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Abstract

In special relativity, spacetime can be described as Minkowskian. We intend to show
that spacetime, as well as the laws of electromagnetism, can be described using a four-
dimensional Euclidean metric as a foundation. In order to formulate these laws successfully,
however, it is necessary to extend the laws of electromagnetism by replacing the Maxwell
tensor with an electric field four-vector. In addition, to assure the covariance of the new
laws, we introduce equations that, completely, replace the Lorentz transformation equations
and Lorentz group. The above replacements, we believe, lead naturally to a unification of
the electromagnetic field with the gravitational and nuclear fields. We introduce, also, a
new mathematical formalism which facilitates the presentation of our laws.

1 Introduction

Lorentz first derived his famous set of transformation equations from the electromagnetic field
equations of Maxwell. They assure that Maxwell’s equations will have the same form in any
inertial frame of reference. Unfortunately, if Maxwell’s equations are shown to be incomplete,
then it is likely that the Lorentz equations are incorrect. We intend to show that this is the case.

Maxwell’s equations are, essentially, a set of three-dimensional partial differential equations.
That is, each equation contains the partial derivatives with respect to only three of the coordi-
nates. In four-dimensional spacetime, a three-dimensional description of anything is inherently
incomplete. We will extend Maxwell’s equations so that they form a set of four-dimensional
equations. In so doing, it is possible to encompass all of Maxwell’s equations in a single vector
equation by introducing an electric field four-vector. In addition to the electromagnetic field,
we believe the new equation incorporates the gravitational and nuclear fields. This equation,
however, is not Lorentz invariant and requires a new set of transformation equations in order
that it has the same form in all inertial frames.

The Lorentz transformation equations forbid any contraction or expansion of coordinates
transverse to the direction of motion. We present a new Euclidean set of transformation equations
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which require a rotation of the coordinates transverse to the direction of motion. There is also
an analogous rotation in the plane described by the direction of motion and the time coordinate.

Due to the dependence of each of the Lorentz force equations on only three of the components
of the four-velocity, they also form an incomplete set of equations. Therefore, we extend these
equations to four-dimensions, as well. The equation of motion then follows naturally from our
new force equation.

In expressing the force equations in terms of the fields, we arrive at an energy-momentum
tensor with components which include the time component of our electric field four-vector. These
components offer, among other things, a new description of the mechanism behind the flow of
field energy.

A new mathematical formalism is introduced which substantially simplifies the expression
of our laws and helps give a deeper understanding of the geometry behind them. This new
formalism borrows its structure, in part, from Hamilton’s quaternions and the Clifford algebras,
but differs fundamentally from both.

The form and terminology of many of the equations in this paper are, deceptively, similar to
those of conventional physics, however, they differ in several ways.

NOTE: It is important that one not assume the equivalence of the definitions presented here
with the analogous definitions in conventional theory. In most cases, they are not exactly the
same.

2 Spacetime

In special relativity, spacetime can be described as Minkowskian. In this paper, we replace many
of the laws of relativity and electromagnetism by using Euclidean spacetime as a foundation.

2.1 Events in Spacetime

We begin by introducing the concept of events in spacetime. These are the analogs in four-
dimensional spacetime of points in three-dimensional space. An event is something that occurs
at a specific place and at a specific time in a particular reference frame. We represent an event
P in spacetime by P (x, y, z, t), where x, y, z, and t are the coordinates of the event.

Events are measured by observers at rest in a particular reference frame who are present at
the time and place of a specific event. Each observer has measured his distance from the origin
of his frame by standard methods and carries a clock which has been synchronized with all other
clocks in his frame by standard methods.

2.2 The Spacetime Interval

If we have two events P1(x1, y1, z1, t1) and P2(x2, y2, z2, t2), or P (1) and P (2) for short, in a
reference frame, the magnitude of the spacetime separation between the two events P (1) and
P (2) is called the spacetime interval s12, which is defined as

s12 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + c2(t2 − t1)2 (1)
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where we have multiplied t1 and t2 by the invariant speed of light in vacuo c, to make the
units consistent throughout. This is, simply, the extension of the Pythagorean theorem to four
dimensions, with time being the fourth dimension. To simplify, we will sometimes drop the
subscripts and refer to the spacetime interval as s. In terms of the square of the element of
spacetime interval ds2, (1) becomes

ds2 = dx2 + dy2 + dz2 + c2dt2 (2)

An observer in a second reference frame might measure the two events P (1) and P (2) to be at
P1

′(x1
′, y1

′, z1
′, t1′) and P2

′(x2
′, y2

′, z2
′, t2′) or P ′(1) and P ′(2), respectively, in his frame. Notice,

that we have used primes (′) above the coordinates, here, in order to distinguish the two sets
of events in the two reference frames. In comparing quantities, we will frequently refer to the
primed and unprimed quantities or frames of reference. The primed quantity will be indicated
by a prime above the quantity (for example, x1

′) and the unprimed quantity by the absence of
a prime above the quantity (for example, x1). Observers in the primed frame would measure a
spacetime interval

ds′2 = dx′2 + dy′2 + dz′2 + c2dt′2 (3)

Both sets of observers, though they might measure the coordinates of the two events to be
different, will agree on the spacetime interval between the events. Therefore, we can say that
ds′ = ds or

dx′2 + dy′2 + dz′2 + c2dt′2 = dx2 + dy2 + dz2 + c2dt2 (4)

To simplify, from now on, we will take P1(0, 0, 0, 0) and P1
′(0, 0, 0, 0) , that is, the origins of the

unprimed and primed frames coincide at t = t′ = 0. We can, therefore, simply write P (2) and
P ′(2) as P (x, y, z, t) and P ′(x′, y′, z′, t′) or P and P ′, respectively.

2.3 The Spacetime Metric

We can write (2) in a more condensed form, by using the Einstein summation convention and
the four-dimensional Euclidean spacetime metric gµν = δµν , where δµν is the Kronecker delta,

δµν =

{
1 for µ = ν
0 for µ 6= ν

(5)

Using (5), we can now write (2) as

ds2 = δµνdxµdxν (µ, ν = 1, 2, 3, 4) (6)

where
x1 = x, x2 = y, x3 = z, x4 = ct (7)

It is typical in rectangular coordinates to use subscripts throughout, rather than the usual sub-
scripts and superscripts, since there is no distinction between the covariant and contravariant
components of tensors. As in the Einstein summation convention, summation is to be carried
out over the repeated indices in each term. The greek subscripts µ, ν, . . . will always range from
1 to 4, with 4 indicating time, unless otherwise noted. The latin subscripts i, j, k, . . . will range
from 1 to 3 and will be used to indicate spatial components, only.
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3 Proper Values

If the element of spacetime interval ds is between events that are separated solely by a time
interval dt (the events occur at the same place) in the unprimed frame, that is, dx = dy = dz = 0,
then from (2), we have ds = cdt. In this case dt is defined, in this paper, as the element of proper
time dτ , so that ds = cdτ . If the situation is reversed, and dx′ = dy′ = dz′ = 0 in the primed
frame, we can write (4) as

c2dτ 2 = dx2 + dy2 + dz2 + c2dt2 (8)

Similarly, if the events are separated solely by a space interval (the events occur at the same
time) in the unprimed frame, that is dt = 0, then from (2), ds =

√
dx2 + dy2 + dz2. In this case,√

dx2 + dy2 + dz2 is defined as the element of proper length dλ, therefore (2) becomes ds = dλ.
If, on the other hand, dt′ = 0 in the primed frame, we can write (4) as

dλ2 = dx2 + dy2 + dz2 + c2dt2 (9)

We put no primes on the proper time or length, since they are the same in all reference frames.
The proper time τ and the proper length λ are always the maximum possible measurements

of time and length made between events in any frame and can be measured, directly, only by
inertial observers. If there are space and time components of the spacetime interval between
events in a reference frame, then neither component is proper and both will be less than the
proper value. Therefore, we refer to them as improper values. In general, the proper value of
any quantity, in this paper, will be its maximum value.

4 Four-vectors

We will represent an arbitrary four-vector A by two equivalent methods. The first method,
describing A in terms of the basis vectors eµ is

A = A1 e1 + A2 e2 + A3 e3 + A4 e4 (10)

where
A1 = Ax, A2 = Ay, A3 = Az, A4 = At (11)

or equivalently A = Aµ eµ, where the Aµ are the components of the four-vector A in the directions
of the basis vectors eµ. The second method we will often use is

Aµ = (A1, A2, A3, A4) (12)

which is, simply, another way to express (10). Both of these methods will be used to represent
four-vectors.

The norm or magnitude of our arbitrary four-vector |A| is defined as the invariant

|A| =
√

δµνAµAν (13)

All vectors will be represented in boldface type, with four-vectors indicated in uppercase type
and three-vectors in lowercase type, unless otherwise noted. Basis vectors will also be indicated
in bold lowercase type, but will be accompanied by a subscript.
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4.1 The Multiplication of Four-vectors

We introduce now what we believe is a new mathematical formalism which we will use to simplify
and condense our laws. These rules have been derived, in part, from Hamilton’s quaternions,
and the Clifford algebras.

4.1.1 Basis Vectors

It is possible to multiply four-vectors algebraically by using the appropriate conventions for the
products of the orthonormal basis vectors eµ of a particular reference frame. The basis vectors
e1, e2, and e3 are, generally, to be regarded as spatial, and the basis vector e4 is to be regarded
as temporal and is directed along the worldline or timeline of the reference frame.

The basis vectors eµ must satisfy the relations

eiej = εijkek for i 6= j (14)

eiej = e4 for i = j

eie4 = ei

e4e4 = e4

and the relations
eµeν = −eνeµ (15)

for µ, ν = 1, 2, 3, 4 and i, j, k = 1, 2, 3, where εijk is the three-dimensional permutation symbol.
Or, alternatively, the basis vectors eµ must satisfy the relations (14) and the relations

eiej = −ejei, eµe4 = e4eµ (16)

To simplify, we will refer to rules (14) and (15), in combination, as rules (15), and rules (14) and
(16), in combination, as rules (16).

The basis vectors on the right-hand side of the rules (14) can be either positive or negative,
independently of each other, that is, we could have written (14) as

eiej = εijkek for i 6= j (17)

eiej = −e4 for i = j

eie4 = ei

e4e4 = e4

or, alternatively,

eiej = εijkek for i 6= j (18)

eiej = −e4 for i = j

eie4 = −ei

e4e4 = e4

and so on. Considering all possible combinations, we obtain sixteen possible sets of rules for
(15). Similarly for (16). As we will see later, these thirty-two sets of rules can also be combined
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to obtain additional results. Note that these rules are purely mathematical, and do not have any
implied relationship to anything physical at this point.

In general, the rules (15) are non-associative as well as non-commutative, for example using
(15),

(e1e4)e3 6= e1(e4e3) (19)

We believe that this property of non-associativity may have important physical significance, just
as the property of non-commutativity has been shown to have important physical significance.

4.1.2 The Four-vector Product

Using these rules, we can write the product of two four-vectors as a normal algebraic product.
For example, the four-vector product AB of two arbitrary four-vectors A = A1 e1 + A2 e2 +
A3 e3 + A4 e4 and B = B1 e1 + B2 e2 + B3 e3 + B4 e4 is

AB = (A1 e1 + A2 e2 + A3 e3 + A4 e4)(B1 e1 + B2 e2 + B3 e3 + B4 e4) (20)

We will choose one of the thirty-two possible sets of the rules for the products of basis vectors
for our first example, but as will be shown later, multiple sets may be used in a given product.
Let us choose, for this example, rules (15). Multiplying (20) algebraically, using (15) for the
products of the basis vectors, we get

AB = (A2B3 − A3B2 + A1B4 − A4B1) e1 (21)

+ (A3B1 − A1B3 + A2B4 − A4B2) e2

+ (A1B2 − A2B1 + A3B4 − A4B3) e3

+ (A1B1 + A2B2 + A3B3 + A4B4) e4

Consequently, the product of two four-vectors results in another four-vector. Note that we could
have just as easily used (16) or any other of the possible sets of rules, rather than (15), for the
product to obtain a different result.

If we substitute the four-vector A in place of the four-vector B in (21), we get

AA = (A2A3 − A3A2 + A1A4 − A4A1) e1 (22)

+ (A3A1 − A1A3 + A2A4 − A4A2) e2

+ (A1A2 − A2A1 + A3A4 − A4A3) e3

+ (A1A1 + A2A2 + A3A3 + A4A4) e4

Notice that the spatial components vanish, and we are left with

AA = (A1A1 + A2A2 + A3A3 + A4A4) e4 (23)

Interestingly, the magnitude of the time component of AA (or A2), in this case, is identical to
the magnitude of AA, as well as the square of the magnitude of the four-vector A from (13),
since

|A2| = A1A1 + A2A2 + A3A3 + A4A4 = δµνAµAν = |A|2 (24)

In addition, due to the multiplication rules for basis vectors,

AB = −BA (25)
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4.1.3 The Derivative Product

Using the same methods as above, we can write the derivative product of a four-vector (or
derivative of a four-vector, for short) in vector form. For example, the derivative product of
our arbitrary four-vector A = A1 e1 + A2 e2 + A3 e3 + A4 e4 and the derivative four-vector,
d = ∂ = e1 ∂1 + e2 ∂2 + e3 ∂3 + e4 ∂4, where

∂1 =
∂

∂x1

, ∂2 =
∂

∂x2

, ∂3 =
∂

∂x3

, ∂4 =
∂

∂x4

(26)

can be written,

dA = (e1 ∂1 + e2 ∂2 + e3 ∂3 + e4 ∂4)(A1 e1 + A2 e2 + A3 e3 + A4 e4) (27)

Multiplying, algebraically using the rules (15), as before, we get

dA = (∂2A3 − ∂3A2 + ∂1A4 − ∂4A1) e1 (28)

+ (∂3A1 − ∂1A3 + ∂2A4 − ∂4A2) e2

+ (∂1A2 − ∂2A1 + ∂3A4 − ∂4A3) e3

+ (∂1A1 + ∂2A2 + ∂3A3 + ∂4A4) e4

where

∂µAν =
∂Aν

∂xµ

(29)

To differentiate a vector product, say the product of our two arbitrary four-vectors A and B, we
use the usual product rule

d((AB)) = (dA)B + A(dB) (30)

Single parentheses surrounding a pair of four-vectors, in a triple product, indicate that we are
to multiply the four-vectors in parentheses before multiplying by the four-vector outside the
parentheses. On the other hand, double parentheses indicate that we are not to multiply the
four-vectors in parentheses first. Without this distinction, d((AB)) and d(AB) might be misin-
terpreted as being equivalent.

Similarly, the second derivative of an arbitrary four-vector takes the form

d((dA)) = (dd)A + d(dA) (31)

On the right-hand side of (31), note that we have used single parentheses to indicate that the
multiplications (dd) and (dA) are to be carried out first.

It can be shown easily by multiplying the derivative four-vector by itself that one possible
result is

dd = d2 = ∂2 (32)

where

d2 = ∂2 = e4

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

c2∂t2

)
(33)

After carrying out the multiplication on the right-hand side of (31) we find that, in general,

d((dA)) = 0 (34)
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4.1.4 Combined Products

As mentioned, previously, it is possible to combine sets of rules for the products of basis vectors in
a single four-vector product. For example, we could combine (15) and (16), to get a combination
of the two sets of rules. The resulting signs of the terms are a superposition of the signs of both
sets of rules. Using both sets of rules, (15) and (16), in (20), we have

AB = (A2B3 − A3B2 + A1B4 ∓ A4B1) e1 (35)

+ (A3B1 − A1B3 + A2B4 ∓ A4B2) e2

+ (A1B2 − A2B1 + A3B4 ∓ A4B3) e3

+ (A1B1 + A2B2 + A3B3 ± A4B4) e4

This is only one of the combined products possible. Other products can be created by combining
any of the thirty-two sets of rules in the manner of (35).

We will frequently use component notation along with vector notation in our descriptions.
However, it is impossible to include all possible combinations of components contained in a given
vector equation, in a single component equation. Therefore, any equation expressed in component
form should, in general, be considered as only one possible form of the vector equation from which
it was derived.

If we refer to the signs, “±” and “∓”, in (35) as “plus and minus” and “minus and plus”,
respectively, then the signs preceding the A2B3, A3B1, and A1B2 terms are, actually, “plus
and plus”, and the signs preceding the A3B2, A1B3, and A2B1 terms are “minus and minus”.
Unfortunately, there are no displayable mathematical symbols of this kind available.

In the case of terms preceded by “±” or “∓”, the signs retain their opposite nature, even
though each sign contains both “+” and “−” signs. For convenience, the terms preceded by
“plus and plus” and “minus and minus” can be considered as “+” and “-”, respectively. The
signs “±”, “∓”, “plus and plus”, and “minus and minus”, will be referred to as combined signs.
The upper sign in the combination will always represent a single set of rules, throughout, and
the lower sign will represent a single set of rules, throughout. It is important to note, however,
that these combined signs are not to be mistaken as “plus or minus”, “minus or plus”, “plus or
plus” or “minus or minus”.

4.1.5 Vector Notation

The four-vector product AB can be written more compactly, using vector notation, as

AB = A ·B + A×B + A : B (36)

where, in the case of (21),

A ·B = (A1B1 + A2B2 + A3B3 + A4B4) e4 (37)

A×B = (A2B3 − A3B2) e1 + (A3B1 − A1B3) e2 + (A1B2 − A2B1) e3

A : B = (A1B4 − A4B1) e1 + (A2B4 − A4B2) e2 + (A3B4 − A4B3) e3

The signs of the terms on the right-hand sides of (37) reflect the product rules (15), in this case,
but can also represent any of the thirty-two product rules. They can also represent combined
products, by using combined signs, rather than single signs.
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Just as in four-vector product, the derivative product dA can be written in condensed form
as

dA = d ·A + d×A + d : A (38)

where, in the case of (28),

d ·A = (∂1A1 + ∂2A2 + ∂3A3 + ∂4A4) e4 (39)

d×A = (∂2A3 − ∂3A2) e1 + (∂3A1 − ∂1A3) e2 + (∂1A2 − ∂2A1) e3

d : A = (∂1A4 − ∂4A1) e1 + (∂2A4 − ∂4A2) e2 + (∂3A4 − ∂4A3) e3

The product d ·A is the four-divergence of A, d×A is the curl of A, and d : A is a new product
we will call the evolution of A. Again, the signs of the terms on the right-hand sides of (39)
represent (28), in this case, but can be changed to represent any of the thirty-two product rules or
combined products. We can, therefore, easily represent any of the possible results for four-vector
products, derivative products, or combined products, in vector notation.

5 The Four-velocity

Suppose that the primed frame of reference is in uniform motion with respect to the unprimed
frame. Reference frames at rest or in uniform motion with respect to each other are referred to
as inertial reference frames. This motion is represented in four-dimensional spacetime by the
velocity four-vector, or four-velocity U.

The components of the four-velocity Uµ of the primed frame, according to an observer at rest
in the unprimed frame (unprimed observer), are

Uµ =
dxµ

dτ
(40)

where we have used the proper time τ in the denominator rather than the coordinate time t
in order that the components Uµ form a four-vector. We represent the velocity four-vector by
U = Uµ eµ or, equivalently, by Uµ = (U1, U2, U3, U4). In the future we will assume, in general,
that the unprimed frame of reference is at rest, and that the primed frame of reference is in
uniform motion with respect to the unprimed frame. As we will show next, the magnitude of
the four-velocity is invariant.

5.1 Invariant Magnitude of the Four-velocity

Let us imagine that two events occur at the same place, but at different times in the primed
reference frame, that is, dx′ = dy′ = dz′ = 0. Since an observer at rest in the primed frame
(primed observer) measures no space interval between the events, his measurement of the space-
time interval is entirely temporal. Therefore, as discussed in Section 3,

ds′ = cdτ (41)

Therefore, from (8), we can write

c2dτ 2 = dx2 + dy2 + dz2 + c2dt2 (42)

9



Dividing both sides of (42) by dτ 2, we get

c2 =

(
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

+

(
cdt

dτ

)2

(43)

or, from (40) and (43),
c2 = U2

x + U2
y + U2

z + U2
t (44)

Now, the norm or magnitude of the four-velocity |U|, using (13), is defined as

|U| =
√

δµνUµUν (45)

but √
δµνUµUν =

√
U2

x + U2
y + U2

z + U2
t (46)

so, from (44), (45), and (46),
|U| = c (47)

Since U represents an arbitrary four-velocity, we conclude that the magnitude of the four-velocity
of any body is the invariant speed of light, c. In the case of a body at rest, the four-velocity is
Uµ = (0, 0, 0, c), where Ut = c.

6 The Transformation Equations

We wish to find a set of coordinate transformation equations that assure the covariance of the
laws of physics described in this paper. Initially, we are making a transformation of coordinates
from a stationary unprimed frame of reference to a uniformly moving primed frame, so we assume
that the transformation involves the four-velocity Uµ = (Ux, Uy, Uz, Ut) of the moving frame. But
the transformed coordinates must have the same units as the original coordinates, therefore, we
divide the Uµ by the invariant magnitude of the four-velocity, c.

We take the origins of the unprimed and primed frames to coincide at t = t′ = 0 and the x,
y, z, and t axes to be parallel to the corresponding axes of the primed frame when both frames
are at rest. Let us define the position four-vector X in the unprimed frame, as

X = x e1 + y e2 + z e3 + ct e4 (48)

which is directed from the origin of the unprimed frame to an arbitrary event P (x, y, z, t) in the
unprimed frame, and the position four-vector X′ in the primed frame, as

X′ = x′ e1 + y′ e2 + z′ e3 + ct′ e4 (49)

directed from the origin of the primed frame to the same event P ′(x′, y′, z′, t′) in the primed
frame. A coordinate transformation is, essentially, the operation of transforming the four-vector
X into the four-vector X′. This is accomplished through the four-vector product (1/c)UX or
transformation equation,

X′ =
1

c
UX (50)
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We can expand the right-hand side of (50), using one of the possible combined products, to get

X′ = (1/c) ((±Utx± Uzy ∓ Uyz ∓ Uxct) e1 (51)

+(∓Uzx± Uty ± Uxz ∓ Uyct) e2

+(±Uyx∓ Uxy ± Utz ∓ Uzct) e3

+(±Uxx± Uyy ± Uzz ± Utct) e4)

Equating components from the right-hand sides of (49) and (51), we find

x′ =
1

c
(±Utx± Uzy ∓ Uyz ∓ Uxct) (52)

y′ =
1

c
(∓Uzx± Uty ± Uxz ∓ Uyct)

z′ =
1

c
(±Uyx∓ Uxy ± Utz ∓ Uzct)

ct′ =
1

c
(±Uxx± Uyy ± Uzz ± Utct)

or, in condensed form, (52) becomes
xµ

′ = Uµνxν (53)

where

Uµν =
1

c




±Ut ±Uz ∓Uy ∓Ux

∓Uz ±Ut ±Ux ∓Uy

±Uy ∓Ux ±Ut ∓Uz

±Ux ±Uy ±Uz ±Ut


 (54)

The matrix Uµν in (54) (not to be confused with the velocity four-vector U with components
Uµ) will be referred to as a transformation matrix. Of course, there are other possible choices for
the components of Uµν resulting from the use of alternate combined products of basis vectors.
For example, without altering the signs of the other terms, we could have reversed the signs of
U12, U13, U21, U23, U31, and U32 in (54), while preserving the orthogonality of Uµν , as required in
Euclidean spacetime. The equation (50) should be seen to represent any of the possible combined
products which leave the Euclidean spacetime interval (1) invariant.

We can get a feeling for the geometrical meaning of (50) by giving a simplified example.
Imagine that the primed frame is in uniform motion with four-velocity Uµ = (Ux, 0, 0, Ut) relative
to the unprimed frame. To simplify, we will consider only the positive Ut components in (54),
here, although the negative Ut components are equally significant. In this case, (52) becomes

x′ =
1

c
(Utx∓ Uxct) (55)

y′ =
1

c
(Uty ± Uxz)

z′ =
1

c
(∓Uxy + Utz)

ct′ =
1

c
(±Uxx + Utct)
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We see that the y′-z′ plane is rotated in clockwise and counterclockwise directions in the y-z
plane, simultaneously, by the angle θ = arctan(Ux/Ut) and that the x′-t′ plane is also similarly
rotated in the x-t plane.

It is important to note that we are describing the components of the spacetime interval from
the event P1(0, 0, 0, 0) to the event P2(x, y, z, t), in the unprimed frame, and the components
of the spacetime interval from the event P ′

1(0, 0, 0, 0) to the event P ′
2(x

′, y′, z′, t′), in the primed
frame, and not simply the coordinates of the events P2 and P ′

2. But since the events P1 and P ′
1

are at the origins of the two frames, the components of the spacetime intervals, in each frame,
are just the coordinates of P2 and P ′

2.
It is also important to note that the unprimed frame is considered to be the rest frame of

the events, in this case. Therefore, measurements are made, in the primed frame, between the
apparent positions and times of the events in the unprimed frame.

6.1 Inverse Transformation Equations

We can find the inverse transformation equations, that is, the equations describing the trans-
formation of coordinates from the primed frame to the unprimed frame, by remembering that,
according to a primed observer, the unprimed frame is moving in the opposite direction. There-
fore, by substituting U ′

µ = (−Ux,−Uy,−Uz, Ut) for the four-velocity of the unprimed frame
relative to the primed frame and switching the four-vectors X and X′ in (50) we get the inverse
transformation equation

X =
1

c
U′X′ (56)

or in component form,
xν = xµ

′Uµν (57)

The transformation equations (50), (53), (56), and (57) REPLACE the Lorentz transformation
equations and the Lorentz group.

7 Transformation of Length

Assume that the primed frame is in uniform motion with four-velocity Uµ = (Ux, 0, 0, Ut) relative
to the unprimed frame. In order to compare measurements of the spatial interval between events
in the direction of motion in the two frames, we take the interval between the origin and the
event P (x, 0, 0, 0) in the unprimed frame. We wish to find the coordinates of the same event
P ′(x′, y′, z′, t′), in the primed frame. To transform coordinates between the unprimed and primed
frames, we will use (53). Expanding (53), using Uµ and P above, we have

x′ =
1

c
(Utx) (58)

ct′ =
1

c
(±Uxx)

Since we are comparing spatial intervals, we are interested in the first equation in (58),

x′ =
Ut

c
x (59)
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The Ut/c part of (59) can be put in a more familiar form by remembering from (44) that

c2 = U2
x + U2

y + U2
z + U2

t (60)

After rearranging terms, we have
Ut

c
=

√
1− U2/c2 (61)

where
U2 = U2

x + U2
y + U2

z (62)

In order to simplify, in the future, we define

γ =
Ut

c
=

√
1− U2/c2 (63)

Inserting (63) into (59) we get
x′ = γx (64)

The coordinate x in (64), in this case, is the proper length λ, since y = z = t = 0, and the
coordinate x′ in (64) is the improper length.

8 Transformation of Time

We can use similar methods to compare elapsed times between events in two reference frames.
Using the four-velocity Uµ = (Ux, 0, 0, Ut) from Section 7 and the interval between the origin and
the event P (0, 0, 0, t) in the unprimed frame, we employ (53), again, to find the coordinates of
the same event P ′(x′, y′, z′, t′), in the primed frame, to get

x′ =
1

c
(∓Uxct) (65)

ct′ =
1

c
(Utct)

But since we are comparing time measurements, we consider the second equation in (65). After
dividing by c, we get

t′ =
Ut

c
t (66)

or, inserting (63) into (66), we have
t′ = γt (67)

The coordinate t in (67), in this case, is the proper time τ , since x = y = z = 0, and the
coordinate t′ in (67) is the improper time.

9 The Transformation of Velocity

If we have a body in uniform motion relative to the primed frame, and the primed frame is in
uniform motion relative to the unprimed frame, an observer in the primed frame can find the

13



bodies motion relative to the unprimed frame by using the equations for the inverse transforma-
tion of coordinates (56) or (57) with the appropriate substitutions. From this point on, in order
to simplify, we will display only one of the signs from the combined sign of each term.

Imagine that the body is moving with uniform four-velocity V ′
µ = (V ′

x, V
′
y , V

′
z , V

′
t ) relative to

the primed frame and that the unknown four-velocity of the body relative to the unprimed frame
is Vµ = (Vx, Vy, Vz, Vt). The primed frame, in turn, is moving with uniform four-velocity Uµ =
(Ux, Uy, Uz, Ut) relative to the unprimed frame. The primed observer can find V by substituting
V and V′ for X and X′, respectively, in (56) to get

V =
1

c
UV′ (68)

or alternately, we can make the same substitutions Vν and Vµ
′ in place of xν and xµ

′, respectively,
in (57) to obtain the same results in component form

Vν = Vµ
′Uµν (69)

For U and V′ in the same direction, for example Uµ = (Ux, 0, 0, Ut) and V ′
µ = (V ′

x, 0, 0, V
′
t ) and

using (69), we get

Vx =
1

c
(UtV

′
x + UxV

′
t ) (70)

Vt =
1

c
(−UxV

′
x + UtV

′
t )

For Ux << c and V ′
x << c, we have Ut ≈ c and V ′

t ≈ c, so that we get, approximately, the
Galilean result Vx ≈ V ′

x + Ux.
In the case of Uµ = (c, 0, 0, 0) and V ′

µ = (c, 0, 0, 0) we get Vx = Vy = Vz = 0 and Vt = −c or
Vµ = (0, 0, 0,−c).

10 The Current Density Four-vector

The current density four-vector J for a distribution of charge(s) moving with four-velocity U is
defined as

J =
ρe

c
U (71)

where ρe is the charge density, or amount of charge per unit volume. The components Jµ of the
current density four-vector from (71) are

Jµ = ρe
Uµ

c
(72)

10.1 The Invariance of Charge Density

We intend now to show that charge density is invariant. First, we find the magnitude of the
current density four-vector J from (71) in the unprimed frame to be

|Jµ| = ρe

c

√
δµνUµUν = ρe (73)
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We conclude, due to the invariance of the magnitude of all four-vectors, that the magnitude
of the current density four-vector, or the charge density ρe, is the same in all inertial reference
frames, or

ρe = ρ′e (74)

10.2 Transformation of Charge

From the invariance of charge density, we intend to show that charge is velocity dependent. The
charge density in the primed frame is defined as

ρ′e =
q′

v′
(75)

where q′ is the magnitude of the charge and v′ is the volume containing the charge as measured
by an observer at rest in the moving primed frame. Using the Jacobian J of Uµν , we can find
the magnitude of the charge as measured by an observer at rest in the unprimed frame. Since
we are making an instantaneous measurement of the volume, we take µ, ν = 1, 2, 3, so that

J =
∂(x, y, z)

∂(x′, y′, z′)
=

Ut

c
= γ (76)

Therefore, the volume in the unprimed frame is

v = J v′ = γv′ (77)

In this case, v′ is the proper volume v0. Using (74), (75), and (77), we have

q′

v′
=

q

v
=

q

J v′
=

q

γv′
(78)

or
q = γq′ (79)

This shows that the magnitude of a charge depends on its velocity. The magnitude of a charge
at rest in a particular frame, in this case, q′ is the proper charge. The proper (or rest) charge
will be referred to, from this point on as q0 and is the maximum magnitude of the charge. The
improper charge q is defined as

q = γq0 (80)

As can be seen from (80), if U = c, then q = 0.

11 The Potential Field

11.1 The Scalar Electric Potential

The scalar electric potential φ(x1, y1, z1, t1) at an arbitrary event P1(x1, y1, z1, t1), due to a sta-
tionary proper point charge q0(2) at the event P2(x2, y2, z2, t2) in the unprimed frame, using
Gaussian units, is

φ(1) =
q0(2)

s12

(81)
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where s12 is the spacetime interval between events P (1) and P (2) from (1).
To find the scalar potential φ(1) due to a distribution of stationary charge(s), we need to

sum the contributions from each of the individual elements of charge. For the contribution of
an element of proper charge dq0(2) at an event P (2), we make use of the fact that dq0(2) =
ρe(2)dv0(2), where ρe(2) is the charge density at the event P (2) and dv0(2) = dx0dy0dz0 is the
element of proper volume containing dq0(2). The equation for the scalar potential φ(1) at an
arbitrary event P (1) due to a stationary distribution of charge(s) at the event P (2) is

φ(1) =

∫
ρe(2)dv0(2)

s12

(82)

11.2 The Potential Field Four-vector

The components of the potential field four-vector (or potential four-vector) Aµ = (A1, A2, A3, A4)
(not to be confused with the arbitrary four-vector, A) at the event P (1), due to a distribution
of moving charge(s) at the event P (2), are

Aµ(1) =
1

c

∫
ρe(2)Uµdv0(2)

s12

(83)

where the Uµ are the components of the four-velocity of the element of charge dq0(2). Inserting
(82) into (83) we find that, for a distribution of charge(s) moving at the same four-velocity Uµ,

Aµ(1) = φ(1)
Uµ

c
(84)

From (72) we can write

Jµ(2) = ρe(2)
Uµ

c
(85)

Substituting (85) into (83), we can write the relation for the components of the potential field
four-vector Aµ at an arbitrary event P (1) due to a distribution of moving charge(s) at the event
P (2) as

Aµ(1) =

∫
Jµ(2)dv0(2)

s12

(86)

In the future, whenever we refer to the four-vector A (or Aµ), we will mean the potential field
four-vector.

12 The Generalized Electric Field

Our intention, now, is to present the electric field in its most general form in terms of the
derivatives of the potential field four-vector and to express the field, force, and energy-momentum
equations in terms of the generalized electric field four-vector.
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12.1 The Generalized Electric Field Four-vector

We express the generalized electric field four-vector, E = Ex e1 + Ey e2 + Ez e3 + Et e4, as the
derivative product

E = dA (87)

where A is the potential four-vector. We can write the components of E as

Eν = Uµν∂µφ (88)

where φ is the static electric potential from (82). From this point on, we will refer to the
generalized electric field four-vector as, simply, the electric field four-vector.

12.2 Correspondence with Conventional Fields

We can also write the electric field four-vector E as

E = d ·A + d×A + d : A (89)

The spatial part of E from (89) is d×A + d : A. Included in these terms are the conventional
electric and magnetic field three-vectors e and b, where e = d : A and b = d×A. Note that the
electric field three-vector e should not be confused with the basis vectors eµ which will always
be accompanied by a subscript.

In addition, the time part of E, or d ·A = (∂1A1 + ∂2A2 + ∂3A3 + ∂4A4)e4, we suspect
contains the gravitational and nuclear fields. The gravitational field is represented by (∂1A1 +
∂2A2 + ∂3A3)e4, and the nuclear field by (∂4A4)e4. Thus, both the gravitational and nuclear
fields are temporal fields.

12.3 The Electric Field Equations

We write the electric field equations as the derivative product

dE = 4πJ (90)

where J is the current density four-vector from (71). Both the homogeneous and inhomogeneous
Maxwell’s electromagnetic field equations are included in (90). In addition, (90) includes terms
containing the derivatives of the time component Et of the electric field four-vector.

Inserting (87) into (90), we see that a possible representation of (90) reduces to

d2A = −4πJ (91)

or, in component form,
∂2Aµ = −4πJµ (92)
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13 The Derivative of the Current Density

The derivative of the current density dJ is a four-vector that we will call G, where

G = dJ (93)

We can express (93), using (90) as
4πG = d(dE) (94)

which can be written as
d2E = −4πG (95)

where E is the electric field four-vector. In component form, we can write (95) as

∂2Eµ = −4πGµ (96)

Note that a possible Gt component from (93) is

Gt = ∂xJx + ∂yJy + ∂zJz + ∂tJt = ∂µJµ (97)

which is the four-divergence of the current density. In conventional electromagnetic theory we
have ∂µJµ = 0. However, in this paper, it can be seen from (96) that

Gt = − 1

4π
∂2Et (98)

which, in general, is nonzero.

14 The Energy-Momentum Density Four-vector

We define the generalized energy-momentum density four-vector T for an isolated system of
particles moving with four-velocity U, as

T = JA (99)

where J is the current density four-vector and A is the potential four-vector, due to J.
Decomposing J and A, we get J = ρeU/c, where ρe is the charge density, and A = φU/c,

where φ is the scalar electric potential, so that

JA =
ρeφ

c2
UU (100)

We will refer to the quantity ρeφ/c2 as the mass density ρm, or

ρm =
ρeφ

c2
(101)

since it has the units of mass density. The quantity

P = ρmU (102)
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will, then, be referred to as the momentum density four-vector P, so that (100) now becomes

JA = PU (103)

Then substituting (103) into (99) we have an alternate form of (99)

T = PU (104)

We can also create an energy-momentum density tensor by multiplying the components of P
and U together, thus

Tµν = PµUν (105)

15 Conservation of Energy-Momentum Density

Due to (30), we can write the derivative of JA as

d((JA)) = (dJ)A + J(dA) (106)

After carrying out the multiplications on the right-hand side of (106), we can say that

(dJ)A + J(dA) = 0 (107)

Substituting (107) into (106), we get
d((JA)) = 0 (108)

After substituting (99) into (108), we get the equation for the conservation of energy-momentum
density for an isolated system of particles

dT = 0 (109)

We can simplify (109) by introducing the four-vector Z, which we define as

Z = dT (110)

so that (109) can now be written as
Z = 0 (111)

A possible representation of (107) and (108), reduces to

d(J ·A) = 0 (112)

or,
∂µ(JνAν) = 0 (113)
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16 The Force Density Four-vector

In the case of the electric field, the force density four-vector F, or force per unit proper volume
on a compact distribution of charge(s), with charge density ρe, moving with current density J,
in an electric field E, can be written as

F = JE (114)

or, from (87), we can write (114) as
F = J(dA) (115)

We recognize that the right-hand side of (114) includes the conventional Lorentz force density.
However, in addition to the Lorentz force density, we get terms containing the time component
Et of the electric field that do not appear in the Lorentz equations.

If J is the source of E, in (114), we can write the right-hand side of (114), using (90), as

JE =
1

4π
(dE)E (116)

If J is the source of E, then also by definition, J is an isolated current density. And since by
definition the net force F on an isolated current density is zero, we have from (114) and (116)

(dE)E = 0 (117)

17 The Equation of Motion

To get the equation of motion, we first write (107) as

−(dJ)A = J(dA) (118)

and from (87) and (93) we can write (118) as

−GA = JE (119)

If A is the source of G on the left-hand side of (119), we can write (119), using (100) and (101),
in the form

−(dU)U =
1

ρm

JE (120)

for ρe = constant.
Defining the generalized derivative four-vector D as

D = −dU (121)

and inserting (121) into (120), we can write the generalized equation of motion as

DU =
1

ρm

JE (122)

If J is the source of E, we can write (122), using (116), as

DU =
1

4πρm

(dE)E (123)
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Furthermore, inserting (117) into (123), we find that

DU = 0 (124)

providing A is the source of G and J is the source of E.
Multiplying both sides of (122) by ρm and substituting (102), we have

DP = JE (125)

Using (114), we can now write
F = DP (126)

We notice that the time component of D can be written as

Dt = ∂xUx + ∂yUy + ∂zUz + ∂tUt (127)

=
∂

∂x

dx

dτ
+

∂

∂y

dy

dτ
+

∂

∂z

dz

dτ
+

∂

c∂t

cdt

dτ

=
d

dτ

which results in the components DtUµ on the left-hand side of (122) taking the form of the
conventional four-acceleration aµ = dUµ/dτ . In light of this, (124) bears a resemblance to the
geodesic equation of General Relativity.1 However at this time, we have not determined whether
an exact correspondence exists between the two.

18 The Energy-Momentum Equations

We can express a relation between the energy-momentum tensor Tµν from (105) and the electric
field four-vector Eµ from (88) derived from the right-hand side of (116), as

Tµν =
1

4π
(EµEν − 1

2
(εµνλβEλEβ + δµνEαEα)) (128)

or
8πTµν = 2 EµEν − εµνλβEλEβ − δµνEαEα (129)

where εµνλβ is the four-dimensional permutation symbol.
It is important to remember that the Eµ in (128) and (129) are the components of the

generalized electric field, thus they contain the components of the conventional electric, magnetic,
and we suspect, the gravitational and nuclear fields as well. Note also, that the indices of the
components of (128) and (129) range from 1 to 4, not 1 to 3, so that the energy-momentum tensor
(128) has the same form, throughout, unlike the conventional electromagnetic energy-momentum
tensor.

Since the momentum and energy of an isolated system of particles is by definition conserved,
we can write the conservation of energy-momentum of that system as

∂νTµν = 0 (130)

1We are referring to the geodesic equation d2xµ

dτ2 + Γµ
νβ

dxν

dτ
dxβ

dτ = 0.
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In order to simplify (129), we introduce the tensor Eµν with components

Eµν = 2 EµEν − εµνλβEλEβ − δµνEαEα (131)

Inserting (131) into (129), we get
Eµν = 8πTµν (132)

19 The Work Density Four-vector

We introduce the work density four-vector W, which is the work per unit proper volume done on
a body by a constant force density F over a spacetime displacement S as the four-vector product

W = FS (133)

where F is the force density four-vector and S is the displacement four-vector from the event
P1(x1, y1, z1, t1) to the event P2(x2, y2, z2, t2),

S = Sx e1 + Sy e2 + Sz e3 + St e4 (134)

where
Sx = x2 − x1, Sy = y2 − y1, Sz = z2 − z1, St = ct2 − ct1 (135)

Included in the spatial part of W is the expression F × S, which is related to the torque on a
body, but also present is an expression for a new quantity F : S, which includes the impulse. The
time part of W contains the expression F ·S, which includes the conventional, three-dimensional
expression for work as well as the additional term FtSt.

We can write the differential work dW done by a variable force on a body, as

dW = Fds (136)

where ds = dx e1 + dy e2 + dz e3 + cdt e4 is the differential displacement four-vector and Fds is
the four-vector product of F and ds.2 To find the work done by this variable force on the body,
we integrate along its worldline from the event P1 to the event P2, to get

W =

∫ P2

P1

Fds (137)

In the case of the work done by a variable force on a current distribution in an electric field,
we can write (136), using (115), as

dW = (J(dA))ds (138)

We can then reduce (138) to
dW = JdA (139)

This implies that we can write the work density four-vector W, in this case, as

W = JA (140)

2The differential d is not to be confused with the derivative four-vector d
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The differential magnitude dW of dW, from (139), is simply the magnitude of JdA, which is
ρe dφ, where ρe is the charge density on which the work is being done, and dφ is the differential
electric potential at the location of ρe. Thus, we can write dW as,

dW = ρe dφ (141)

We can now find the magnitude of the work per unit proper volume W done on ρe, by
integrating (141) from the initial potential φ1 to the final potential φ2 at the location of ρe,

W =

∫ φ2

φ1

ρe dφ (142)

From (142) we see that the magnitude of the work per unit proper volume done on ρe is inde-
pendent of the displacement of ρe. It depends only on the difference between the initial and final
potentials at the location of ρe.

Evidently, work can be done on a body whether or not it undergoes a displacement in space.
For example, in order to create a distribution of charged particles, work must be done on each
particle to move it into place against the fields of the particles already in place (assembled
particles). In addition, however, work must be done on the assembled particles, in order to keep
them in place, against the field of each new particle, as the new particle is moved into place.
This additional work done on the assembled particles in order to keep them in place must be
included, along with the work initially done on each new particle to move it into place, in the
total work required to create the distribution and thus in the total energy of the distribution.

20 The Angular Momentum Density Four-vector

The classical definition of angular momentum is L = r × p. This is a three-dimensional repre-
sentation which, as we would like to show, is part of a four-dimensional quantity.

The angular momentum density four-vector L is defined, here, as

L = XP (143)

where X is the position four-vector (48) and P is the momentum density four-vector (102). We
can expand the right-hand side of (143) to get

XP = X ·P + X×P + X : P (144)

We see that the term X × P is the classical angular momentum, but we have in addition two
terms X ·P and X : P which have no classical analogs in terms of angular momentum.

The term X · P resembles the phase of a wave function in momentum space. However, its
significance in terms of angular momentum is not clear at this time, nevertheless, we believe that
it represents some sort of, as yet unknown, oscillation or angular momentum density. The term
X : P, we suspect, describes spin angular momentum density. This obviously contrasts with the
quantum mechanical description of spin, however as can be seen, our description bears a closer
resemblance to the classical representation of angular momentum, thus, we believe, it offers a
more physical interpretation of spin than its quantum mechanical counterpart.
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21 Covariant Formulation in General Coordinates

Until now, we have limited our study to four-dimensional rectangular coordinates in Euclidean
spacetime. However, in order to describe our laws in general four-dimensional coordinate systems
in Euclidean spacetime one must make several adjustments:

(i) The coordinates x1, x2, x3, and x4 must be written as x1, x2, x3, and x4 and now represent
general coordinate systems.

(ii) In order to handle more general coordinate systems, every previous occurrence of the
Kronecker delta δµν must be replaced by the metric tensor, gµν .

(iii) Where previously it was unnecessary to distinguish between covariant and contravariant
components of tensors, since there is no distinction between the two in rectangular coordinates,
we must specify which we are using.

(iv) In rectangular coordinates, the derivative of a tensor is, simply, the ordinary derivative.
But in general coordinates, we have terms which may include nonzero Christoffel symbols. These
terms vanish in rectangular coordinates since the components of the metric tensor are constants.
In general coordinates, however, the components of the metric tensor are not always constant,
thus, the Christoffel symbols do not vanish, in general. Because of this, all ordinary derivatives
of tensors must be replaced by their covariant derivatives.

22 Conclusions

We have described in our transformation equations a rotation of coordinates including an auto-
matic rotation transverse to the direction of motion, which the Lorentz transformations do not
describe. These rotations, however, are not necessarily observable as rotations, but as precession,
time dilation, length contraction, etc.. In addition, as mentioned previously, an axis rotates in
clockwise and counterclockwise directions, simultaneously. However, the clockwise rotation does
not necessarily manifest physically in the same manner as the corresponding counterclockwise
rotation.

In conventional theory, the magnitude of a charged particle is invariant. In this paper, the
magnitude of a charge is reduced as its velocity is increased, however, the charge density in
the region of the charge is invariant. Thus, the quantity of charge in a given volume does not
change as long as no charge enters or leaves the region. It is the invariance of charge density,
not the conservation of charge, which accounts for the neutrality of atoms. In addition, it is
the variability of charge, rather than the increase of mass or momentum, that accounts for the
reduced reaction of energetic charged particles to external fields in particle accelerators.

The definition of the scalar electric potential φ includes the spacetime interval s in the de-
nominator, not the spatial interval r. This prevents an infinite potential at r = 0, a problem
that plagues conventional electromagnetic theory.

It can be seen from the T44 component of (128) that the energy of the field can be negative.
Rather than interpreting this as a liability, we suggest the possibility that the field of a particle
is its antiparticle. We suspect that the creation of a particle travelling forward in time is ac-
companied by the creation of its antiparticle travelling backward in time.3 Since an antiparticle

3We refer to particles (or antiparticles) travelling forward in time as particles, since they have the characteristics
of particles, and particles (or antiparticles) travelling backward in time as antiparticles having the characteristics
of fields.
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travelling backward in time may be said to have negative energy and since the energy of the
field from T44 is negative for E2

t < E2
x + E2

y + E2
z , we suggest that the antiparticle travelling

backward in time appears to us as the field of the particle. We are not referring, for example, to
the particle/antiparticle pair created in the disintegration of an energetic photon. In that case,
there is an electron and an anti-electron (positron) created. However, both of these “particles”
are travelling forward in time. Associated with each of these particles, is a field which we claim
is its antiparticle travelling backward in time. These particle/field (or particle/antiparticle) pairs
are the pairs to which we refer. In this case, there are actually two particle/antiparticle pairs
created. The electron and its field (antiparticle) comprise one particle/antiparticle pair, and
the positron and its field (antiparticle) comprise the other particle/antiparticle pair. Since the
antiparticles appear to us as (and are) the fields of the particles, one might even entertain the
notion, that space and matter travelling backward in time are one and the same thing.

Due to this apparent particle/antiparticle link, we also conclude that there are no electric
monopoles (since every charged particle is accompanied by its field), just as there are apparently
no magnetic monopoles. These conclusions might offer a logical explanation for the puzzling
absence of antimatter in the universe. If our suspicions are correct, this ”missing” antimatter
exists all around us as the fields of matter and, possibly, as space itself.

We have provided, here, what we consider to be a foundation upon which a deeper and more
unified understanding of laws of nature might be built.
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