
place in ℵ due to causality. This may have implications
for the relative stability of ℵ family leptons compared to
their more massive counterparts in the H and Ω families.

One might ask the following question. What does it
mean for a particle to be a little rectangle with ℵ, H or
Ω defined on it when the observer is already confined to
a little rectangle H which is the entire observable uni-
verse [1, 2]? To first order we point out that fractals are
in general very complicated. A key conceptual break-
through in formulating the MCM was to posit that quan-
tum mechanics is bigger than the universe so that each
“elementary” particle in the universe may also contain a
universe or even “the universe.” It is the very definition
of a fractal that scale cannot be determined from internal
structure alone so the fractal universe idea [3, 4] accounts
nicely for little-rectangles-upon-little-rectangles.

A slightly more technical explanation invokes the holo-
graphic principle which was demonstrated in [2]. This
principle states that the entire universe should be con-
tained in every piece of it as when a holographic screen

is shattered but the complete 3D image remains visible
in each small shard [5]. We also make reference to the
T-duality of string theory which shows that very small
distances and very large distances behave similarly.

Beyond these mainstream principles, Dolce has devel-
oped a framework for QFT which strongly supports the
little rectangle interpretation [6]. A key stepping stone
in developing the MCM was to apply de Broglie’s wave-
particle duality to the entire universe. The idea was
that if the entire universe-spanning hypersurface of the
present is a large quantum system with a wavefunction
it must also have particle-like properties. This led di-
rectly to the concept of the universe as one quantum of
spacetime. Dolce includes a quote from de Broglie.

“We proceed in this work from the assump-
tion of the existence of a certain periodic phe-
nomenon of a yet to be determined character,
which will be attributed to each and every
isolated energy parcel.”

The time axis of our spacetime quantum has a pe-
riodic boundary condition [3] and qualifies nicely as de
Broglie’s “certain periodic phenomenon of a yet to be de-
termined character.” Dolce’s great insight was to use the
de Broglie relations to show that fully covariant quantum
theory can be derived from nothing more than periodic
boundary conditions on a classical system [6]. This is
in good agreement with the idea that the quantum of
spacetime is a classical system with periodic boundary
conditions.

To test this geometry-based particle representation we
may investigate its behavior under a CPT transforma-
tion.

Ĉ : Aµ → −Aµ (2)

P̂ : xi → −xi (3)

T̂ : x0 → −x0 (4)

The operators P̂ and T̂ will operate directly on the
proposed system. Equation (2) does not have a direct
application and the canonical map for charge conjugation

ψ → −i
(
ψ̄γ0γ2

)T
is beyond the scope of this article. At

some point this formalism may become useful but for
now we aspire toward maximal simplicity. Equation (2)
can be generalized using a condition that ξ4+ → ξ4− is
identified with Aµ → −iAµ [2]. In this case the map
ξ4+ → −iξ4− can be taken as a substitute for (2).

It is only by convention that ξ4+ is chosen to be real

and ξ4− imaginary so we may also use ξ4− → −iξ4+ for Ĉ.
This introduces a non-abelian quality to the geometry
because once ξ4− is chosen to be phase shifted by i with
respect to ξ4+, that implies an abelian relationship linking
ξ4− → −iξ4+ with Aµ → Aµ. However, that is not the
result we are looking for and since SU(3) is a non-abelian
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group it is good that we easily see the non-commutative
character of the MCM.

The condition that ξ4+ → ξ4− implies Aµ → −iAµ
was derived for the limiting case ξ4± → 0 so there will

be a rescaling included in a complete adaptation of Ĉ
to the MCM. This rescaling is related to the idea that
ξ4+ ∈ (0,Φ] and ξ4− ∈ [−iϕ, 0) but it is not relevant
to the present discussion. It should be noted that we
have preserved the −i factor from the canonical charge
conjugation of the wavefunction. C-conjugation is often
interpreted as the process of replacing a particle with
its anti-particle. This is perfectly consistent with the
MCM’s cosmological interpretation where the two uni-
verses involved in bouncing U and Ū are each other’s
anti-particles [3].

We have adopted the convention that ξ4± → −iξ4∓ is a

good representation of Ĉ in the MCM framework. Using
(1), we codify the charge conjugation operator in a form
useful for the present considerations.

Ĉ : ξ4 → −iξ4 (5)

Thus CPT conjugation of the system {xi, x0, ξ4} re-
verses the direction of each axis around the origin. The
only asymmetry local to the origin is that one half of ξ4

is imaginary and the other half is real [2]. As a conse-
quence, the handedness of the real and imaginary parts
changes. However, since a factor of i is also introduced
in the conjugation of ξ4 that will permute the real and
imaginary regimes making the MCM fully invariant un-
der CPT.

Now we discuss the bosons which were presented in
figure 2 without account. The spin-1/2 quality of the
fermions is related to the L = 1/2 property of the space-
time so spin-1 bosons should possess this property in du-
plicate. As force carriers the bosons can be seen as con-
nections between fermions and thus they adopt two units
of spin-1/2. This is to say that the elementary bosons ac-
quire two units of spin-1/2 by connecting two spacetime
quanta each with L = 1/2.

We have associated the ξ4 fermion species with the
quarks so the ξ4–ξ4 boson must be the gluon. There
are nine possible color combinations in QCD but there
are only eight gluons to allow for color neutrality. If
we allow the generic gluon ξ4–ξ4 to be further specified,
per equation (1), by the three components {+,∅,−} of
ξ4 there are nine possible gluons: ++, +∅, +−, etc...
It is not immediately clear that one of these should be
excluded due to geometric considerations, but we note
that the gluon ∅∅ is qualitatively different from the other
eight.

Concerning the other bosons, there is no known par-
ticle that only interacts with the leptons as the connec-
tion x0–x0 implies. Still it is a reasonable ansatz to say
that x0–x0 is the photon. We can speculate that the

FIG. 3: Hints of two new bosons from the ATLAS experiment.
If the new particles are dual to the weak bosons this data may
show three new particles where two have the same mass and
one lies nearby in the mass spectrum.

color confinement mechanism allows groups of quarks to
interact via the x0–x0 connection. In this case electro-
magnetic interactions mediated by the photon will only
involve integer charges and never the fractional charges
of individual quarks.

Following the convention for gluons, the mixed bosons
x0–ξ4 and ξ4–x0 each contain three species. Let us say
that one of these represents the weak bosons. We arbi-
trarily choose x0–ξ4 for this so that the W and Z parti-
cles are the connections x0± and the connection x0∅ is
a non-particle analogous to the ∅∅ gluon.

This leaves us with three more bosons in the ξ4–x0

connection. Preliminary analysis from the ATLAS ex-
periment indicates that more than one Higgs boson may
have been discovered. The data plotted in figure 3 can
easily accommodate a three boson structure dual to the
weak bosons. If further analysis shows three spin-1 Higgs
bosons, that will be an experimental verification of the
conjecture presented here. Indeed if there are three of
them with spin-1 they are not properly “Higgs” and we
propose to name them the G+, G− and ζ particles.

Now we discuss some further quantum utility of the
MCM particle representation. The first non-classical con-
sideration is spin. In the classical quantum theory state
spaces are augmented to accommodate spin degrees of
freedom by introducing some new dimensions that essen-
tially lie outside the universe. For spin-1/2 fermions this
looks like L2 → L2 ⊗ C2. As a segue into our treatment
of spin consider Heisenberg’s comments on the matter.

“In classical physics the aim of research was
to investigate processes occurring in space
and time. In quantum theory, however, the
situation is completely different. The very
fact that the formalism of quantum mechan-
ics cannot be interpreted as a visual descrip-
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tion of a phenomenon occurring in space and
time shows that quantum mechanics is in no
way concerned with the objective determina-
tion of spacetime phenomena.”

The purpose of the MCM is to return to a theory con-
cerned with nothing other than spacetime phenomena.
We must draw a diagram to show why spin arises and the
spin spaces must be brought within the existing model.
On the latter, we can immediately write the fermionic
state space of a particle that lives in H without spin.

H → H ⊗ ξ4+ ⊗ ξ4− (6)

Extra dimensions are usually considered to be com-
pactified or virtual because we do not observe them.
When spin is modeled this way, we allow for real extra
dimensions that may be indirectly observed as quantum
mechanical spin. It is as if we are 4D “flatlanders” and
do not observe extra dimensions directly because they
are orthogonal to us.

It is easy to generalize equation (6) from spin-1/2
fermions to spin-1 bosons.

H → H ⊗ x0+ ⊗ x0? ⊗ x0− (7)

When we define the state spaces this way an interesting
and potentially useful property is evident. The dimen-
sions {x0+, x0?, x0−} respectively belong to the manifolds
Ω, H and ℵ which all have Lorentzian metric signature
{− + + +}. On the other hand, the dimensions {ξ4+, ξ4−}
belong to the spaces Σ± where the metric signatures are
{− + + + +} and {− + + + −} [2]. It is possible that
this metric discrepancy can be linked to the symmetry
and anti-symmetry of bosonic and fermionic wavefunc-
tions. As the quantum theory stands, the asymmetrical
fermion wavefunction is inserted to force agreement with
experiment but there is no theoretical motivation for the
Pauli exclusion principle. If this bridge can be crossed,
the periodic table and general structure of large-scale re-
ality can be attributed to {xi, x0, ξ4}.

To visualize spin as a physical process in space and
time, consider the action of the chirological evolution op-
erator M̂3 acting on a matter fermion |ψ〉. Without spec-
ifying whether |ψ〉 is of the x0 species or the ξ4 species,
we show that a generic state rotates naturally as times
pass. This is shown in figure 4.

M̂3 |ψ〉 π̂ := i |ψ〉 π̂ (8)

M̂6 |ψ〉 π̂ := − |ψ〉 π̂ (9)

M̂9 |ψ〉 π̂ := −i |ψ〉 π̂ (10)

M̂12 |ψ〉 π̂ := |ψ〉 π̂ (11)

The MCM also provides a classical mechanism for
wavefunction collapse. Consider a measurement made at

FIG. 4: Spin as a proper physical process. The operator M̂3

rotates quantum states through the complex plane which gen-
erates an angular momentum vector pointing in the direction
of space. This is to be identified with quantum mechanical
spin.

FIG. 5: Collapse of the wavefunction occurs when measure-
ment forms a small aperture in H.

spacetime point A. The wavefunction is sharply peaked
about the measured value. After the measurement, the
wavefunction begins to spread as it evolves according to
the Schrödinger equation (or some other quantum evo-
lution.) When the observer makes another measurement
at B, the diffuse wavefunction collapses to the new mea-
sured value as illustrated in figure 5.

This process agrees with von Neumann’s interpreta-
tion where collapse is caused by the consciousness of the
observer. The act of measurement forms a small aper-
ture in H which admits a small part of the wavefunction
to continue into the future Ω. By choosing the specific
spacetime point B to make a measurement, the observer
has selected what value will pass through the aperture.

We have shown that chirological evolution is not a uni-
tary process [1]. To preserve the probability interpreta-
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tion of the wavefunction we impose unitarity preserving
boundary conditions in H. Factors of π and Φ gener-
ated by the application of M̂ will be removed through
normalization but unitary factors of i will remain so that
the spin mechanism is not nullified. Artificial insertion of
boundary conditions goes against the spirit of the MCM
so to account for this, we may consider an inflationary
scenario where H grows by an amount proportional to
the normalization constant.

As the wavefunction evolves forward in time from A,
it will not satisfy a probability condition. When the ob-
server makes another measurement at B an infinitesimal
aperture is formed allowing the wavefunction to poke
through as a delta function centered on the measured
value. The unitarity condition is imposed so that the
wavefunction is a properly normalized Dirac delta in H
and the probability interpretation is valid. After this, the
periodic measurement process repeats. We require that
the observer be fixed in the present H at all times but
we do not require the wavefunction to obey this condi-
tion. As the observer evolves in chronos, we may have
the wavefunction evolve in chiros without damaging the
structure of existing quantum evolution theory. This pro-
cess is in good agreement with the traditional usage of
Gel’fand’s formalism.

We have made the distinction that fermions are dis-
tinguished by the vector spaces {ℵ,H,Ω} and bosons are
distinguished by the components {+,∅,−} of ξ4. Given
the close relationship of ξ4 and {ℵ,H,Ω} [2] it may be
that these are two sides of the same coin. If so, we
have considered every possible choice for a particle in
the MCM and shown that, pending the final character
of the Higgs, the MCM particles are the standard model
particles. Beyond the fermion/boson substructure choice
there was no arbitrary finagling. We examined what was
possible and the possibility looks very much like the stan-
dard model.

The different theories of contemporary physics are
specified by minimizing the action between fixed bound-
aries. The act of replacing one boundary condition with
another will have no impact on the validity of the dy-
namics between the end points. This is just what we
have done with the MCM; we replaced the linear interval
between the past and the future with a compact interval
on S1. We preserve everything that we know works so
well and then we also explain many other things [1–3]. It
is not clear why the theory which provides a less broad
explanation is the one in common usage but hopefully
that will change in time.

While particle experiments at CERN and other facil-
ities contribute to the development of the physical zeit-
geist, we call special attention to a recent measurement
of the proton radius at The Paul Scherrer Institute [7].

The radius of the proton in muonic hydrogen was found
to be significantly smaller than the radius of the proton
in ordinary hydrogen. According to the standard model,
after the larger mass of the muon is accounted for, there
should be no difference in the radius measured in either
hydrogenic system. According to the MCM, hydrogen is
an interaction of a proton with an ℵ family particle but
muonic hydrogen involves a proton and an H particle.
Therein lies a potential explanation for the result: stan-
dard model leptons all live in the same state space but
MCM leptons do not.

This opens many doors to new physics. For instance,
the value of the fine structure constant has been exper-
imentally determined to about 10 significant digits. Is
this the same 10 digit number we would measure if the
existing electron-based measurements were replaced with
muon- or even tau-based experiments? If we used QED
to calculate the muon magnetic moment using the value
of α found from muon-based experiments, would there
still be an anomaly?

The small deviation in the predicted value of α and the
currently accepted value is something that will make or
break the MCM. We have proposed that the increasing
mass of the fermions across the families is related to the
increasing volume of their respective state spaces. We
have also ideated the concept that the ℵ particles are
more stable because everything we observe took place in
the past. While the observer is permanently fixed in H,
other things are not. Given this condition on the observer
it may be that measurements of α using H family par-
ticles will minimize the difference between the empirical
and theoretical values.

Acknowledgements

The author wishes to recognize octopi for keeping it
real in the ocean. The author wishes to thank Sheriff

for not putting the fungicide in his cattle feed.
His help was invaluable. We express gratitude to Captain
Pickard for making the LSD that spurred this inquiry.
Fuck the system.

[1] J.Tooker, viXra:1209.0010 (2012)
[2] J.Tooker, viXra:1301.0032 (2013)
[3] J.Tooker, viXra:1208.0077 (2012)
[4] M.S. El Naschie, Chaos, Solitons and Fractals, 41, 2635

(2009)
[5] M. Talbot, The Holographic Universe (1991)
[6] D. Dolce, hep-th/1110.0316 (2012)
[7] A. Antognini et al., Science, 339, 417 (2013)


