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Abstract 

          The author shows that that for each quantum mechanical property of a micro-

system there is a corresponding thermodynamic one in the primary eigen gas 

approach. He further shows that the basic postulates of quantum mechanics have 

equivalents in the primary eigen gas approach provided time is accorded directional 

symmetry. The interference pattern obtained in Young’s double slit experiment is 

explained in terms of the primary eigen gas approach using the directional symmetry 

of time.  
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1  Introduction 

 

          It was earlier shown that electron can be represented by a confined helical wave 

(CH wave) formed by the confinement of a plane polarized electromagnetic wave 

after it acquires half spin. The properties of a particle like mass, electric charge and 

spin were found to emerge from the CH wave [1],[2][3],[4]. These intrinsic properties 

of electron are found to be expressed by the space-dependent component of the CH 

wave which gets compacted into the internal coordinates while the time dependent 

component becomes the plane wave which represents the particle in the laboratory 

coordinate system.  Extending this idea further it was proposed that any particle can 

be represented by a CH wave where the confinement takes place on a composite wave 

which has oscillations not only in the electromagnetic field, but also in other 

appropriate fields. It was further shown that the states occupied successively in time 

by its interactions with the vacuum fluctuations may be taken to form a gas called the 

primary eigen gas. The only difference between the primary eigen gas and the real gas 

is that while in the real gas the microstates are occupied simultaneously, in the case of 

the primary eigen gas the micro-states are occupied successively in time. But for this 

difference, the statistical mechanics of the primary eigen gas is equivalent to that of 

the real gas [5]. It was observed that the primary eigen gas picture of a particle and 

the wave picture of a particle are equivalent ones and this equivalence is a direct 

result of a new symmetry called the Wick symmetry. In fact, it was proposed that 

quantum mechanics could be understood in terms of the statistical mechanics of the 

primary eigen gas where time has not lost its directional symmetry [5]. 
 

          We saw earlier that the probability function representing the state of the 

primary gas with energy Ei is given by 
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This function can be obtained by applying Wick’s operator on the plane wave 

representing the quantum mechanical state with energy Ei [6]  
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Note that Wick’s operator replaces 2πiN by N wherever N occurs in the function. We 

saw that this equivalence emerges from the Wick symmetry. In other words, the plane 
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wave which is the eigen state of a particle in space-time representation becomes the 

probability function of the primary eigen gas representation.  
 

          In this paper we shall examine the compatibility of the basic postulates of 

quantum mechanics to the statistical mechanics of the primary eigen gas. Besides, 

using the eigen gas approach we shall try to explain the interference pattern obtained 

in the double slit experiment using an electron beam. 

 

2  Quantum Mechanics as Reversible-Time Thermodynamics 

  

          When we represent a particle in terms of a plane wave, we never specify the 

number of single waves constituting the wave train or the length of the wave train 

which constitutes the plane wave. It is left undefined in the usual treatment. This is 

because, in quantum mechanics, the eigen state is supposed to be the most basic state. 

But in the primary eigen gas approach we are attributing an inner structure to the 

eigen state. In order to strike equivalence between the two approaches, we assume 

that there are N micro-states that constitute a primary eigen gas just as there are N 

wavelets that constitute a plane wave state.  We do not know whether N is a universal 

constant or an arbitrary number which gets factored out in any observation. In fact, in 

the interaction between two particles, N can be conveniently taken as a constant. The 

justification for such an assumption is that the variation can be accounted by n which 

represents the number of the primary eigen gas states involved in any interaction. One 

need not take both N and n as variables [5]. 
 

          The Copenhagen interpretation (CI) treats eigen state as the most basic element 

of the quantum reality. According to CI any observation on a micro-system can take 

us only up to the level of an eigen state. Besides, any physical system can be 

interpreted only in terms of the observable reality [7]. Such a notion did not permit 

any further analysis of the eigen state. But in terms of the eigen gas approach, we 

observe that an eigen state can be taken as equivalent to a eigen gas which is a 

primary gas. In our approach we do not take the primary eigen gas as the most basic 

state. We assume that the primary eigen gas state is constituted by a group of plane 

wavelets occupied successively. This may appear rather contrived as the wavelet is 

below the level of observation. But such a structure is proposed here as it simplifies 

the picture and we are able to explain the laws of quantum mechanics in terms of 

thermodynamics of the primary eigen gas. Note that this approach does not accept the 

view that there is an objective reality to the micro-system. It goes by the approach 

based on Copenhagen interpretation that the micro-system exists in a state where all 

possibilities exist in an unmanifested manner and the system crystallizes into reality 

only in an observation.   
 

          We shall now look for the primary eigen gas equivalents of other quantum 

mechanical properties. We know from the Wick symmetry that the negative action is 

equivalent to entropy [5]. 
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This may be expressed in terms of the energy-momentum of the particle as  
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But we know that to  =  nNTeo  =  nNh/Ko, where o is the temperature of the vacuum 

fluctuations background which interacts with the particle [5]. Therefore, we have 
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Note that the rest energy of the particle Eo behaves like the intrinsic heat content.  
 

          We shall now try to list out the reversible time equivalent of other quantum 

mechanical entities below. 
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                 Imaginary time                             Reversible time 
 

        i)      Wave Function                              State function of the primary eigen gas  

       ii)        Negative Action                           Entropy  

       iii)      Total energy                                 Internal energy  

       iv)       quantum of time                           Inverse of temperature 

       v)        particle velocity                           Drift  velocity 

       vi)       Langrangean                                 Negative Intrinsic heat content 

       vii)    Uncertainty principle.                     Equation for fluctuations        

     viii)    Zero point energy                          Thermal energy of vacuum fluctuations                                                 

 

3  The Basis for the use of Boltzmann’s Micro-canonical Distribution 

 

          In the approach followed above, one question that may be raised is regarding 

the use of the Boltzmann’s distribution to represent the primary eigen gas state. The 

justification for this is quite straight forward. First of all we should remember that we 

are dealing with one path of progression at a time. The system in the primary eigen 

gas representation occupies only a particular micro-state (wavelet of a plane wave) at 

a time. Such a wavelet state is occupied out of very large number possible wavelet 

states available for occupation. In fact there is no limitation to the number of wavelet 

states that could be occupied here. In that sense, the situation is equivalent to a large 

number of boxes available for occupation with a limited number of balls. This is the 

situation where Boltzmann’s distribution holds good. If the number of boxes and the 

number of balls were of the same order, then we would have been forced to apply the 

Fermi-Dirac distribution.  
 

          The concept of the ensemble will have to be given a fresh look in the case of 

the primary eigen gas. In the case of the canonical ensemble of a real gas, we deal 

with energy and volume along with their conjugate variables, temperature and 

pressure. However, in the case of the primary eigen gas we take the translational 

momentum in place of volume, and velocity in place of pressure. We know [5] that 

the internal heat of the primary eigen gas is given by  

                           þvNNENqQ   .                        (6) 

 

Therefore, the entropy of the system will be given by  
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Earlier we saw that such a primary gas may be taken to be equivalent to a real gas [5]. 

One important difference between volume in the case of a real gas and momentum in 

the case of a primary gas is that volume cannot be transformed out by suitably 

selecting a frame of reference while momentum can be. This means that we can 

always deal with the micro-canonical ensemble by introducing suitable transformation 

and study the system more conveniently. Afterwards, we may transform it back by 

shifting the frame of reference suitably. This is made possible by the fact that the 

entropy of the system remains invariant in such a transformation. In short, we do not 

have to deal with the canonical ensemble to work out the thermodynamics of the 

system. Micro-canonical ensemble will do. 

 

4  The Primary Gas and the Postulates of Quantum Mechanics  

   

          In the earlier papers we saw that a wave function representing a micro-system 

will become a probability density function on being operated by Wick’s operator R


. 

We also saw that such an operation does not alter the physical situation. Only the 

imaginary time picture gets replaced by the reversible (real) time picture which is 

same as stating that the wave nature of the micro-system gets replaced by the primary 
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eigen gas picture. This means that the dynamics of the system which is determined by 

the wave nature of the micro-system will have to be replaced by laws of statistical 

mechanics. This in turn means that the basic postulates of quantum mechanics could 

be understood in the light of the laws of statistical mechanics. We shall confine 

ourselves to the three basic postulates of quantum mechanics for study [8]. These 

three postulates that capture the essence of the operator form of quantum mechanics. 

There are further postulates, but these three are the most important ones. They firmly 

establish the existence of the wave function and its status as a complete description of 

the state of a quantum particle. The replacement of the values of the observable 

quantities (classical mechanics) with their corresponding operators (quantum 

mechanics) provides a recipe for using the wave functions and operators to calculate 

the values of the observables. Let us take the first postulate of quantum mechanics to 

start with [8]. 
 

Postulate I : The state of a quantum mechanical system is completely described by the 

wave function k.  
  

          Here the subscript k serves as a short hand for the set of one or more quantum 

numbers on which the wave function depends. Let us take the plane wave 

representation of a quantum mechanical system. Note that a plane wave is the eigen 

function of a momentum state (taking energy as the fourth component of the 

momentum) in the coordinate representation. This means that the system may be 

occupying any of the plane wave states denoted by k. If the wave function k is 

represented as a vector in a configuration space (Hilbert space), then k will be 

orthogonal to m unless k = m. In this way, the state of a system can be represented as 

a vector in an n-dimensional configuration space. This assumes that the system may 

occupy all possible states simultaneously in a virtual way and for such a possibility to 

be acceptable, time has to be treated as imaginary. It should be kept in mind that the 

orthogonality of the wave functions becomes important only at the instant of 

observation as two eigen states cannot be realized simultaneously. The higher the 

magnitude of the vector k larger will be the probability of catching the system in that 

state.  

          In the reversible time approach the state function of the primary eigen gas state 

which is a probability density function plays the same role as the plane wave in the 

imaginary time. However, since we are treating as real time it may appear that the 

concept of simultaneous occupation of various primary gas states may not be 

possible. But again we have to remind ourselves that while time in the primary eigen 

gas approach may be treated as real, it is also treated as reversible. Therefore, by the 

process of reverse jump in time it is possible for the system to occupy all states at the 

same instant [7]. In other words, there is no logical inconsistency in assuming that all 

primary eigen gas states exist simultaneously. Therefore just as in the case of the 

plane wave representation, in the primary eigen gas approach also it is possible to 

represent the state of a particle as a linear combination of the primary eigen gas states.  

          The next question that we have to confront is that when we take the linear 

combination of the primary eigen gas states, whether they will also undergo 

interference just as in the case of the plane wave states. One may think that as the 

primary eigen gas state does not exhibit undulatory behavior it is impossible to 

account for the interference phenomenon in this approach. But then we should not 

forget that primary  eigen gas approach and the plane wave approach are two ways of 

viewing the same phenomenon. The phenomenon itself remains the same in both 

approaches. Here we have to recall that in the case of the primary eigen gas approach, 

the quantum of time is one period of oscillation of the plane wave. This means that 

the periodic nature of the wave gets pushed into the internal structure of the quantum 

and gets compacted into the internal coordinates. But when two micro-states 

belonging two different primary  eigen gases occupy the same spatial region, then of 

course these internal coordinates come into play and the interference occurs as usual. 
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This means that there is no difference in the net result whether we go by the plane 

wave approach or by the primary  eigen gas approach.  
 

          The concept of the orthogonality of the eigen states emerges from the fact that 

the probability for observing the system in the k
th

 state at an instant is given by 

Ψk*Ψk. Here all the paths of evolution of states occur simultaneously and therefore 

when we take the integral 
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In the eigen gas approach also the equivalent relation given below will hold good: 
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here   denotes the reversible (real) time. This is taken care of by the concept of 

forward and reverse jump in time. The resultant picture that emerges is no different 

from the approach based on the plane wave. 
 

               One important issue that arises out of this reversible (real) time approach is 

that the wave equation which applies to the wave nature of the particle will no more 

be valid in the primary eigen gas approach. Let us take the Schrodinger’s equation 

first and try to understand the implication of replacing imaginary time with real time. 

We also know that the Schrodinger equation for a free particle on carrying out Wick’s 

operation will transform into the Diffusion equation [9]. We shall take complex 

conjugate of the Schrodinger equation and apply Wick’s operator to obtain   
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Note that since t = nNTe, where n and N are integers while Te denotes the period of 

the plane wave representing the particle. t̂ will be obtained by carrying out Wick’s 

operation on t when 2iN will be transformed to N. This means that t ̂ = 2it. 

Similarly x ̂ = 2it. This is the heat equation or diffusion equation where (h/2m) 

represents the diffusivity. W
c
 which stands the probability density can also represents 

the particle density which in turn can denote the energy density.  

          In this connection we should recall that [5] the rest energy of a particle can be 

treated as its internal heat. This means that the Schrodinger equation and the diffusion 

equation are two ways looking at the same reality. Needless to say, we may view a 

potential as one which introduces a gradient in the vacuum fluctuations field that 

directs the diffusion process. In this connection it is worthwhile to recall an alternate  

approach to quantum mechanics called stochastic quantum mechanics has been 

proposed by Nelson, Yasue et el [10][11][12][13]. This approach has met with partial 

success. But this approach has not been able to obtain profound insights like the 

action-entropy equivalence and the Wick symmetry. The main reason for this 

shortcoming may be that the stochastic approach shied away from proposing a basic 

structure to the particle and was basing its bet on the concept of point particle. The 

striking similarity between the plane wave and the probability density function was 

never probed in depth. The approach seems have focused too much on the similarity 

between the Schrodinger equation and the diffusion equation. But it is quite obvious 

that the primary gas approach may be developed further using the methods of 
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stochastic quantum mechanics for understanding the behavior of the micro-systems in 

greater depth.  
 

 

          Let us now take the Dirac equation now.  
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Here σk represent Pauli’s spin matrices. On operating with Wick’s operator Ř, the 

Dirac equation transforms to give  
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Note that 𝑥  = 𝑛𝑁𝑣𝑇𝑒 , where 𝑇𝑒  = ℎ/𝐾 . We observe that the wave equation given 

in (11) exhibits undulatory behavior while that given in (12) does not have such a 

property since W is just a probability function. Therefore, prima-facie it may appear 

that these two equations represent different realities. But we should keep in mind that 

the undulatory behavior holds good only within one wave length. If we treat one wave 

length as a single unit, then we will not observe any undulatory behavior. Instead, we 

would observe that the system progresses in a uniform manner. We shall examine this 

issue in more detail in the next section.  

        We know that we can extract the Schrodinger equation from the Dirac equation 

in the non-relativistic region if we ignore spin [9].  In view of this it is reasonable to 

assume that the Dirac equation in real time also represents some sort of a diffusion 

equation. But we are not familiar with its classical analogue.  

 

Postulate II: Observable quantities are represented by mathematical operators. These 

operators are chosen to be consistent with the position-momentum commutation 

relations. 
 

          To clarify the picture, let us take the plane wave representation of the eigen 

state n given by               
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The momentum operator  þ̂ =  -iħ/x  so that 
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In other words, the momentum operator is defined in such a way that n becomes the 

eigen function and þn its eigen value. When we go over to the primary eigen gas 

picture after introducing Wick’s operation, we observe that þn will be the momentum 

of a primary eigen gas. The probability density function for the primary eigen gas in 

forward time representing a particle travelling along the x-axis will be [6] given by 
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The corresponding momentum operator will be  “ xh

 ” and we obtain the similar 

eigen value equation 
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Here also the average value of momentum would be obtained by averaging the values 

of þn. It is obvious that in the operators in the primary eigen gas approach can be 

obtained by applying Wick’s operation on the corresponding operators in quantum 

mechanics. It can be easily seen that Wick’s operation transforms only x and t leaving 

the form of the other operators unchanged.  

          Let us now examine how the commutation relation appears in the primary eigen 

gas approach. We know that the momentum operator in quantum mechanics satisfies 

the relation 
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In the primary eigen gas approach by by replacing x by x ̂  we obtain  
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Postulate III :  The mean value of an observable is equal to the expectation value of 

its corresponding operator. 

          For a specific wave function n, the expectation value of the operator A is 

defined by the expression 
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where τ denotes the generalized volume element. In quantum mechanics this 

expression is introduced rather arbitrarily. It emerges from the fact that n is the eigen 

function of the operator 𝐴  and an is the corresponding eigen value. Therefore, we have 
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Multiplying both sides by n* and integrating over all spatial elements yields 
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This is possible because an is a mere number. If n is normalized, we obtain 
 

                                      
naA           

                                                        
 (22)       

  

Since the wave function can be a complex function, the operator too may be a 

complex function. However, if postulate III is to make sense, the eigen value of an 

operator representing an observable must be a real quantity because this is something 

that can be measured in an experiment. Operators whose eigen values are real are 

called Hermitian operators. As a result of this property of the operators any two eigen 

functions are orthogonal. That is, taking the eigen functions as normalized, we have 
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             Despite  being a complex function while probability is a real number, the 

above equations holds good because the phase part of  gets removed as we are 

multiplying it with its complex conjugate which leaves us with the square of the 

amplitude. But then we know from (13) and (15) that   
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Strictly speaking (24) represents the classical definition of the probability. The 

probability postulate of quantum mechanics appears more contrived and adhoc. Note 

that in the case of a real gas existing in progressive time, the average value for 

momentum will be given by the relation 
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5  More on Wick Symmetry 

 
          We saw that the Wick’s operation transforms the plane wave into the state 

function of the primary eigen gas. In this operation, 2πiN gets converted to N. Let us 

examine what is happening here. We know that the basic difference between the 

primary eigen gas approach and the plane wave approach is that the former treats each 

single wavelet as the basic unit or quantum. This does not mean that this approach 

completely ignores imaginary time aspects and the accompanying phase change that 

takes place within a single wavelet. It is just compacted into its internal coordinates. 

To put it differently, the primary eigen gas approach accounts for the phase of the 

wavelet as the intrinsic property of the micro-state. In the plane wave approach there 

is no quantization and therefore the imaginary nature of space and time gets expressed 

in the external coordinates themselves. 
 

          Another important point that emerges from the Wick symmetry is the 

relationship between the probability for the forward evolution and the reverse 

evolution in time. We know from the earlier discussion that the state function  Wk (x,t) 

represents the sum total of all probability for forward jumps in time to the k
th

 state at 

the space-time point (x,t) from the past states. Likewise, ),( txW c

k
represents the 

probability for the reverse jumps to the past from the k
th

 state at the same space-time 

point. We know that when time has not lost its directional symmetry, the probability 

for the forward jump should be equal to that for the reverse jump. In other words   

kW =  c

kW . Let us see if such a relationship actually emerges from the primary eigen 

gas picture. Let us start with the primary eigen gas state representing the particle 

travelling along the x-axis given by 
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To make matters simple, we shall transform this primary eigen gas to a frame of 

reference with which it is at rest given by [6] 
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Since the system is in equilibrium with the vacuum fluctuations, we may take           

Eo = Kθo .Therefore, (29) can be written as 
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It can be easily shown that the corresponding expression for  )(oW c

k
 would be given 

by 
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This confirms our assumption. 
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6  Collapse of the Primary Gas in an Observation 

 

          Till now we have not explained what happens to the primary eigen gas in an 

observation. We had assumed that a primary eigen gas state is defined by N micro-

states (plane wavelets) occupied successively. This means that a particle state is 

spread over a spatial length of N, where N is assumed to be a large number and 

therefore the particle state is spread over a very large region. But in an experimental 

set up, we select a small region to observe the particle and this small region would 

contain paths of various primary gas states. Therefore, when we observe a particle, 

the corresponding gas state need not belong to one single primary gas state. The N 

states constituting the eigen state may belong to various primary eigen gas states 

which have their paths passing through the region in question. 

      In fact in the region of localization, the interference among the micro-states 

belonging to various individual paths will create a sharp maximum. One should keep 

in mind that the interference phenomenon takes place in the reversible time also; the 

only difference is that the phase of the micro-states is defined in their internal 

coordinates. But that is only an accounting jugglery and does not affect the actual 

situation. The important point is that N states which constitute the observed gas that 

represent the particle is no more a primary eigen gas state as the microstates are not 

occupied successively in time. Such an observed gas state could be called the 

collapsed primary eigen gas state. But then based on the principle of statistical 

equivalence, we can always find a primary eigen gas state matching with the 

collapsed primary eigen gas state. Therefore, it will be proper to say that on 

observation, the system crystallizes to one of the primary eigen gas states. 

7   Explaining Interference pattern of the Double-slit Experiment 

 

          Let us now examine the interference pattern obtained in the double slit 

experiment using an electron beam. We know the interpretation of this phenomenon 

based on the wave nature of the electron [14]. We shall briefly describe it here (fig.2). 

The quantum mechanical interpretation is that the waves representing the particles 

spread around as a wave front from the source. The secondary waves emerging from 

slit A and slit B arrive at P on the screen where they undergo interference. If both  

 
 

 
                                                                                          Screen 
                                                  Slit A 

                                                                                           P 

 

                              S 

                          (Source)             Slit B 

 

 
             On the basis of the wave picture, electron from the source S goes through 

                         slits A and B   and the secondary waves from the slits arrive at the screen 

                         and the interference between the two waves fronts creates the fringes at P. 
 

                                                         Figure 2 
 

waves reach P in phase the intensity will be maximum and if they reach with a phase 

difference of π, then, the intensity will be minimum. This explains the formation of 

the interference pattern on the screen. Note that this interference would be formed 

even if only one electron is emitted by the source at a time. This would mean that a 

single electron initially disembodies into a wave front and passes through both slits 

simultaneously and arrives at P on the screen when suddenly it throws away its wave-

disguise and appears as a particle. This interpretation may appear strange, but that is 
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what quantum mechanics has to offer. The issue of the wave particle duality is still a 

topic which is not properly understood in quantum mechanics. 
 

          In the primary eigen gas approach, the electron starting from the source jumps 

forward in time to slit A and from there it jumps forward to P along all possible paths 

and then jump back in time to reach A and back again to S. In a similar manner, we 

may imagine the same process taking place through slit B also. In fact, these forward 

and the reverse jumps in time creates a wave front emanating from S. This will also 

explain the secondary waves emanating from the two slits. In fact this interpretation is 

in tune with the Maxwell’s equation which has solutions with waves moving forward 

in time and backward in time. We now obtain the same result as obtained in the wave 

representation of the particle. The interference pattern is created due to the fact that 

the quantum has an internal structure of a wavelet and at P the wavelets emerging 

from slit A and slit B arrive simultaneously and is caught in an observation where 

their internal phases come into play and creates the interference pattern.                                       
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