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ABSTRACT. A Riemann operator is constructed in which sequential elements 
are removed from a decaying set by means of prime factorization, leading to a 
form of exponential decay with zero degeneration, referred to as the root of 
exponential decay.  A proportionate operator is then constructed in a similar 
manner in terms of the non-trivial zeros of the Riemann zeta function, 
extending proportionately, mapping expectedly always to zero, which imposes a 
ratio of the primes to said zeta roots.  Thirdly, a statistical oscillation function is 
constructed algebraically into an expression of the Laplace transform that links 
the two operators and binds the roots of the functions in such a manner that 
the period of the oscillation is defined (and derived) by the eigenvalues of one 
and the elements of another.  A proof then of the Riemann hypothesis is 
obtained with a set of algebraic paradoxes that unmanageably  occur for the 
single incident of any non-trivial real part greater or less than a rational one half. 

 

1. Introduction 
Chronological (sequential) time �, an element of ℕ,ℤ in whole values (clocks, 

rings, etc.) is not always considered for physical phenomena [1]. In terms of 
exponential decay, the fractions of time a decaying quantity � is measured by is 
instead considered, called lifetimes or durations of time, most typically expressed 
in terms of a quantity half-life [2] in seemingly chaotic systems.  The half-life is the 
time required for the decaying quantity to fall to 1/2 its initial value 

 

	
� = ln�2�� = 	� ln��� : � = 2, 
 

where � is the decay constant and � the mean lifetime.  Real time 	
/� can be 
measured in any ratio of the mean lifetime (	�/� for instance where it would be 
consider real time); 	
/� is conveniently considered [2].   

The decay constant � is always a positive number, such that 
 �� = 1. 
 

Because the progression of natural time � itself (not the progression of something 
over time) is incrementally considered for all positive whole numbers, and not a 
ring, 

 ℕ,ℤ ∈ �; 
 

rather, � and 	 are durations, instead being number fields in that   
 ℚ,ℝ, ℂ	 ∈ �, 	 ∈ �. 
 
The Riemann zeta function can be expressed in terms of the progression of 

natural time �, considering its infinite series 
 

 �!� = "�#$%
&'
 , 
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as it involves argument powers of � ∈ ℕ ≠ 0 [3]. Considering too Euler’s 
derivation [4]; 
 

 �!� = "�#$%
&'
 = *�1 − ,#$�#


- , 
 

a method for mapping clocks � ∈ ℕ ≠ 0 to fields 	�	 ∈ ℝ = ,/ln	�,� 	→ ∞ 
becomes convenient instead for describing the moment an event occurs, meaning 
the time defining an opportune moment, which may be thought of as higher 
ordered over linear chronological time if vectors may be considered higher 
ordered points on planes to points on an axis. 

In terms of exponential decay over distance, rather than decay over time, 
the propagation constant of an electromagnetic wave is the eigenvalue of the 
change undergone by amplitude 0 (identically interchangeable in study for 
quantity � over time 	) of the wave as it propagates in a given direction. Typically, 
this can be voltage or current in a circuit or a field vector, such as electric field 
strength or flux density [5], in that the propagation constant itself measures change 
per distance rather than change per time. 

Propagation constant 1 (identically interchangeable—in study—for decay 
constant �) for a given system is defined by the ratio of the amplitude at the 
source of the wave to the amplitude at some distance 2, such that, 

 0304 = 564. 
 

The propagation constant being a complex quantity, we can write 
 1 = 7 + 9:, 
 

where 7, the real part (more conventionally symbolized ;), is the attenuation 
constant and :, the imaginary part (more conventionally symbolized as <), is the 
phase constant—though not accurately “constant”, varying in frequency.  Both 7,: can in any given circumstance be equal to zero, thereby 1 may be treated as a 
real number when : = 0, but the propagation constant is always mapped on the 
complex plane [6]. : represents phase by means of Euler's formula; 

 5=> = ?@!A + 9!9�A, 
 

which is a sinusoid that varies in phase as A varies, but having a constant 
amplitude, as 
 B5=>B = Ccos� A + sin� A = 1. 

 
The two parts form a single complex number that can be handled in one 
mathematical operation, provided they are to the same base (most typically) 5 [5]. 

This study follows loosely from telecommunications terminology [7], in that the 
attenuation constant is the attenuation of an electromagnetic wave propagating 
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through a medium per unit distance from the source and defined by the amplitude 
ratio; 

 H0304H = 5I4 . 
 

The general continuous form is written as 
 0	564. 
 
Because both exponential decay of � over kairos time 	 and amplitude decay of 0 over distance 2, can be counted �-at-a-time, � ∈ ℕ (but in some consideration 

provides richer meaning in terms of kairos time 	 and field 2 when represented as 
a change through space or time), we simply refer to kairos as “field time 	” 
(dropping the Latin terminology).  In this manner we compare its nature equally 
with field distance 2, a point somewhere in space.  Any countable measurement 
of distance � is then referred to simply as natural distance or natural time.   We 
consider that certain progressions of natural processes, such as exponential decay 
(even in terms of rational numbers, half-lives), may be defined but tend toward 
reduced meaning in terms of their countability without first consideration of � 
(i.e. the harmonic series requires first the countability of �, as well as other infinite 
series and the like). 

Exponential decay (inside or outside the study of propagation and amplitudes) 
is typically represented as 

 ��	��3 = 5#JK 
 

or 0�2�03 = 5#64. 
 

Thus, it is in terms of decay over time that we will proceed, so long as we 
understand that 0 refers to any quantity decaying exponentially over distance 2 
(most conventionally amplitude) and � a quantity decaying exponentially over 
time 	.  We study this from the perspective of � in that the following methods 
apply to both forms of decay.  There will come a point in this paper where we 
return to the study of a dimensionless 0 (though, we will not change in the middle 
of any derivation) after we suppress the dimensions by means of the Buckingham L theorem, as it will prove desirable (though not entirely required) to discuss 0 
instead, as the meanings of our expressions become straight forward for the study 
of general dimensionless periodic functions analogous to waves. 
 
Theorems. 
 
Theorem 1. Let M be a parameterized constant that corresponds to any given argument s of 
the Riemann zeta function, so that 
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M = 5#$ NO�-P�-P :	 � = !	 = ln�,�, . 
 

One gets the infinite sequence M$�,� whose points in the Riemann zeta function for any 
argument ! correspond to a single prime number; 
  �!� −*�1 − M$�,�-�#
- = 0	∀	,, !, 
 

so that an expression of exponential decay is defined in 
 

M$�,� = ��	��3 , 
 

and 
 

 �!� = "�#$%
&'
 = *R1− R��	��3 S-S#
 ,-  

 
where the Riemann zeta function is equal to the product of the inverse of one minus the ratio of 

the number of discrete elements ��	� in a certain set per the initial quantity, the quantity at 	 = 0.   
 
 
Theorem 2. ��	�~�3 for Riemann decay. 
 
Theorem 3. By means of the fundamental theorem of arithmetic, M for all ! < 0 becomes the 
numerator of the set of elements of the field of fractions VW@	�XI� of the integral 
domain XI, containing all numbers factored out of the set by a lowest common multiple  (Y?Z).  

Said VW@	�XI� for a given ! then parameterizes the denominator [$�,�, where lim	M$�,� 
demands lim[$�,� = 1/VW@	�XI�, the prime numbers then considered the atomic elements 
which, when combined together, make up composite number −!.   
 
Theorem 4. Let partial sum function {?^} converge absolutely, whereby the definition of the 
series ∑ a&%&'3   converges to a limit b if and only if the associated sequence of partial 
sums{?^} converges to b, written as 
 

b = ?^ = "a& ⇔ b = Y9Zd → ∞	?^%
&'3 , 

 

or  when {?^} is undefined due to � = 0, and if continuity exists between �, � + 1, then  
 

b = ?^ = "a& ⇔ b = Y9Zd → ∞	?^%
&'
 , 

 
such that 
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1 = e f�Z�	gZ = ?^ ∙ �3� 	.%
3  

 
The root of exponential decay, its degeneration being zero, imposes 

 b = ? = 0. 
 
Theorem 4.1. The Riemann zeta function ! is the eigenvalue of a system that forms the root 
of all natural exponential decay out of consideration of natural numbers and the primes in that 

domain where ! becomes the eigenvalue of the opposite of the differentiation operator 	with ��	� 
as the corresponding eigenfunction; 
 −!	��	� −	 lim	M$�,� = 0	∀	! > 0.	 

 
Theorem 4.2. Riemann decay involves a Boltzmann distribution, where its partition function b = ?$�,� = 0, such that j = b/k&. 
 
Theorem 5. Given 	M$�,� = 0�2�/03, all the prime numbers are to the ratio of 0�2�/03 as the reciprocal of 0�2�/03 is to all the values of the imaginary part of all the non-trivial 
zeros of the Riemann zeta function; 
 

,:	 0�2�03 ∷ 030�2� : :m, 
 

such that 
 n A3	lnp:mq,	0�2�	ln	�03	02#
�~ − 0�2� = 1! 	∀	! > 0, 
 

where n is a numerical constant in the vicinity of one, and such that 
 

:m�,� = 5NO�-�	r�4�st�-�	ru , 
 
in that the roots of the Riemann zeta function become defined in terms of an infinite sequence 
over the primes and Riemann decay. 
 
Theorem 6.  The period of the triangle periodic function 
 

vwI�:� = 1ℎ − 1k = yI�:�7� , 
 

is equal to the greatest common divisor of the reciprocal of the real part 7 of the argument ! (the 
eigenvalue of the root of natural decay) and the reciprocal of the product of the real part 7 of ! 
and the real part z of the corresponding elements {$�,� of the Hermitian matrix derived from !; 
 

| = gcd �17 , 17	lim	z�:	 7 = X5�!�z = X5p{$�,�q. 
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Theorem 7.  Given that vwI�:� defines the period through a greatest common divisor, a 
necessary condition is imposed on the Fourier series convergence of the Riemann triangle periodic 
function.  The Dirichlet Conditions may be replaced with a single necessary and sufficient 
condition:  The Fourier series converges because the period is equal to (“or corresponds to”, in the 
case of multiplicative factor cases of the arguments of the function), the greatest common divisor of 
the reciprocal of the real part of the argument and the reciprocal of the product of the real part of 

the argument and the real part z of its corresponding {$�,� (i.e. it converges due to reducibility 
near infinity);  
 

lim−kvwI�:� + k = g9�a?�−ℎ� = 12L	 e 5=��#��	gZ%
#%

= 0	∀	7 > 0, 
 g9�a?I�:�=−kvwI�:� + k	∀	7 > 0. 

 
Theorem 8.  Given an equation in the form of 
 �lim	k − ℎ�#� − �ℎ�� = C�� ⇔ ℎ = 0, 
 

where �� is the discriminant of ℎ (the function of the polynomial’s  coefficients that gives 
information about the nature of its roots) there is only one rational argument ℎ that provides any 
meaningful solution to the equation. 
 

Theorem 9.  Let the cancellation property of all prime numbers , occur in the subtraction of 
the mean value of assigned probabilities from the ratio of a multiplicative factor of the field of 
fractions from its numerator, also the eigenfunction of the root of natural decay containing the 
elements of prime factors, further subtracted from a continuous real part of the Riemann zeta 
function; 
 

7 − 5#$ �&�-�-2	VW@	�XI�	 − �. 
 
If the cancellation property of the product of a multiplicative factor of the field of fractions and the 

root determinants of a Hermitian matrix expressed by {$�,�, also required for determining the 
period of the oscillations � is the mean value of, occurs correspondingly to 
 −16	VW@	�XI�		lim	|{$�,�|� = 1, 
 

then continuity exists in 7m (of the roots of the Riemann zeta function) as {$�,� too correlates 
to a factor of the ratio of the primes to the roots.  Given  
 

lim ln�,�ln	�:m�!�� = n, 
 

where :m�!� are the values of the imaginary parts of the roots of the Riemann zeta function,  
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limR� n	−4	|{$�,�|� + 4�#
 − 1S = 1	 ⇔ 7 = 12, 
 
such that 
  �!� = 0 ⇔ 7m = 12	∀	1 > 7 > 0, 
 
where all the real parts of the non-trivial zeros of the Riemann zeta function equal one half. 
 
Theorem 10.  The prime numbers and the non-trivial zeros of the zeta function are 
asymptotically equivalent; 
 n = 1:	,	~	:m.	 

  
2. Construction of Riemann Decay 

Consider quantity � (a quantity that experiences exponential decay over time 	), and the number of discrete elements ��	� in a certain set.  The definition is 
 ��	� = �3	5#K� , 
 

where 5 is Euler’s number and �3 is the initial quantity, quantity at field time 	 = 0 and � is the exponential time constant [8].  Exponential decay is a scalar 
multiple of the exponential distribution, which has a well-known expected value, 
so the solution of the differential equation that expresses the progression is 

 ln��� = −�	 + �, 
 

where � is the constant of integration, which allows 
 ��	� = 5� 	5#JK = �3	5#JK . 
 

Upon inspection of 	 = 0, the final substitution, 
 �3 = 5� , 

 
may be obtained, as �3 is defined as being the quantity at field time 		 = 	0.  �, 
the decay constant, then becomes the eigenvalue of the opposite of the 
differentiation operator with ��	� as the corresponding eigenfunction and given 
an assembly of elements, the number of which decreases ultimately to zero, 
the exponential time constant �, becomes the expected value of the amount of 
time before an object is removed from the assembly [8].  

The expected value is obtained from the standard normalizing conversion to a 
probability space, where ? is the normalizing factor in 

 

1 = e ? ∙ �3	5#JK	g	 = ? ∙ �3� =	%
3  

 
to convert a probability space [9], which can be rearranged to 
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 ? = ��3. 
 

The following then allows computation of integration by parts [8]; 
 

� = �	� = e �	 ∙ ? ∙ �35#JK = e �	5#JK	g	 = 1� .%
3

%
3  

 
Since an infinite series can be used to express any integral, the author has derived 
such a series to express the above integral, such that 
 

� = �	� = e �	 ∙ ? ∙ �35#JK = e �	5#JK	g	 = 1� .%
3

%
3  

 
 

Basis for Riemann Decay.  The Montgomery-Odlyzko Law [4][10] states 
 

The distribution of the spacings between successive non-trivial 
zeros of the Riemann zeta function (suitably normalized) is 
statistically identical with the distribution of eigenvalue spacings 
in a GUE operator. 

 
Based on this (or perhaps more internalized reasoning), Alain Connes has 
constructed just such an operator [11], but regrettably his construction provided 
no proof (in and of itself) of whether or not all the non-trivial zeros have a real 
part equal to one half.  We therefore reconstruct from a different approach, 
diverging shy of Connes’ fuller development and redirect to focus on one 
particular aspect of the operator, most of our result not pertaining directly to his 
work (though correlations may be made).  Now, if we may determine that the 
normalizing factor ? is also applicable to the Riemann zeta function with a 
probability density function of various parameters, then a parameterized 
normalizing constant ? becomes directly applicable to the partition function for 
the Boltzmann distribution, known to play a central role in statistical mechanics 
[12]. 
 
Proposition 1. Let M be a parameterized constant that corresponds to any given argument s of 
the Riemann zeta function, so that 
 

M = 5#$ NO�-P�-P :	 � = !	 = ln�,�, . 
 

One gets the infinite sequence M$�,� whose points in the Riemann zeta function for any 
argument ! correspond to a single prime number; 
  �!� −*�1 − M$�,�-�#
- = 0	∀	,, !, 
 

so that an expression of exponential decay is defined in 
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M$�,� = ��	��3 , 
 

and 
 

 �!� = "�#$%
&'
 = *R1− R��	��3 S-S#
 ,-  

 
where the Riemann zeta function is equal to the product of the inverse of one minus the ratio of 

the number of discrete elements ��	� in a certain set per the initial quantity, the quantity at 	 = 0, where , represent the prime numbers.   
Typically throughout this paper we will not show all derivations, but since 

proof of this proposition is made simply through the derivation, and that this 
derivation will be used twice, we do so in this case.  In order to prove the 
proposition, we first begin with the exponential decay form 

 

M = 5#$ NO�-�- :	 � = !	 = ln�,�, , 
 

allowing M to become some parameterized constant for any given !, 
corresponding to any given ,, and then rearrange in order to solve for minus ! in 
order to apply it to Euler’s derivation of the zeta function; 

  �!� = *�1 − ,#$�#

- . 

 
One gets 

 

−! = , ln�M�ln�,� . 
 

Then apply the right hand side of the equation above in place of minus ! in  
  �!� = *�1 − ,#$�#


- , 
 

which gives 
 

 �!� = *R1 − ,- NO���NO�-� S#
 .-  

 
Express the right side as 

  �!� = p1 − 2� NO����÷NO���q#
p1 − 3� NO����÷NO���q#
p1 − 5� NO����÷NO���q#
 … 
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and give the inverse of both sides.  One gets 
  �!�#
 = p1 − 2� NO����÷NO���qp1 − 3� NO����÷NO���qp1 − 5� NO����÷NO���q…. 
 
Then give the natural logarithm of both sides.  One gets 

 ln� �!�#
� = ln �p1 − 2� NO����÷NO���qp1 − 3� NO����÷NO���q… �. 
 

Because ln�2 × �� = ln�2� + ln	���, express the equation above as an infinite 
series of natural logarithms.  This gives 

 ln	� �!�#
� = lnp1 − 2� �&����÷�&���q + lnp1 − 3� �&����÷�&���q +⋯. 
 
Next, subtract all the natural logarithms to the right of the first from both sides, 

which gives 
 ln� �!�#
� − �	lnp1 − 3� �&����÷�&���q +⋯� = lnp1 − 2� �&����÷�&���q, 
 

and give the exponent of both sides.  One gets 
 exp	�ln� �!�#
� − �	lnp1 − 3� �&����÷�&���q + ⋯� = 1 − 2� NO����÷NO���. 
 

Then subtract one from both sides, and multiply both sides by minus one, getting 
 1 − exp	�ln� �!�#
� − �	lnp1 − 3� �&����÷�&���q + ⋯� = 2� NO����÷NO���. 
 

Next give the natural logarithm of both sides.  This gives 
 ln	�1 − exp �ln� �!�#
� − p	lnp1 − 3� �&����÷�&���q + ⋯q�= lnp2� NO����÷NO���q. 
 
Then, because ln�2 � = ¡	 × ln	�2�, express the right hand side of the 

equation above as 
 

ln	�1 − exp	�ln� �!�#
� − �	lnp1 − 3� �&����÷�&���q +⋯�� = 2 ln�2� ln�M
�ln�2� . 
 

The natural logarithm of two cancels out on the right side of the equation, which 
gives 

 ln �1 − exp �ln� �!�#
� − p	lnp1 − 3� �&����÷�&���q + ⋯q�� = 2 ln�M
�. 
 

Once more, because ln�Z¢� = �	 × ln	�Z�,  express the right hand side of the 
equation above as 

 ln �1 − exp �ln� �!�#
� − p	lnp1 − 3� �&����÷�&���q + ⋯q�� = ln�M
��, 
 

and then give the exponent of both sides.  One gets 
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 1 − exp �ln� �!�#
� − p	lnp1 − 3� �&����÷�&���q + ⋯q� = M
�. 
 

Multiply both sides by minus one and subtract both sides from one.  Written as 
 exp�ln� �!�#
� − p	lnp1 − 3� �&����÷�&���q +⋯q� = 1 − M
�, 
 

give the natural logarithm of both sides.  This gives 
 ln� �!�#
� − p	lnp1 − 3� �&����÷�&���q +⋯q = ln�1 − M
��. 
 

Subtract the natural logarithm of one minus M
 to the power of two from both 
sides.  One gets 

 ln� �!�#
� − �	lnp1 − 3� �&����÷�&���q +⋯ � − ln�1 − M
�� = 0. 
 
Next add the natural logarithm of one minus three to the power of three times 

the natural logarithm of M�  divided by the natural logarithm of three to both 
sides.  This gives 

 ln� �!�#
� − p	lnp1 − 5� �&����÷�&���q +⋯q − ln�1 − M
�� .= ln	�1 − 3� NO����÷NO���� 
 

Then repeat the previous nine equations (except for the one directly above) for M� 
as we did for M
.  We get 

 ln� �!�#
� − �	lnp1 − 5� �&����÷�&���q + ⋯� − ln�1 − M
�� − 	ln	�1 − M���= 0. 
 

Then repeat in the same for all remaining prime numbers to infinity.  One gets 
 ln� �!�#
� − ln�1 − M
�� − ln�1 − M��� − ln�1 − M��� −⋯ = 0. 
 
Next, add the natural logarithm of one minus M
 to the power of two to both 

sides.  This gives 
 ln� �!�#
� − ln�1 − M��� − ln�1 − M��� − ln�1 − M�£� − ⋯… = ln�1 − M
��. 
 

Repeat for all the remaining natural logarithms of one minus M�2� to the power 
of the successive prime number, which gives 

 ln� �!�#
� = ln�1 − M
�� + ln�1 − M��� + ln	�1 − M���…. 
 

Once more, because ln�2 × �� = ln�2� + ln	���, express the above equation as  
 ln� �!�#
� = ln ��1 − M
���1 − M����1 − M���… �,	 
 

and give the exponent of both sides.  One gets 
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  �!�#
 = �1 − M
���1 − M����1 − M���. 
 

Next give the inverse of both sides, which is written as 
  �!� = �1 − M
��#
�1 − M���#
�1 − M���#
. 
 

We then finally get the Riemann zeta function in terms of M raised to a single 
prime number in 

  �!� = *�1 − M-�#

- 	.	 

 
Considering the exponential decay form M originated from, in terms of ! being 

the decay constant (and thus the eigenvalue of the matrix) and the natural log of a 
prime number divided by the same prime number, we can write the Riemann zeta 
function in terms of exponential decay; 

 

 �!� = *R1 − R��	��3 S-S#

- 	∀	! > 0.		∎ 

 
The Limit of ¥¦�§�.  We construct an eigenfunction sequence M$�,� over all 
prime numbers ,. 
Proposition 2. ��	�~�3 for Riemann decay. 

To prove the proposition, we simply define the limit of the sequence  
 

M$�,� = 5#$ NO�-�- = 5#$ NO���� , 5#$ NO���� 5#$ NO���� , …, 
 

where also any value of sequential eigenfunction M$�,� for any given ! and any 
given prime number , results equally to the exponent of minus ! times the 
natural logarithm of said given prime number divided by said given prime 
number, as 

 

M$�,&� − 5#$ NO�-P�-P =  �!� −*�1 − M$�,�-�#

- = 0	∀	,, !.	 

 ,& becomes the prime number that corresponds to natural time � from the prime 
counting function L��� (� = 1:	, = 2, � = 2:	, = 3, � = 3:	, = 5, etc.) [13].  
Thus, out of consideration of fields 

 

� = !, 	 = ln�,&�,& . 
 

We saw in the last section that 
 ��,&��3 = 5#$ NO�-P�-P 	∀	! > 0, 
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resulting in ��	��3 = M$�,�	∀	! > 0, 

 
where � is a quantity valued with respect to �, such that ��,&� corresponds to 
prime number ,&.  Also, ! must always be a positive number if it can be 
considered a decay constant by definitions of exponential decay [8].  We continue 
to express ��,&� in the traditional manner with respect to time ��	�, but we do 
move forward to express the ratio of the quantity over the quantity value at 	 = 0 
as M$�,�.  But also, mathematically in terms of our sequence, because M$�,� is 
continuous at point ! = 0 as ! approaches zero, resulting in a curve (having null 
curvature) at point ! = 0, sufficiently defined with  

 lim	M$�,�	�	 → ∞ = 1	∀	! <> 0. 
 
The curve at point ! = 0 with null curvature results in all values of M3�,� =1,1,1,1,1, …, as the exponent of zero times the natural logarithm of any ,& 

divided by said ,& always will reduce to one.  We show that M$�,� = ��	�/�3 
has a limit for all decaying quantities, the limit of one.  Since any ! > 0 is an 
argument for ��	�/�3 from the ratio over all the primes M$�,�, the Riemann zeta 
function is equal to the product of the inverse of one minus the ratio of the 
number of discrete elements ��	� in a certain set per the initial quantity �3, the 
quantity at field time 	 = 0.  The physical meaning of a calculation involving 	 = 0 in time ln�,� /, for 

 ��	��3 = M$�,� 
 

when there is no prime number equal to zero, such that ln�,� /, converges 
absolutely, and where �¨ , ��	� becomes asymptotically equivalent, is that it 
expresses the sum of a decaying quantity backward in time.  This should not mean 
that it is time reversible, however, as a meaningful solution may not exist in 
solving for it forward in time.   

The above should only be a necessary mathematical procedure in a case where 
the end time of the decay is undefined (the decaying quantity has zero 
degeneration). The above form of decay could not represent any form of matter, 
but it could theoretically represent time (or space) itself, as if time could have 
degeneration greater than zero, then all forms of exponential decay would become 
undefined, which they do not.  Because the limit of M$�,� is one without any zero 
divisors,  

 ��	�~�3. ∎ 
 ¥¦�§� and the Fundamental Theorem of Arithmetic.  We first prove the 

following result. 
 

Proposition 3. By means of the fundamental theorem of arithmetic, M for all ! < 0 becomes 
the numerator of the set of elements of the field of fractions VW@	�XI� of the integral 



14 
 

domain XI, containing all numbers factored out of the set by a lowest common multiple  (Y?Z).  

Said VW@	�XI� for a given ! then parameterizes the denominator [$�,�, where lim	M$�,� 
demands lim[$�,� = 1/VW@	�X�, the prime numbers then considered the atomic elements 
which, when combined together, make up composite number −!.   

In order to prove the proposition, we consider a means to factor numbers M$�5� out of a set having some Y?Z.  Given a parameterized denominator [$�,� ≠ �3 (the divisor of VW@	�XI� is not constant for the same reasons M$�,� 
is the ratio of ��	�/�3, where �3 is constant, the value of the quantity at 	 = 0; 
this of course is due to reducibility of fractions in that a�©/?� = g/?), we find 
that for all ! the ratio VW@	�XI� is expressible in closed form, 

 

VW@	�XI� = �	27 + 1�#
 − 44 , 
 

where 7 is the real part of !, such that 
 M$�,�	[$�,�	= VW@	�XI�. 
 
Because the limit of M$�,� equals one, we get a limit of the denominator [$�,� 

for any given real part of !, which can be calculated without knowledge of the 
prime numbers, using 

 

lim	[$�,� = R�27 + 1�#
 − 44 S#
. 
 

We then inspect various arbitrarily chosen integers for arguments of !.  For 
instance, ! = −18, where −! = 2 ∙ 3 ∙ 3, we get 	M#
«�2� = 512 =5
« NO���/� = 2�∙�.  At the next prime, we get M#
«�3� = 729 = 5
« NO���/� =3�∙�.  For all remaining prime numbers, as M#
«�,� → 1, no other whole 
numbers exist as values of M#
«�,�.  We write Y?Z�512,729� = 2�∙� ∙ 3�∙� =373248 = Y?Z�512,729,18�.   

This gives whole numbers for all negative composite numbers !.  When ! is a 
minus prime number, the value of the sequence M$�,� at said prime number 
equals the corresponding prime number itself (! = −11:	M#

�11� = 11), which 
provides a rudimentally simple means of primal testing (if M$�,&� = ,&, then – ! 
is prime).  Also, a method for calculating the prime counting function L���:	� →∞ presents itself, though prime numbers would still need to be stored in an array 
as primes are generated in order to calculate the next M$�,�, by no means a 
complicated requirement).  This method works, however, by beginning with 
known , = 2, because the equivalent classes ! = −,&:	M$�,&� = ,& occurs at a 
slower rate than occurrences of � = , in L���, resulting in M$�,� convergence to 
one at a rate fast enough to limit the numbers of whole elements M$�5� in Y?Z�M$�5
�	, M$�5��	, … M$�5¢�� finitely, allowing for 

 Y?Z�M$�5
�	, M$�5��	, … M$�5¢�� = Y?Z�M$�5
�	, M$�5��	, … M$�5¢�, −!�	∀	! <> 0, 
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where there exists not only a finite number of natural elements ℕ for any value of ! < 0, but also for ! > 0 (those applicable for exponential decay), becoming 
rational elements ℚ, such that the numbers of fractional elements for ! are the 
same as whole elements of – !, as 

 ℚ	M¯ = 1ℕ	°¯ 	∀	!. 
 
For example, in terms of ! = −6, ! = 6, we get finitely just two elements in 

each,  8,9 and 1/8, 1/9 respectively.  This is applicable to all complex and real 
numbers ! as well, but if the real number is irrational or either part of a complex ! 
is irrational, then the finite number of elements is necessarily zero (having zero 
elements that can be expressed as a fraction). 

To prove the proposition we construct a Hermitian matrix such that {$�,� in 
 

[$�,� = 4�{$�,� + 1��−4{$�,��#
 − 4 = M$�,�VW@	�XI�, 
 

out of consideration of {$�,� in  
 

0 = {$�,�� + {$�,��[$�,� + 1� + [$�,�−16 , 
 

the limit of {$�,�, becomes complex for all arguments ! in 
 	

{$�,� = −�[$�,� + 1� ± ²p1 + [$�,�q� + [$�,�4#

2 . 

 {$�,� then become the elements of a Hermitian matrix, as each eigenvalue {$�,� 
is the complex conjugate of its reflection in the lead diagonal [14].  Essentially this 
expression of exponential decay of time itself in ln�,� /, equivalently defines 
propositions 30 and 32 in Book VII, of Euclid's Elements [15].  We get a 
correlation between the finite number of elements M$�5� in sequential 
eigenfunction M$�,� and the factors pertaining to the fundamental theorem of 
arithmetic, in that they are equivalent.  This is as corollary as the equivalence 
classes ! = −,&:	M$�,&� = ,&, in that if the fundamental theorem of arithmetic is 
true, then so too are these finite classes of elements true.  In other words, if M$�,&� = ,& for any argument !, then – ! is prime.  ∎ 

We call then the above expression of exponential decay (the decay of time or 
space itself) the “root of natural decay”, or “Riemann decay”, as its degeneracy 
should reduce to zero.  And we will prove that the degeneracy factor indeed does 
reduce to zero after this root is fully constructed in the next sections.  And now 
that the above is defined and proven, we can now move forward toward the root. 

 
3. The Riemann Probability Density Function 

Enumeration of prime numbers starts with one, in that the so-called {5�@K� 
prime, or �K� prime ,�0�, may be anything that is not equal to a prime, e.g., zero 
[16]. This could be important while considering an initial quantity �3	at 	 = 0 
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when field time 	 is measured in ln�,� /,.  However, because � of the Riemann 
zeta function in terms of the left hand side of 

 

 �!� = "�#$%
&'
 = *R1− R��	��3 S-S#


-  

 
is undefined at � = 0, there too could be no meaning of L�0� ,where again L��� 
is the prime counting function.  However, there is and must be meaning to some 
initial value �3 at 	 = 0, so it then must exist at the infinite prime number L�∞�, 
and not at L�� < 1�.  A solution to the value of �3 though could be determined 
upon a condition that a condition is true if and only if �3 is at a particular value.   

The same can be said for 
 

1 = e ? ∙ �3	5#JK	g	 = ? ∙ �3� 	,%
3  

 
in that if ? above, the normalizing constant, were to be shown to be a partition 
function having a denominator that contained a value � = 0 for 	 = 0, the 
function is considered normalized if for all other values it is normalized outside 
the undefined value [17].  In this case, we solve for the sum ��	� backward in 
time where the quantity is already fully decayed (note: doing so has no correlation 
to time reversal, as any chronological moments already-occurred can be mapped 
backward).  And if the quantity had zero degeneration, then we state that we are 
solving for its value from the beginning of time itself. 

That said; the far right hand side of the equation above would be undefined at 
the root of natural exponential decay (the singularity of exponential decay).  It 
would have no meaningful solution in the event of a partition function having a 
denominator equal to zero if that single undefined value corresponded to the 
initial quantity �3.  It can still be expressed in terms of exponential decay, but the 
root could have no degeneration in and of itself, thus its degeneration factor 
would be equal to zero, and most intuitively its partition function equal to zero as 
well.  The sum of ��	� would still amount to the same by solving backward in 
time ln�,� /,.  Thus, if ? above could be shown to be a partition function b, and 
there were an � = 0 in the denominator of b at 	 = 0, then � = 0 would 
represent the end of natural time (which would result in an undefined value of the 
integral above) and 	 = 0 would represent the beginning of field time (the 
beginning of time itself, a universal singularity).   

Again, if the root of natural exponential decay could decay itself, then nothing 
else could decay based on it, as all exponential decay occurs over time (or 
distance, which would amount to the same in terms of amplitude 0).  If time were 
to be able to be expressed as having degeneration greater than zero, then there 
would be no meaningful solution to decay itself, as it would degenerate such that 
the denominator of all other decay becomes equal to zero—thus undefined.  
Decay itself then should become undefined in all cases, as the normalizing integral 
above would become undefined for all values.  Fortunately, this it is not the case 
for physics or mathematics. 

The root normalizing integral would become 
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1 ≠ e 0 ∙ �3	5#JK	g	 = 0 ∙ �3� 	,%
3  

 
as 

 1 ≠ 00 = W�g5³9�5g. 
 

Proposition 4. Let partial sum function {?^} converge absolutely, whereby the definition of 
the series ∑ a&%&'3   converges to a limit b if and only if the associated sequence of partial 
sums{?^} converges to b, written as 
 

b = ?^ = "a& ⇔ b = Y9Zd → ∞	?^%
&'3 , 

 

or  when {?^} is undefined due to � = 0, and if continuity exists between �, � + 1, then  
 

b = ?^ = "a& ⇔ b = Y9Zd → ∞	?^%
&'
 , 

 
such that 
 

1 = e ?^ ∙ �3	5#JK	g	 = ?^ ∙ �3� 	.%

  

 
The root of exponential decay, its degeneration being zero, imposes 

 b = ? = 0. 
 

In consideration of a non-degenerating time continuum and the prime 
numbers, we get  

 	�3 = −! ln�,&�,& 	∀	! > 0, ∀	,: � → ∞, 
 

and 
 ��	��3 = 5#$ NO�-P�-P 	∀	! > 0, ∀	,: � → ∞, 
 
such that 
 ��	� ≠ 	 
 
we define the factor of ��	� to 	 and then choose one or the other to apply to a 
normalized partition function, knowing that both could be normalized together  
be it ever required if we want to solve for the decay of time itself.  This deviation 
between ! (in units of frequency) and time 	 represents an oscillation that is 
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defined on a separate timeline from 	, one that decays and another that simply 
changes as the other decays, but does not converge absolutely, such that we can 
express quantity time ��	� having zero degeneration over field time 	.  In doing 
so, we get a number of useful results, as will present throughout the remainder of 
this paper.  Any such factor of ��	� to		 may be determined first using arguments 
for a contrived parameterized !-, such that the decay values become continuous  
 

!- = −2ln	�2� , −3ln	�3� , −5ln	�5� , … ∶ 	��	��3 = 5, 	�3 = 1	∀	,,	 
 ��	�5 = 		∀	,, 
 
where ��	� and 	 are expressed in terms of a constant multiple of 5 over all the 
prime numbers, (the equivalent of measurements of time using two different unit 
measurements, seconds to hours for example).  But for the purposes of this study, 
we express the following in terms of a decay constant !, thus a deviation between 
time coordinates (one in which time runs slower than the other in that it acts to 
decay, such as under the influence of a gravitational field for instance), and let the 
factor itself become parameterized only requiring normalization of the 
exponential term, applicable for matrix construction; 

 

M$�,� 	= ��	��3 	∀	! > 0. 
 

Again, , in M$�,�  are all the prime numbers as � maps to infinity, the same 
meaning of , in ∏ �1 − M$�,�	-�#
- .  With that and the limit of M$�,�  known 
for all !, we have proven above that the sum of the discrete elements 

 ��	�~�3	∀	,, ! > 0, 
 

as two values 2, � are asymptotically equivalent when the limit of their ratio 2/� 
equals one.  And again, the ! > 0 requirement follows from the study of 
exponential decay.  Thus, trivial zeroes of the Riemann zeta function whose ! < 0 
are not applicable to Riemann decay, and will later be shown to be mathematically 
independent from our final equations in that the final proof will functions that 
hold true only for the non-trivial zeros.  This is the point where we begin to fully 
diverge from similarity with Conne’s operator, whose result occurs for any zero of 
the Riemann zeta function and not just the roots of it [11]—even though his 
Riemann resonant operator still will exist (in form) when we take all of the above 
and place it in terms of decaying wave amplitudes.  

 
Proposition 4.1. The Riemann zeta function ! is the eigenvalue of a system that forms the 
root of all natural exponential decay out of consideration of natural numbers and the primes in 

that domain where ! becomes the eigenvalue of the opposite of the differentiation operator 	with ��	� as the corresponding eigenfunction; 
 −!	��	� −	 lim	M$�,� = 0	∀	! > 0.	 
 
 



19 
 

In order to prove these two propositions, we begin with the second.  Using the 
definition of a power for 5 with the infinite series 

  

54 = 1 + 2 + 2�2! + 2�3! + 2�4! + 2�5! +⋯, 
 

we write  
 −! ln�,&�,& = −! ln�,&� ,&#
 = M$�,&�. 
 

apply M$�,
�, which corresponds to prime number two, to the exponential series, 
which is 100% of the quantity � without any decay at field time 	 = ln�2� /2, 
where two is the first prime number.  We get 

 

M$�2� = 1 − ! ln�2� 2#
 + �−! ln�2�	 2#
��2! + �−! ln�2�	 2#
��3!+ �−! ln�2�	 2#
��4! + �−! ln�2�	 2#
��5! …. 
 

For M$�,�� for corresponding prime number three, we get 
 

M$�3� = 1 − ! ln�3� 3#
 + �−! ln�3�	 3#
��2! + �−! ln�3�	 3#
��3!+ �−! ln�3�	 3#
��4! + �−! ln�3�	 3#
��5! +⋯. 
 
For M$�,��, we get 
 

M$�5� = 1 − ! ln�5� 5#
 + �−! ln�5�	 5#
��2! + �−! ln�5�	 5#
��3!+ �−! ln�5�	 5#
��4! + �−! ln�5�	 5#
��5! +⋯. 
 
Next, let the reciprocals of the factorials of � > 0, 
 11! + 12! + 13! + 14! +⋯ 

 
be referred to from here on as Z!#
.  Because 1/2�� + �� + �� +⋯� = �/2 +��/2 + ��/2 + ⋯, we will write 
 

M$�,&� = 1 +	 " Z!#
 R−! ln�,&�,& S� ,%
�'
  

or 
 M$�,&� = 1 + ¸$�,& , Z�, 
 

such that 
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¸$�,& , Z� = " Z!#
 R−! ln�,&�,& S� ,%
�'
  

 
which is a partial sum of M$�,� at ,&.  Considering then the infinite sequence of 
infinite series ¸$�,,Z� for all primes to infinity,  

 ¸$�,,Z�
= " Z!#
 R−! ln�2�2 S�%

�'
 , " Z!#
 R−! ln�2�2 S�%
�'
 , " Z!#
 R−! ln�2�2 S�%

�'
 … 

 
we get the entire sum over all primes in terms of sequence 

 

¸$�,,Z� = " Z!#
 R−! ln�,�, S�%
�'
 . 

 
Because 
  �!� = *�1 − M$�,�-�#


- , 
 

the rearrangement becomes 
 

 �!� = *¹1− º1 + " Z!#
 R−! ln�,�, S�%
�'
 »-¼

#

-  

 
or 

  �!� = *�1 − p1 + ¸$�,,Z�q-�#

-  

 
or 

 

"�#$%
&'
 = *�1 − p1 + ¸$�,,Z�q-�#


- , 
 

where � can be considered natural time greater than zero.  These exponential 
decay relationships can then be directly linked to and solved for by the Riemann 
zeta function, and in as simple summation as the expression of the Riemann zeta 
function on the left hand side of the equation above, involving natural time �.  
Thus, we can see how the partial sums of the ratio of  

 

M$�,� = ��	��3  

 
is intricately linked to partial sums of the Riemann zeta function. 
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The final substitution then, �3 =	 5�, is obtained by evaluating the equation at 
field distance 	 = 	0, as �3 is defined as being the quantity at 		 = 	0 [8].  The 
decay constant ! = � from the last section was our description of the decay. But 
while we are measuring time in ln�,� /,, there is no prime number solution in 
this that equals zero.  Yet, the product of the ratio of ln�,� /, does converge to 
zero even though all prime numbers, all � and all ! are greater than zero in this 
system of exponential decay.  For any given ! > 0, we find that 

 *M$�,�- = 0	∀	! > 0, 
 

which of course does not mean that there need exist a prime number equal to 
zero; rather simply that time in ln�,� /, converges absolutely.  With the above, 
we get the equivalent form of our equivalent classes 
 ! = −,&:	M$�,&� = ,& 
 
in terms of positive arguments ! (those applicable to exponential decay) with the 
single exception of ! = 4 by adding the square of ��	� to M$�,&�; 
 

M$�,&� + � Rln�,&�,& S� = 0 ⇔ ! = ,&	∀	0 < ! ≠ 4, 
 
which can be useful for not only determining if ! is a prime number (with the 
exception of ! = 4, which produces a trivial zero at , = 2), but also how this 
form of exponential decay involves the factorization of elements for all positive 
arguments, not only negative arguments !, which are not applicable to exponential 
decay. 

Thus, the only possible value for �3 for any ! > 0 that makes  
 

��	� = 	�½	5#$ NO�-�- = 5#$K¾� 	∀	! > 0 
 

true is 
 �3 = 1−! : lim��	� = 1−!. 
 

We believe this is what one should expect in a system of the exponential decay of 
time itself (but where its degeneration would equal zero). 

We move further toward the proof of Proposition 4.1 by rearranging and 
solving for the number of elements in the discrete set ��	�, and taking ��	� to its 
sum where M$�,� converges on one as it approaches the infinite prime number, 
being that ��	�~�3, where , are all the prime numbers.  Sum ��	� is obtained 
by taking all the primes ,&: � → ∞ and adding the partial sums M$�,&�  in the 
earlier used form of 

 

M$�,&� = 1 + " Z!#
 R−! ln�,&�,& S� ,%
�'
 . 



22 
 

 
For the infinite sequence ¸$�,,Z� of infinite series for all prime numbers toward 
infinity, we get ��	� = 1−! + 1−! ¸$�,,Z�,	 

 
such that ��	� = 1/−! for all !, as the second term simply reduces to zero when 
the sequence of ¸$�,,Z� is considered for all the prime numbers. 

 1−! " Z!#
 R−! ln�,&�,& S� ,%
�'
 = 1−! ¸�!� = 0. 

 
This gives 

 ��	� = �3	M$�,� = 1−!	∀	!	 > 0, 
 

and as one gets the final result of the proof of Proposition 4.1; 
 −!	��	� −	M$�,� = 0	∀	! > 0.∎ 
 
In this sense, our form being the root of natural exponential decay becomes 

more intuitive (becoming fully intuitive only after proof of Proposition 4.0), 
considering the above, it being formed exclusively on natural time � and the 
fundamental theorem of arithmetic in terms of the factors relationship in M$�,�.    

 
Construction of the Riemann Probability Density Function.  To make an 
everywhere non-negative function correspond to a normalizing constant so that it 
becomes a probability density function or probability mass function [19], we 
consider the area under its graph 

 

1 = e ? ∙ �3	5#JK	g	 = ? ∙ �3� ,%
3  

 
where constant ? becomes a multiplicative constant in integral function f���, 
where in our case � = !.  We find that the Riemann zeta function ! involves a 
series of partial sums {?^} whose limit is zero (therefore also involving a partial 
sum of the Riemann zeta function), whereby the definition of the series ∑ a&%&'3   converges to a limit b if and only if the associated sequence of partial 
sums{?^} converges to b, written as 

 

b = ?^ = "a& ⇔ b = Y9Zd → ∞	?^%
&'3 . 

 
such that 

 

1 = e ?^ ∙ �3	5#JK	g	 = ?^ ∙ �3� 	.%
3  
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  Considering the Boltzmann distribution for the fractional number of particles �3/	��	� [1], noting that the numerator of the fractional number of particles is 
more typically referred to as �= and the denominator �, but changed so as to not 
confuse with the variables in the preceding proofs (reserving 9 for notating only 
ever √−1), occupying a set of states � possessing energy À&, whereby  

 �3��	� = k&	5#ÁP/�^Â	Ã�b  

 
and 

 ��	� = 	"�3& , 
 

such that 
 

b = "k&	5# ÁP^Â	Ã
& , 

 
where dÄ is the Boltzmann constant, Å is temperature (assumed to be a well-
defined quantity), k& is our degeneracy factor (the number of levels having energy À&) and ��	� is the total number of particles. 

By applying any known energy and temperature values, expressing Boltzmann’s 
Consant equal to 1 in Planck units (? = Æ = ℏ = dÄ = 1, where ? is the velocity 
of light, Æ is the gravitational constant, ℏ is Planck’s reduced constant and dÄ is 
the Boltzmann Constant), and À = 1/2Å, to the following arbitrary, but directed 
function  

 

j = 	1 + " Z!#
 �−À
dÄÅ�
�%

�'
 + 1 +	 " Z!#
 �−À�dÄÅ�
�%

�'
 + 1
+ " Z!#
 �−À�dÄÅ�

�%
�'
 +⋯,		 

 
 

where À& are the values of energy at each state in the system (at any given 
moment of natural time �), and all values of  −À/dÄÅ remain constant for any 
value of Å, equal to −1/2, such that d converges.  In terms of Planck units, j > 0, but we get convergence for any multiplicative factor of Å to À when dÄ = 1 even outside of Planck units.   

Using a form similar to that of Planck units, we are interested in the 
multiplicative factor that reduces function j to zero, and that factor is not 1/2, 
rather is 9—thus we are interested in À = 9Å, and dÄ = 1.  This gives 

 

0 = 	1 + " Z!#
 �−9��%
�'
 + 1 +	 " Z!#
 �−9��%

�'
 + 1 + " Z!#
 �−9��%
�'
+⋯,		 
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for all any and all values of À& and Å.  

 
Proposition 4.2. Riemann decay involves a Boltzmann distribution, where its partition 

function b = ?$�,� = 0, such that j = b/k&. 
In order to prove Proposition 4.2, which would also prove Proposition 4.0, we 

change the notation ? from here to ?$�,�, and will reserve c for the integral form, 
expressing instead as an infinite series.  It becomes exactly precise in doing so for 
our particular system having prime number arguments, as well as !.  We then 
consider a constant dÈ = 1.1291762…#
, constant for all ! ≠ 0, but only 
relevant to exponential decay when ! > 0, ?$�,� becomes a sequential function 
for a given decay constant ! and a given prime number ,& and the natural 
number � it corresponds to, such that 

 

?$�,&� = 	−!	dÈ 	5NO�$ÉP 	-Pt�÷-P�-P 	∀	|&: � → ∞,	 
 

or for the entire sequence of partial sums over all prime numbers to the infinite 
prime  

 

?$�,� = 	−!	dÈ 	5NO�$É	-t�÷-�- 	∀	! > 0, 
 

makes the following true: 
 

1 = "−!	dÈ 	5NO�$É	-t�÷-�- ∙ �3	5#JK%
&'
 = e 	f�Z�	gZ	∀	! > 0	 ⟺	�3 = 1−!%

3 . 
 

Note that 5#JK (equal to M$�,�) becomes a probability density function 
corresponding to the quantity sum, and  5NO�$É-t�/- becomes a probability density 
function. And also note that 

 

e 	f�Z�	gZ	%
3 = e 	³�Z�	�3	5#JK	gZ	∀	! > 0	 ⟺	�3 = 1−!%

3 . 
 
Upon inspection of ?$�,�, we then therefore show that by taking it to the 

infinite prime number for any !, 
 lim?$�,�, = 0. 
 

Then taking 5NO�$É-t�/- to the infinite prime number, we get 
 

lim	5NO�$É-t�- = !:	5NO�$ÉP 	-Pt �-P ~!. 
 

upon inspection of 5NO�$É-t�/- we also find 
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!5NO�$ÉP-Pt�	-PË� = M$�,&�	∀	,&, ! 

 
and generally 

 !5NO�$É-t�-Ë� = M$�,� = ��	��3 	∀	!. 
 

Thus 
 !	�3��	� = 5NO�$É-t�- . 
 
Returning then to 
 ��	� = 	"�3 = 1−!	∀	!	 > 0& , 
 

we get 
 

b = "k&5# ÁP^ÂÃ
& = ?$�,� = 	−!�	�3	dÈ��	��- = 0	∀	! > 0, 

 
as 

 

b = ?$�,� = "a& ⇔ b = lim	?$�,�, → ∞
%

&'
 ∀	! ≠ 0. 
 
The above then proves Proposition 4.0 ∎, and we can continue forward in this 

same sense toward proof of Proposition 4.2.  Being that b = ?$�,�, where ?$�,� 
is a parameterized constant that normalizes 

 

1 = e ? ∙ �3	5#JK = e ?$�,� ∙ �3	5#$�&�-�- = b ∙ !%
3 ,%

3  

 
we can compute it using integration by parts or considering the form 

 

��	� = 1−! + 1−! " Z!#
 R−! ln�,�, S� ,%
�'
 	∀	!	 > 0, 

 
being that 

 �3��	� = k&	5#ÁP/�^Â	Ã�b . 
 

We can solve for the values of k&	5#ÁP/�^Â	Ã�, now defined in b = ?$�,� because 
of 



26 
 

e f���	g�%

 = "−!	dÈ	5NO�$ÉP 		-Pt�÷-P�-P ∙ �3	5#JK%

&'
 = 1	∀	! > 0.	 
 

 
And thus, because 5NO�$ÉP 	-Pt�÷-P = $�t�-�, we can express it as 

 

e f���	g�%

 = "−dÈ 	!	�3	�-P

%
&'
 = 1	∀	! > 0. 

 

Because −! = 
¢u, this reduces to the very simple sum of a constant divided by all 

natural numbers greater than zero to the power of the primes, such that 
 

e f�Z�	gZ%
3 = " dÈ 	�-P 	= 1	∀	! > 0%


 . 
 

This provides the means to solve for dÈ to any amount of precision from the 
natural numbers and primes alone in 
 1dÈ = 1 + 12� + 13� + 14£ + 15

 + 16
� +⋯, 
 

dÈ#
 = "�#-%
&'
-

= "5#-	NO	�&�%
&'
-

 

 
We will begin now more forward toward a meaningful, rigorous proof of the 
Riemann Hypothesis (albeit progressively).  

Now b, the left hand side of  
 −!�	�3	dÈ��	�	�- = "k&5#ÁP/�^ÂÃ�

& , 
 

can too be expressed as 
 

?$�,� = 	−!	dÈ�- + −!	dÈ�- " Z!#
 ln	�!	�3��	���
%

�'
 	∀	!	 > 0, 
 

being that  
 !	�3��	� = 5NO�$É-t�- , 
 

and such that ?$�,� is expressed in terms of a sequence of infinite series over all 
the decaying quantities, as 
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¸È�	,Z�
= " Z!#
 	ln �!	�3�
 ��%

�'
 , " Z!#
 	 ln �!	�3�� ��%
�'
 , " Z!#
 	 ln �!	�3�� ��%

�'
 , …. 
 
 
Next, because the right hand side of 
 −!�	�3	dÈ��	�	�- = "k&5#ÁP/�^ÂÃ�

& , 
 

is such that 

b = 	"k& + k&& " Z!#
 �−À&dÄÅ�
� ,%

�'
  

 
 

express the above equation as the following infinite series; 
 

b = 	k
 + k
 " Z!#
 �−À
dÄÅ�
�%

�'
 + k� + k� " Z!#
 �−À�dÄÅ�
�%

�'
 + k�
+ k� " Z!#
 �−À�dÄÅ�

�%
�'
 +⋯, 

 
which gives us 
 −!	dÈ�- + −!	dÈ�- " Z!#
 	 ln	�!	�3��	���

%
�'

= k
 + k
 " Z!#
 �−À
dÄÅ�

�%
�'
 +k� + k� " Z!#
 �−À�dÄÅ�

�%
�'


+ k� + k� " Z!#
 �−À�dÄÅ�
�%

�'
 +⋯. 
 

Divide both sides by k&.  One gets 
 −!	dÈk&	�- +−!	dÈk&	�- " Z!#
 	 ln	�!	�3��	���

%
�'

= 	1 + " Z!#
 �−À
dÄÅ�

�%
�'
 + 1 + " Z!#
 �−À�dÄÅ�

�%
�'
 + 1

+ " Z!#
 �−À�dÄÅ�
�%

�'
 . 
 

Out of consideration of 
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bk& = 	1 + " Z!#
 �−À
dÄÅ�
�%

�'
 + 1 +Z!#
 �−À�dÄÅ�
� + 1 +Z!#
 �−À�dÄÅ�

� +⋯ 

 
and À = 9Å, we get an expanded expression of Proposition 4.0 in 
 

b = 	−!	dÈ�- +−!	dÈ�- " Z!#
 	ln	�!	�3��	���
%

�'
 = 0 

 
Thus, 

 −!	dÈk&	�- − −!	dÈk&	�- = 	1 + " Z!#
 �−À
dÄÅ�
�%

�'
 + 1 +Z!#
 �−À�dÄÅ�
� + 1

+Z!#
 �−À�dÄÅ�
� +⋯ = 0. 

 
Since the above is valid for all primes and all �, such that 
 1−! " Z!#
 R−! ln�,�, S�%

�'

= 1 + " Z!#
 �−À
dÄÅ�

�%
�'
 + 1 +Z!#
 �−À�dÄÅ�

� + 1
+Z!#
 �−À�dÄÅ�

� +⋯ 

 
in this form,  

 −!	dÈk&	�- −−!	dÈk&	�- = b, 
 

where  
 −!	dÈk&	�- −−!	dÈk&	�- = 0	∀	! > 0, 
 

we nearly have our proof of Proposition 4.2.  by means of the Buckingham L 
theorem, since our physically meaningful equation −! ln�,� /, = 	�	 involving a 
certain number, �, of physical variables, and these variables are expressible in 
terms of d  independent fundamental physical quantities, then the original 
expression is equivalent to an equation involving a set 
of ,	 = 	�	 − 	d  dimensionless parameters constructed from the original 
variables, as 

 −!	dÈk&	�- − −!	dÈk&	�- = 0	∀	! > 0 
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results in dimensionless !, as do the absolute convergence of time in ln�,� /, on 
the left.   

In order to illustrate this on a more fundamental level and fully prove the 
proposition, we return to the infinite series equal to b/k&, subtract both sides by 
the series and express it having the domain of �; 

 bk& − º" Z!#
 �−À
dÄÅ�
�%

�'
 + " Z!#
 �−À�dÄÅ�
�%

�'
 +⋯» = 	1 + 1 + 1 +⋯, 
 

which is the same as 
 bk& −" " Z!#
 �−À&dÄÅ�

�%
�'
& gZ = �, 

 
explained by 

 bk& = 0 = 1 +	−1 + 1 +	−1 + 1 +	−1 +⋯, 
 

as all 
 

" Z!#
 �−À&dÄÅ�
�%

�'
 = −1. 
 

Thus, b amounts to nothing more than a sum of zeros; 
 b = 	"k& + k&�−1�	∀	!	 > 0& , 
 

in the same way as 
 b = 	−!	dÈ�- +−!	dÈ�- �−1�	∀	!	 > 0. 
 
We then therefore show that the probability density function involves the 

Riemann zeta function’s !, the eigenvalue of the opposite of the differentiation 
operator with ��	� as the corresponding eigenfunction, and is that of the form of 
Boltzmann distribution, a described in Proposition 4.2.  This system is expressed 
in terms of exponential decay, but has zero degeneration, as the sequence of 
partial sums of k& converge absolutely, proving the proposition, resulting in a 
dimensionless mathematical framework in order to study the prime numbers 
themselves, and thus the non-trivial zeros of the Riemann zeta function in terms 
of periodic dimensionless functions.  ∎ 

 
5. Construction of Riemann Amplitude Proportionality 

In Bernhard Riemann’s 1859 paper, “On the Number of Prime Numbers Less 
Than a Given Quantity” [20], he proposed the hypothesis that the roots Ì in 
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Í�2� = Î9�2� −"2m − ln�2� + e 1Z�Z� − 1� ln�Z�%
4m 	gZ 

 
all have a real part equal to 1/2, where said roots are the non-trivial zeros of the 
Riemann zeta function (note: Riemann used symbol 	 instead of Z, but we 
express it here as Z, so as to reserve 	 always for time in ln�,� /,).  Said roots 
can be expressed as 

  �12 + 9:m� 

 
only if the Riemann Hypothesis is true (note: the symbol 	 is typically used here as 
well, but we symbolize it with : for other reasons that will become clearer as we 
begin to represent our statistical oscillation).   

We then express the real part of the roots of the Riemann zeta function as 7m 
and the imaginary part always as 9:m, such that !m =	7m + 9:m, where all real 
parts of !m have been proven to exist in a region known as the critical strip 
(0 < 	7m > 1) [21].  Any expression hereon of :m simply means the absolute value 
of 9:m.  Our interest then at this point is an expression of some function :m in 
terms of the root of exponential decay.  Because −À/dÄÅ was shown to cancel 
out, we will now begin to discuss decay using symbols in terms of a wave’s 
amplitude 0 decaying over field distance 2, as the following expressions become 
more familiar for most mathematicians in terms of waves (although these will be 
dimensionless waves, thus periodic functions).  It was discussed at the beginning 
how 0 is interchangeable for �, but that was really so long as all dimensions are 
duly accounted for throughout.  Now, however, with −À/dÄÅ eliminated from 
our study in that b = 0, we need not distinguish any separation or correlation 
between time and space at all, no other dimensions to account for. 

 
Construction of the Proportionate Zeta Function. We prove the following. 
 
Proposition 5. Given 	M$�,� = 0�2�/03, all the prime numbers are to the ratio of 0�2�/03 as the reciprocal of 0�2�/03 is to all the values of the imaginary part of all the 
non-trivial zeros of the Riemann zeta function; 
 

,:	 0�2�03 ∷ 030�2� : :m, 
 

such that 
 n A3	lnp:mq,	0�2�	ln	�03	02#
�~ − 0�2� = 1! 	∀	! > 0, 
 

where d is a defined limit somewhere in the vicinity of one, and such that 
 

:m�,� = 5NO�-�	r�4�st�-�	ru , 
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in that the roots of the Riemann zeta function become defined in terms of an infinite sequence 
over the primes and Riemann decay. 

In order to prove the proposition, we first consider the form we used sections 
earlier; 

  �!� = *�1 − M$�,�-�#

- = *�1 − ,#$�#


- , 
 

such that 
 

 �!� = 	*R1 − ,- NO��t�-��NO�-� S#

- :

1 = !Ï = ,ln	�,�0�2�03 = 5#64 = M$�,�
. 

 

We find that for any given argument !, considering that M$�,� = r�4�ru , 

 

*R1−:m	 rur�4�S#
 −*º1− 030�2�	
ru NOpÐÑqr�4� NO�ru	r�4�Ë��»#
 = 0	∀	! > 0,ÐÐ  

 
or more precisely throughout the product (as well as the entirety of the Riemann 
zeta function, not only those applicable to exponential decay), from any prime 
number ,& up to any prime number of a given magnitude ,¢, we get 

 

*R1−:m 
�t�-�S#
-Ò

- −*	º1 − 1M$�,�	
NOpÐÑq�t�-�Ë� NO��t�-�Ë��»#
-Ò

- = 0	∀	! ≠ 1, 
 

which results in the following: 
 

*R1−:m	 rur�4�S#
 = 	 �!� ⇔  �!� = 0, ! > 0ÐÑ
. 

 
In other words, we find that equivalence can only occur between these 

proportionalities when ! is a non-trivial zero of the Riemann zeta function  �!�, 
as exponential decay is described for decay constants (and propagation constants) ! > 0, considering the relation 1/M$�,� = 03/0�2�.  Our proof of the Riemann 
hypothesis will not center alone on the above, but we will use it to provide us with 
what we believe leads to a more rigorous proof than anything derivable from the 
above alone, that we additionally believe will provide deeper insight into other 
important areas of mathematics.   

We next consider the simpler term from above to be considered proportionate 
to the Riemann zeta function over all :m, but having arguments 1/M$�,� =03/0�2�	rather than arguments ! as a product over all the prime numbers, which 
we write as  	
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 m�0� = *R1 −:m	 rur�4�S#
 ∀	! > 0.ÐÑ
 

 
Or, in a more general sense, for the entire Riemann zeta function 

 

 m�0� = * R1 − :m	 
�t�-�S#
 ∀	! ≠ 1,ÐÑ,-
 

 
where again 

 

M$�,� = 5#$	NO	�-P�-P , 
 

such that 
 

 m�0� = * R1− :m	 
�t�-�S#
 = 0	∀	! ≠ 1,ÐÑ,-
 

 
where this proportionate Riemann zeta function converges absolutely, 
corresponding to any given !.  In other words, for any given argument ! in  �!�,  m�0� is a function that always extends proportionately (as the product taken over 
all :m), but always maps to one point: zero—from  �!�, as the product  �!� is 
taken over all the primes. 

In consideration of some constant dm in the vicinity of one (we later prove its 
actual numerical value) we find that by taking the sum 

 

M$�,&� = 1 + " Z!#
 R−! ln�,&�,& S�%
�'
  

 
over all prime numbers , and over all the real valued :m�!� of the non-trivial 
zeros of the Riemann zeta function, we get  

 

lim,	M$�,�	ln	�M$�,�#
�n lnp:m�!�	q = !	∀	!	 ≠ 1. 
 

Thus, we can now consider a parameterized constant n$�,� (actually a sequence in 
its own right) corresponding to each prime number for any given !, such that 

 ,	M$�,�	ln	�M$�,�#
�! lnp:m�!�q = n$�,�, 
 

where  
 

lim,	M$�,�	ln	�M$�,�#
�! lnp:m�!�q = n 
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Taking the sum of all the values over all the prime numbers and all the real valued 
roots of the Riemann zeta function, we get 

 

 �!� = "�#-	�t�-� NOp�t�-�Ë�qst�-� NOpÐÑ�$�q%
&Ó
 ∀	!	 ≠ 1. 

 
Because M$�,� = 5#$ NO�-�/-, we get the natural logarithm of the inverse of an 

exponent in the numerator, which is expressed as 
 

 �!� = "�#-	�t�-� NO� 
¯Ët ÔÕ�É�ÉË��st�-� NOpÐÑ�$�q%
&Ó
 , 

 
which cancels out to the negative of the inverse of −! ln�,� /,, as ln�1/54� =−2.  This cancels the , in the numerator, giving 

 
 

 �!� = "� #$ NO�-��t�-�	st�-� NOpÐÑ�$�q,%
&Ó
  

 
where  

 ln�,� M$�,�	n$�,� lnp:m�!�q = 1	∀	,, :m. 
 

This too can also be expressed as 
 ln�,� 5#$ NO�-�-Ë� 	n$�,� lnp:m�!�q = 1. 
 
Multiplying both sides by lnp:m�!�q, we get 
 ln�,� 5#$ NO�-�-Ë�

n$�,� = lnp:m�!�q. 
 

Give the exponent of both sides and one gets 
 

:m�!� = 5NO�-�¯Ët ÔÕ�É�ÉË�st�-� . 
 
To apply arguments to our definition, we express the above as a taylor series; 
 

:m�!� = " �n$�,�#
ln�,� 5#$ NO�-�-Ë��&�!
%

&'3 . 
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Select an arbitrarily given ! = 2, the first prime number and the first non-trivial 
zero and apply it to the infinite series.  We get 

 

14.1347… = "�7.6423… 	ln�2� 5#� NO����Ë��&�!
%

&'3 . 
 

And then we apply the next prime number and non-trivial zero where ! = 2, 
 

21.0220… = " �5.7664… 	ln�3� 5#� NO����Ë��&�!
%

&'3  

 
Taking all the sums to the infinite prime number and the infinite non-trivial zero, 
we get the limit of the parameterized constant (the value 5.7664… above) equal 
to the inverse of n.  

Because  
 0�2�03 = M$�,� = 5#$ NO�-�- , 
 
We have our proof of Proposition 5.0; 
 

:m�!� = 5NO�-�	r�4�st�-�	ru .		∎ 
 

Summary of this Proportionality.  Difficulty in defining a precise solution for 
the sequence n$�,� independently from :m�!� arises from the fact that  

 ln�,� 	0�2�03 	= n$�,� lnp:m�!�q 

 
involves an uncertainty relation of two products of conjugate variables, which we 
will present more in the next section. In statistics and probability theory,  standard 
deviation (typically represented by the symbol sigma, 7), shows how much 
variation or dispersion exists from the average (mean, or expected value) [22].  
Thus, we may come to understand how :m�!� is to shown to correspond to the 
average of some property of this Riemann system, thus giving insight into the 
Riemann operator whose eigenvalues are precisely the non-trivial zeros.  

The standard deviation of a random variable, statistical population, data set, 
or probability distribution is the square root of its variance [22].  Thus, from 

 

:m�!� = 5NO�-�	r�4�st�-�	ru , 
 

being that ln�,� /, is identically useful as a unit of field time to a unit of field 
analog distance, we can express 

 0�2�03 = 5#$ NO�-�- = M$�,�, 
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times the natural logarithm of all primes over some parameterized constant n$�,� 
as an exponent equal to the non-trivial zeros.  : → ∞ would also equal the 
average amplitude of the same periodic function � → ∞, provided the phase is 
constant and the periodic function is continuous, whereby the same values 
throughout each period would simply repeat to infinity, amounting to the same 
average. 

Mathematically, this is an uncertainty relation between :, � that arises because 
the expressions of a periodic function that arises in the two 
corresponding bases :, � are Fourier transforms of one another (:, �  
are conjugate variables) [23]. The same could be said for ln�,� /, and �, where we 
find n$�,� is not arbitrary in the least, as the period of the function having 
amplitude 0 is tied both to the denominator of the inverse of the real part of !, as 
well as the denominator of the inverse of the real part of {$�,�, the elements of 
the Hermitian matrix from earlier; 

 

{$�,�� + {$�,��[$�,� + 1� + [$�,�−16 = 0. 
 

This will be discussed thoroughly in the next section.   
A similar tradeoff between the variances of Fourier conjugates arises wherever 

Fourier analysis is needed, for example in sound waves. The Fourier transform of 
a sharp spike at a single frequency gives the shape of the sound wave in the time 
domain, a completely delocalized sine wave [23].  Thus, we then consider, after 
having fully defined the Riemann system as the root of exponential decay and 
now defined the roots of the Riemann zeta function itself in  

 

: = 5NO�-�	r�4�st�-�	ru , 
 

expressing ! in terms of a single statistical oscillation (similar in concept to 
Connes [11]) of a saw tooth function, which gives further analysis through a 
Fourier series.  This benefit follows from a rearrangement of the above, out of 
consideration of M$�,� = 0�2�/03, such that 

 

! = ,ln	�,� ∙ ln Rn$�,� lnp:mqln�,� S, 
 

Where ,/ln	�,� is defined as the inverse of field distance in ln�,� /, and ln�n$�,� ln�:� / ln�,�� results in dimensionless values due to M$�,� = 0�2�/03.   
Therefore then, because  m�0� extends proportionately from  �!�, by 

magnitude of parameterized constant  n$�,�, always mapping to an expected 
value zero, knowing the roots alone up to a certain magnitude, along with the 
prime numbers to the same magnitude, we can begin to map any array of ! 
(continuous or discontinuous).  When one knows the angle between two vectors 
corresponding to a common point, one can then determine the distance between 
the two [24].  This third known (or expected) point is the zero  m�0� that always 
maps to the same place; that point being analogous to field distance 2 = 0 or field 
time 	 = 0, as Euler had defined the Riemann zeta function in terms of primes, 
equivalent to the Riemann zeta function in terms of natural arguments � [4].  This 
results in a corresponding array of the Riemann zeta function also able to be 
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mapped to infinity, which provides the means to find continuity and discontinuity 
anywhere throughout the Riemann zeta function if and only if either ! is constant 
or its real part is constant, a propagation constant in terms of amplitude decay 
over distance and a decay constant in terms of decay over time, though we will 
handle its dimensionless form.   

This result then presents  m�0� as a mathematical tool for exploration into 
points of continuity based on comparison between two or more average values 
(one with a finite mapping and the other having an infinite mapping), possibly 
providing applications in 3D computer modeling, where a common axis is 
redefined for each new 3D object creation [24].  In this case, however, the 
singularity is always predefined to at least a given magnitude by the roots of the 
function, and fully manageable based on the Riemann probability density 
function.  In the next section, we will begin to use this device to explore areas for 
continuity in the Riemann zeta function.  

 
 

6. Construction of the Riemann Triangle Periodic Function 
 

Background on Triangular Periodic Functions.  According to the de Broglie 
hypothesis, every object in the universe is a wave, a situation which gives rise to 
phenomenon of uncertainty relations [23]. The position of the particle is described 
by a wave function v�2, 	�. The time-independent wave function of a single-
moded plane wave of wavenumber d3 or momentum Î3 (,3 is commonly used to 
symbolize photon momentum, but we express it here as the more general 
momentum Î, so as to not confuse with the primes ,) is 

 v�2� ∝ 5=^u4 = 5=×u4ℏ . 
 
We should interpret the above as a probability density function due to the Born 

rule [25], as the probability of finding the particle between a and © is 
 

ΡÙa ≤ Ï ≤ ©Û = e |v�2�|�g2Ü
Ý . 

 |v�2�|�  is a uniform distribution when the wave is single-moded, in that the 
particle position could be anywhere along the wave packet [23]. Consider a wave 
function that is a sum of many waves, however, we may write this as 

 v�2� ∝ "0&5=×P4ℏ
& , 

 
where 0& represents the relative contribution of the mode Î& to the overall total, 
or the continuum limit over all possible modes; 

 

v�2� = 1√2Lℏ	e vw�Î�%
#% ∙ 5=×4ℏ 	gÎ, 

 
with amplitude of these modes expressed in vw�Î�, the wave function 
in momentum space.  vw�Î� is the Fourier transform of v�2� in that 2 and Î 



37 
 

are conjugate variables. The more precise we sum the plane waves, the less precise 
the momentum becomes, acquiring a multiplicity of momenta [23]. 

That said, we can use standard deviation Þ to quantify the momentum and 
location [23] and since |v�2�|� is a probability density function for position, we 
calculate its standard deviation.  The limit of the solution exacted is called the 
“Kennard bound”, an expression of the uncertainty principle.  Any pair of non-
commuting self-adjoint operators representing observables are subject to similar 
uncertainty limits in terms of quantum mechanics [23].  

The normal distribution is a real line continuous probability distribution, having 
a bell-shaped probability density function, known as the Gaussian function or 
informally “the bell curve” [26]:  

 

kaW!!9a��:; 	�, Þ�� = 1Þ√2L	5#

��Ð#ßà �� , 

 
where � is the location of the amplitude peak and Þ� is the variance (typically 
symbolized with 7, but we symbolize it with the sigma variant, in order to retain 7 
for symbolization of the attenuation constant, the real parts of !).  The arguments : are typically symbolized 2, but we will apply real arguments : of ! (the real 
numerical values of the imaginary parts).  This normal distribution is the most 
implemented statistical distribution  [27]. 

A triangle wave (or similarly a probability triangular periodic function, which 
we will begin to construct), is a non-sinusoidal waveform named for 
its triangular shape, similar to a square wave, the triangle wave contains only 
odd harmonics,  a component frequency of the signal that is an integer multiple of 
the fundamental frequency.  This infinite Fourier series converges to the triangle 
wave [28]: 

 

2Ká=Ý&â�¯�	� = 8L� "�−1�^ sinp�2d + 1�:	q�2d + 1��
%

^'3  

 = 	 8L� �sin�:	� − 19 sin�3:	� + 125 sin�5:	� − ⋯� 

 
 

where : in terms of a wave is the angular frequency, though the above can also 
be expressed for dimensionless periodic functions, having dimensionless 
arguments  : as well. 

The triangle wave (or dimensionless triangle periodic function) can also be 
defined as the absolute value of the sawtooth wave.  For instance, a triangle wave, 
with range from −1 to 1 and period 2a is [29]: 

 2Ká=Ý&â�¯�	� = H2 �	a − ã	a + 12ä�H, 
 
 

where 
 ã	a + 12ä 
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is the floor function.  It is this corresponding sawtooth wave that will allow the 
following proposition and its proof to carry conditions over to any number of 
waveforms, as well as any number of dimensionless periodic functions involving 
Fourier series, as the relationships between triangle waves and square waves (and 
most others waves) too can be drawn—although, we will only consider for the 
following a range from 0 to 1, thus the assignment of the probability. 

 Unlike the symmetric triangle wave, a sawtooth wave contains all the integer 
harmonics, and is one of the best waveforms to use for subtractive synthesis of 
musical sounds, as it can be constructed using additive synthesis [29]. The 
following infinite Fourier series describes a sawtooth wave: 

 

2$ÝåK½½K��	� = 2L"�−1�^ sin�2Ld³	��2d + 1��
%

^'
 . 
 

Our interest in the remainder of this paper are all the asymmetric triangle waves 
(or dimensionless periodic asymmetric functions) between the symmetric triangle 
and the sawtooth, although we will certainly not perform Fourier transforms of 
the great magnitude between or present them in terms of their Fourier series, as 
the result of the following will shed insight into the Fourier series convergence by 
Laplace transforming at most a few general functions. 

 
Construction of the Riemann Statistical Oscillation.  We prove the following. 

 
Proposition 6.  The period of triangle periodic function in its Laplace transform 
 

vwI�:� = 1ℎ − 1k = yI�:�7� , 
 

is equal to the greatest common divisor of the reciprocal of the real part 7 of the argument ! (the 
eigenvalue of the root of natural decay) and the reciprocal of the product of the real part 7 of ! 
and the real part z of the corresponding elements {$�,� of the Hermitian matrix derived from !; 
 

| = gcd �17 , 17	lim	z�:	 7 = X5�!�z = X5p{$�,�q. 
 

Recalling from elementary arithmetic, a numerator M of a common fraction 
(symbolized here as M instead of the more typical �, as we will be using the same M$�,� as in the previous sections) represents a number of equal parts and the 
denominator [ (the value [$�,�,	not to be confused with the Dirac delta, which 
we will express simply as the Dirac function throughout this paper) indicates how 
many of those parts make up a whole [30].   

Now, we have described earlier an assembly of elements, the number of which 
decreases to zero (being the roots of the set), the exponential distance constant Ï 
is the expected value of the amount of distance before an amplitude-object is 
removed from the assembly, where the assembly is the analog wave itself. When 
the amplitude decays over analog distance, if the individual analog distance of an 
element of the assembly is the analog distance traveled between the starting 
location and the removal of that element from the assembly, the mean analog 
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distance Ï	is the arithmetic mean of the individual analog distances.  Thus, we 
make an assumption here (one that has no bearing on the outcome of any proof, 
as none are based on the assumption—only provided for illustrative purposes) 
that said element of the assembly (consider it perhaps the quanta itself, a photon) 
of the wave contributes to the amplitude of the wave, and as these elements tend 
to leave the system over the course of the wave’s travel, the amplitude diminishes. 

For one grasping for meaning to our construction of the root of exponential 
decay (Riemann decay) involving a probability space in that no conditions amount 
to the removal of any element from the assembly, consider simply the definition 
of a probability space [9]; it is a mathematical construct that models a real-world 
process consisting of states that occur randomly, consisting of three parts: 
a sample space, æ, which is the set of all possible outcomes, a set of events ℱ, 
where each event is a set containing zero or more outcomes and the assignment 
of probabilities to the events, vwI�:�, from events to probability levels.  Our 
construction provides the means to supply any number of different sample spaces 
and events, and all of which reduce to our assignment of probabilities vwI�:�. 

That said, fluorescence lifetime, which is a bit more exacting representation of 
our construction, refers to the average time the molecule stays in its excited state 
before emitting a photon [31][32]. Fluorescence follows first-order kinetics in our 
construction as well: 

 Ùè
Û = Ùè
Û3	5#$K 
 

where Ùè
Û is the concentration of excited state molecules at time 	, Ùè
Û3 is the 
initial concentration and ! is the decay rate or the inverse of the fluorescence 
lifetime, an instance of exponential decay.  Thus, we believe this construction 
represents the mathematical process of all of these forms, in that these forms 
decay over the mathematics presented herein.  In this sense, our set of events ℱ = 0, which does have a meaningful solution.  The sample space æ really can be 
applied in several ways, and does not change the outcome of the rest of the paper, 
so expressing it in terms of specific samples is unnecessary.  In fact, in doing so 
could even make the mathematics to follow less clear than if we simply allowed 
the reader to apply his or her own model to what will be presented from here.   

Due to our dimensionless root of exponential decay, and the fact that this 
system has zero degeneracy even though it can be expressed in terms of 
exponential decay, we can draw dimensionless parallels in order to treat the 
number of equal parts as M$�,� or 0&/03, where M$�,� is not only a ratio of 
partial sums to the initial amplitude, but also the numerator of the far earlier 
described VW@	�XI� that is always less than zero.  The denominator [$�,� 
discussed earlier tells us how many M$�,� are needed to add up to the whole 
amplitude.    

Being that VW@	�XI� is the set of equivalence classes of 
pairs �M$�,�, [$�,��, M$�,�, 	[$�,�	 ∈ 	XI and [$�,�	 ≠ 	0, such 
that �M$�,�, [$�,�� is equivalent to �;, <� if and only if M$�,�< = ;[$�,� . This 
generalizes the property from the rational numbers that M$�,�/[$�,� = ;/< if 
and only if M$�,�< = ;[$�,� [33]. The sum of the equivalence classes 
of �M$�,�, [$�,�� and �;, <� is the class of �M$�,�<	 + 	;[$�,�, [$�,�<� and 
their product is the class of �;M$�,�, [$�,�<�. The pairs �M$�,�, [$�,�� from VW@	�XI� are written M$�,�/[$�,� [33]. 



40 
 

In the case of M$�,� having the limit one, being continuous at ! = 0, as we 
want to construct the analog of an attenuation constant of !, its real part, we can 
begin by studying a constant VW@	�XI� by taking the denominator [$�,� times M$�,� until convergence occurs at the limit of [$�,� where we know from earlier 
that the denominator becomes the reciprocal of VW@	�XI� toward infinity.  We 
chose earlier then to compare the continuity at ! = 0 where VW@	�XI� is a 
guaranteed value, and then studied that result in a manner such that it could be 
expressed for any given value of !.   

We now let VW@	�XI�  be then the ratio to numerator ; having the domain of 
the real part of ! and denominator < too having the domain of the real part of !, 
referring to the real part of ! from here on as 7 (the dimensionless analog to an 
attenuation constant, which is why we use the same symbol).  We find that 

 

VW@	�XI� = �27 + 1�#
 − 44 = ;�7�<�7� = lim	�M$�,��[$�,� , 
 

and 
 

<�7� = √7�VW@	�XI� + 1, 
 

and ;�7� is the constant product 
 ;�7� = <�7�	VW@	�XI�. 
 

We take VW@	�XI� and construct a triangular periodic function, whereby the 
same values throughout each period simply repeat over time to infinity, bounded 
by zero and one, a probability in that we are working from a probability 
distribution involving the eigenvalues !. 

In the same way that we constructed	VW@	�XI� from the limit of M$�,�, we 
construct our triangular periodic function from VW@	�XI� to the power of � in 

 ∞ℎ�7�� = 1 = �VW@	�XI�& + 1��VW@	�XI� + 1�7 + |:| , 
 

where VW@	�XI� is obtained directly from 7.  We symbolize the inverse of the 
limit of ℎ�7� simply as  

 

�Î9Z	ℎ�7�� → ∞ �#
 = 1ℎ, 
 

as we will only work with the limit from here on, whose value has the property of 
being all whole positive even number values for all positive, whole real arguments !.   

We then take 
 VW@	�XI�	Z@g	ℎ, 
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which is the cycle used to encode the ramification data for the extensions of a 
global field [34].  We then consider what we will refer to as the “neutronic 
equation”, from a sequence of equations resulting in integers for all rational 
arguments, such that for any constant ℎ, and any given magnitude VW@	�XI�, its 
sequence converges (containing only whole numbers for rational arguments VW@	�XI�, ℎ) absolutely for all VW@	�XI� and divisors ℎ: 

 

�5W	�@�9?	5jWa	9@��VW@	�XI�, ℎ� = VW@	�XI� − VW@	�XI�	Z@g	ℎℎ , 
 

where the author herein defines the neutronic equation as 
 

�5W	�@�9?�VW@	�XI�, ℎ� = VW@	�XI�& − VW@	�XI�&	Z@g	ℎℎ . 
 
For a numerical example of this function, let �5W	�@�9?�41,3�	(completely 

arbitrarily and independent of anything proceeding).  We get 
 �5W	�@�9?�41,3� = 41 − 41	Z@g	33 = 13, 13 − 13	Z@g	33 = 4, 4 − 4	Z@g	33= 1, 1 − 1	Z@g	33 = 0, 0, 0, …. 
 

In this form, add VW@	�XI� to VW@	�XI�	Z@g	ℎ (VW@	�XI�, as we find it is 
always negative for any given arguments; thus, the change of signs is only a matter 
of simplification) and then divide by ℎ, writing it as 

 �VW@	�XI� + VW@	�XI�	Z@g	ℎ�ℎ , 
 

such that 
 1k = −VW@	�XI� − VW@	�XI�	Z@g	ℎℎ + 7 + |:| = 1ℎ ⇔ 7,: ∈ ℕ. 
 
In doing so, we have limited the equivalence of k, ℎ to exist only for natural 

numbers and have contained all positive (positive, as arguments less than zero are 
not applicable for exponential decay) integer, rational, real and complex 
possibilities to between zero and one, such that the field of fractions  VW@	�XI� 
of the integral domain is the smallest field in which it can be embedded, the 
probability in which it is embedded.  The algebraic probability periodic function 
then becomes 

 

vwI�:� = limR�VW@	�XI�& + 1��VW@	�XI� + 1�7 + |:| S#


−−VW@	�XI� − VW@	�XI�	Z@g	ℎℎ + 7 + |:|. 
 

Or we simplify it as 
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vwI�:� = 1ℎ − 1k, 
 

such that  
 1ℎ = limR�VW@	�XI�& + 1��VW@	�XI� + 1�7 + |:| S#


 

 
and  

 1k = −VW@	�XI� − VW@	�XI�	Z@g	ℎℎ + 7 + |:|. 
 
 
The manner in which we use this periodic function is to first consider our 

constant 7, the real part of ! (fixed, not parameterized), and then apply arguments 
to : chronologically, the imaginary part of !, from zero to infinity.  Where the 
cycle repeats to infinity producing an average �.   

For rational 7 > 1, the waveform is the same as its fractional arguments, just 
that the initial amplitude at : = 0 begins elsewhere in the oscillation.  Also, there 
are a limited number of rational points in this function that at first appear to have 
continuity when 0 < 7 < 1.  But by applying rational increments of : (for 
example, increments of : 1/8-at-a-time, such that 7 = 1/2, we see that 
periodicity does exist between the natural arguments in the following graph.  We 
can also apply increments of any real number, so long as the progression is 
considered infinite.  By applying the values (most likely irrational values) of the 
non-trivial zeros :m, such that 7 = 1/2 shown in Figure 1, 

 

 
Figure 1, graph of vwIÑp:mq over its corresponding positive integer 

 
we get that the oscillation average converges on � = 1/2 almost immediately, as 
shown in Figure 2.   
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Figure 2, graph of � of vwIÑp:mq over its corresponding positive integer 

 
This, however, is not the only set of arguments one can apply to get an average 
equal to one half, but it will become an important value to consider later. 

Our construction coincides in a sense with Broughan and Barnett’s Riemann 
flow in terms of periodic orbits (trajectories), which come back to the initial point 
after a finite time interval [35].   They explain that mapping � → 1�!3, ��, the 
solution is called an orbit or trajectory, where ! is our complex variable 
(arguments of the zeta function), and � interpreted as time (in our model it is the 
inverse of 	 = ln�,� /,, in theirs it is referred to as the maximal domain of 
existence).  The ensemble of orbits they then called a holomorphic flow. A 
graphical representation of a subset of the orbits is called a phase portrait or phase 
diagram.  They show that through each point !3 there is a unique solution 1�!3, ��, with 1�!3, 0� = !3.  Our model provides the unique solutions, such that ! = 1, � = 	 ,/ln�,�.  

  Consider also the case of a black body radiation experiment [36].  If a wave of 
photons enter the black body through a cavity (all at the same initial trajectory), 
when they meet the interior baffles (typically carefully placed angled iron oxide 
coated steel plates), they are either deflected (reflected) or absorbed into the black 
body material.  The artificial black body is ideally constructed in such a way that 
the waves are angled to never escape from the same cavity they enter, therefore 
increasing the probability that eventually they will be absorbed.  When this occurs, 
the black body radiates at a lower frequency at which they entered, and at a 
resonant frequency corresponding to the temperature of the black body.  It is this 
operation that originally allowed Planck to formulate the concept of discrete wave 
packets (quanta) [37]. 

It can be thought similar to the Riemann operator of Connes construction of 
Riemann flow in terms of absorption or fluorescence, a spectral interpretation of 
the critical zeros of the Riemann zeta function as an absorption spectrum, while 
eventual noncritical zeros appear as resonances.  Those two possible outcomes 
are opposite (so opposite however that analogies can still be made) to the black 
body experiment: if it is absorbed into the baffles, the black body radiates, if it is 
reflected, the body does nothing.  We get the consequence of photons passing 
through a material in that in order to maintain a constant speed, the speed of 
light, the wavelength itself changes, we also get a change in relativistic mass and 
thus photon momentum [38].  We show a diagram. 
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Let ! = 1/3 (arbitrarily) and apply natural arguments : to vwI�:�.  We get the 
following graph. 

 

 
Figure 3, graph of vw
/��ℕ� over the natural numbers 

 
Then consider the above alongside (alongside in distance for now) the same 
function in terms of distinct rays of light, save some amplitude offset of 2/3	beginning at a precise different points in time so as to induce interference.  This 
would give an offset with coinciding points of equality, thus interaction, shown in 
the following graph. 
 

 
Figure 4, graph of vw
/��ℕ� and one multiplicative factor over the natural numbers 

 
Consider then three (or more for instance). 
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Figure 5, graph of vw
/��ℕ� and two multiplicative factors over the natural numbers 

 
Now, we can express the above in terms of time, orbits or trajectories, 

including our rough sketch of the above trajectories (rotated thirty three degrees 
clockwise) of three rays entering a black body cavity below. 

 
Figure 6, black body representation of vw
/��ℕ� in terms of Rayleigh scattering 

 

Upon entering the black body through a cavity so that the rays are absorbed 
before their direction is reversed (to exit the cavity of which it entered), by the 
individual interactions between the rays (having relativistic mass, force between 
them exists) and the baffles of the black body the photons relativistic mass is 
reduced along with its frequency [38].  The rays eventually exit (are removed from 
the assembly) at a resonant frequency corresponding to the temperature of the 
black body [37].  If the above represented objects or particles having rest mass, 
they would eventually cease their travel, velocity reducing due to inertia [39].  
However, in terms of discrete quantities having only relativistic mass, they have 
no rest; while their travel may be delayed (such as passing through a prism or 
blackbody); it is only over a factor of time, not a reduction in velocity [38].  The 
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above provides a conjectured representation (independent of experiment) of 
Rayleigh scattering [40], though many (if not the majority) physicists differentiate 
between Rayleigh scattering and fluorescence for some considerable reasons [31].   

We understand that the standard representation of black body radiation is that 
rays are absorbed, the atoms of the black body become excited and the body 
emits the radiation, not that the rays eventually exit the body (as this would be at 
odds with black holes, black bodies of which no light can escape due to gravity) 
[41].  But we do not put preference either way here on theory, as our above sketch 
is an abstraction and we only present the emission of light in terms of trajectories 
because it illustrates our function.  Whether the light is emitted from atoms 
uniformly because light was absorbed into the atoms, or if the black body emits 
light uniformly because the individual trajectories exit in all directions, increasing 
to uniform emission over time due to interference, we are not concerned in terms 
of the study of this paper. 

 
Construction of the Period and Phase of the Riemann Statistical 
Oscillation. 

Upon inspection of  VW@	�XI� in 
 

VW@	�XI� = �27 + 1�#
 − 44 = limM$�,�[$�,�  

 
given all arguments 7 (inclusive even of 7 = 0, 7 = 1) to plus or minus infinity, 

 

VW@	�XI� = �27 + 1�#
 − 44 = W�g5³9�5g ⇔ 	7 = −12. 
 

And because the number of finite elements in 
 Y?Z�M$�5
�, M$�5��, … , M$�5¢�� = Y?Z�M$�5
�, M$�5��,… , M$�5¢�,−!�	∀	! <> 0, 
 

where the rational elements ℚ are such that the numbers of fractional elements 
for ! are the same as whole elements of – !, we get 

 ℚ	M¯ = 1ℕ	°¯ 	∀	!. 
 
In other words, if the rational elements originate from the root of natural 

exponential decay  
 

M$�,� = 0�2�03  

 
when ! > 0, and they are the inverse of the natural elements when ! < 0, then 
the denominator [$�,� of VW@	�XI� must too be equal to zero if and only if 7 = −1/2 (causing VW@	�XI� to become undefined), as M$�,� always converges 
on one.  We believe the fact of this can be deduced simply upon inspection of 
their earlier definitions; 
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VW@	�XI� = �	27 + 1�#
 − 44 , 
 
 M$�,�	[$�,�	= VW@	�XI� = 0�2�03	[$�,�, 
 

and 

lim[$�,� = R�27 + 1�#
 − 44 S#
. 
 
We then study the amplitudes of not only the amplitude and modulus of both 

of !, the eigenvalues of the root of natural exponential decay and {$�,�, the 
elements of our Hermitian Matrix, but also periodic vwI�:� that imposes the 
correspondence between the two.  In order to solve for the initial phase and 
period in terms of the proof, which will provide the means to handle this with a 
Fourier transform for any argument ! in vwI�:�, we first solve for yI�:� for the 
first value at : = 0 using the following: 

 vwI�:� = 1ℎ − 1k, 
 

Where upon inspection of yI�:� from vwI�:� for any argument !, taking the 
function throughout the domain !, and considering 7� constant for all vwI�:�, 
having the domain of 7 (from which ℎ, k are generated), we find 
 lim7 → 0			 yI�0� − 7#
 − 27 − 8 − 7#
 = 0, 

 
 

in that 
 

yI�0�~7#
 − 27 − 8 − 7#
	∀	7, 
 

thus 

vwI�:�#
 R7#
 − 27 − 8 − 7#
S	~	7�, 
  
such that 

 

�1ℎ − 1k�RyI�:�7� S#
 = 1	∀	7, 
 
 

so that 
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1ℎ − 1k = yI�:�7� . 
  

We find that by applying all of the above to the real part of {$�,�, the elements 
of the Hermitian matrix constructed from 

 

[$�,� = 4�{$�,� + 1��−4{$�,��#
 − 4 = M$�,�VW@	�XI�, 
 

we can determine period | of vwI�:� from the real part of the elements of the 
Hermitian matrix because 

 −2;�7� limz − 17 = 0	∀	!, 
 

where again z is the real part of {$�,�.  Thus, we can use 
 17	lim	z, 
 

for the solution of the period of this triangular periodic function for any argument !, finding 
 | − gcd �17 , 17 lim z� = 0	∀	!. 
 

The frequency then becomes the inverse of the period, such that 
 

³ =	gcd �17 , 17	lim	z�
#
 . ∎ 

 
Solving for the periodic function phase is straight forward by calculating vwI�:� over the course of one period with natural arguments, determine 0�Ý4, 0�=& over that period, where we get a right triangle with points 0, é and �, where 0 is the initial amplitude value, é is the point at which the amplitude 

begins its first decline and � is the right angle between 0, é.  We get  
 é� = 0�Ý4 − 0�=&, 
 0� is then the value of :r�Ý4, the first value of the imaginary part of ! where 

the maximum amplitude of vwI�:� occurs (in the above graph where the real part 
of ! equals 1/5,:r�Ý4 = 2).  We then solve for 

 0é = C�0��� + �é���, 
 

then 
 é�0é = !9�5		ℎ5	a, 
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which gives 

 A = a�?!9�5	 é�é0.	 
 

Knowing the amplitude, the value of vwI�:�, the period | (whose reciprocal is 
the oscillation of the function) and the phase for any given !, we can perform a 
Fourier transform to express this periodic function in terms of its oscillations to 
infinity [42].  To prove the pending propositions, however, one must yet 
universally define the maximum and minimum amplitudes (the ones and zeros). 

 
Necessity of Fourier Convergence in the Riemann Statistical Oscillation.  
The conditions in determining convergence are the Dirichlet Conditions of 
which  for a real-valued, periodic function vI�:� to be equal to the sum of 
its Fourier series at each point where vI�:� is continuous and the Fourier series 
at points of discontinuity is determined as the midpoint of the values of the 
discontinuity [42].  The Dirichlet Conditions are sufficient but not necessary, in 
that if the conditions are met, convergence is guaranteed.  However, if they are 
not met, convergence still may occur [42].  While these conditions are generally 
satisfied for cases arising in science or engineering, prior to  	

vwI�:� = limR�VW@	�XI�& + 1��VW@	�XI� + 1�7 + |:| S#


−−�VW@	�X� + VW@	�X�	Z@g	ℎ�ℎ + 7 + |:|, 
 

there exists no known necessary and sufficient conditions for the conditions of 
the Fourier series convergence [42].  It should be noted that vI�:� is satisfied in 
all four conditions of convergence through a limit, the real part of ! and greatest 
common denominator between the two,  

 | = gcd �17 , 17 limz�	∀	!, 
 

of which those Dirichlet conditions are 
 
• vI�:� must be absolutely integrable over a period. 
• vI�:� must have a finite number of extrema in any given interval 
• vI�:� must have a finite number of discontinuities in any given interval 
• vI�:� must be bounded. 

 
We find the following proposition significant in terms of the problems with a 
classical interpretation of the dirac function, as expressed fairly recently by 
Mitrović and Žubrinić;  
 

"The greatest drawback of the classical Fourier transformation 
is a rather narrow class of functions (originals) for which it can 
be effectively computed. Namely, it is necessary that these 
functions decrease sufficiently rapidly to zero (in the 
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neighborhood of infinity) in order to insure the existence of the 
Fourier integral." [43] 

 
Proposition 7.  Given that vwI�:� defines the period through a greatest common divisor, a 
necessary condition is imposed on the Fourier series convergence of the Riemann triangle periodic 
function.  The Dirichlet Conditions may be replaced with a single necessary and sufficient 
condition:  The Fourier series converges because the period is equal to (“or corresponds to”, in the 
case of multiplicative factor cases of the arguments of the function), the greatest common divisor of 
the reciprocal of the real part of the argument and the reciprocal of the product of the real part of 

the argument and the real part z of its corresponding {$�,� (i.e. it converges due to reducibility 
near infinity);  
 

lim−kvwI�:� + k = g9�a?�−ℎ� = 12L	 e 5=��#��	gZ%
#%

= 0	∀	7 > 0, 
 g9�a?I�:�=−kvwI�:� + k	∀	7 > 0. 
 
We hypothesize that the above proposition is true in all converging Fourier 

series, but will only attempt to prove it the case in our specific function.  How we 
claim to hypothesize rather than merely conjecture comes down to the study of 
the nature of sawtooth waves, their harmonics, which should be able to have the 
following carried over by some derivation to all convergent Fourier series cases.  
Such a general proof, however, could be more encompassing than would 
appropriately serve the benefit of this paper. 

That said; the proposition can be proven in at least this individual case by 
defining a sequential definition of the Dirac function, and then taking it to the 
limits of the amplitudes in order to show how the convergence occurs.  In doing 
so, we will show that necessity arises for Fourier series convergence for any 
argument ! in vwI�:�, as the field of fractions VW@	�XI� whose numerator M$�,� 
contains the numbers factored out of the set would otherwise amount to 
numerical paradoxes involving  the fundamental theorem of arithmetic.   In 
consideration of but one fact that must mathematically hold, else paradoxes tend 
to arise, let the Fourier series for ! = −9 in triangle function vwI�:�.  We note 
that the first two values of M$�,� = √512, 27, where the only whole element M$�5� factored out of the set by means of prime factorization is 27.  A 
consequence arises because M$�5� = M$�3�, the second numerator of VW@	�XI� 
at , = 3, that when ! = −9, the period of vwI�:� must become complex so that 
the phase of the greatest common divisor amounts to less than L = 3.14159….  
If this were not to occur, then the basis of the cosine function in  

 

a�k�{� = a�??@!9�5 |2|

C2� + ��
= a�?!9�5

|�|

C2� + ��
 

 
would cease to have meaningful solutions. 

Performing the inverse Laplace transform of the function to express in terms 
of distance 2 (we cancelled out any distance 2 dimensions sections ago, so the 
inverse Laplace should amount to zero); whereas the Fourier transform expresses 
a function or signal as a series of modes of vibration (frequencies), the Laplace 
transform resolves our function into its moments (field time or field distance) 
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[44].  By solving for the period in terms of {$�,�, as shown earlier, we need not 
solve for the Fourier coefficients nor any constant, as will be shown.  The inverse 
Laplace of vwI�:� in terms of y (or in terms of the numerator of any ratio), 
including 

 

vwI�y� = yI�:�7�  

 
becomes simply 

 vI�y� = 0, 
 

However, if we want a sequential solution for the Dirac function that is precisely 
accurate for anywhere to infinity, we take the inverse Laplace of  

 vwI�ℎ� = 1ℎ − 1k, 
 

in terms of ℎ, which gives 
 

vI�ℎ� = −g9�a?�ℎ − ê�k + 1, 
 

where ê is one of the Fourier coefficients (more often represented as ;, but we 
already use ; for the numerator of VW@	�X�) [42].  We get  
 vI�ℎ� ≥ vI�y�, 
 
though 
 vwI�ℎ� = vwI�y�, 
 
Thus, we only get uncertainty between either vI�ℎ�, vwI�ℎ� or  vI�y�, vwI�y� 
and find that the uncertainty arises only between vI�y�, vwI�y�, as even without 
knowing ê,  
 

lim−kvwI�ℎ� − k = g9�a?�ℎ − ê� = 12L	 e 5=���#ì�	gZ%
#%

= 0	∀	7 > 0. 
 

Our function vwI�ℎ� then is tied to a probability distribution pertaining to 
exponential decay, where the decay constant is greater than zero.  The above too 
works similarly for 7 < 0, except that the above must include the subtraction of 
one (the function vwI�ℎ� is not bounded by zero and one for negative arguments !, so the difference between the two becomes one as it is offset by one); 
 

limk vwI�ℎ� − k − 1 = g9�a?�ℎ − ê� = 12L	 e 5=���#ì�	gZ%
#%

= 0	∀	7 < 0. 
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  In this sense, we can solve for points in the sequence corresponding to the Dirac 
function of minus ℎ with 
 lim: → ∞−kvwI�ℎ� + k = g9�a?�ℎ − ê� = 0, 

 
where the points in the Dirac function can be expressed anywhere between 
infinity and minus infinity algebraically in terms of arguments !; 
 g9�a?I�ℎ�=−k	vwI�ℎ� + k.	 
 

Next take the Laplace of  
 k	vwI�ℎ� − kk + 1 

 
and we confirm that everything cancels out in the above except for  
 vwI�ℎ�, 
 

as one should expect with lim−k	vwI�ℎ� + k = g9�a?�ℎ − ê� = 0.  We could 
do the similar with the inverse Fourier transform, but instead, we will now use vwI�:� (and express the study as g9�a?I�:� and the Fourier series in specific 
input values rather than approximations of an integral) to examine in a simple 
manner those regions near infinity (in terms of infinite sums).   

First consider vw
/��:�, which, as it turns out, does not allow us to examine 
those regions but allows us to demonstrate why we are able to examine them 
everywhere else in the domain of vw
/��:�.  Upon inspection of this argument of 
the periodic function, we find that the smallest increment applicable to 9: such 
that :Ý → :Ü is continuous, is when : is taken from zero 1/8 at a time.  In such 
case, we get the first 0 of  vw
/��:� at : = 4/8 = 1/2 and another at : =12/8 = 1 + 1/2.  We do not get the first 1 until : = 20/8 = 2 + 1/2, but 
then, vw
/��:� having a period equal to two, we get that the cycle repeats at : = 24/8, in that it equals the value at vw
/��:�.  All other values between those 
are mixed numbers.  Upon inspection of the phase of vw
/��:� we see that it can 
be constructed from isosceles triangles, 1/2 being the mid-point between zero 
and one. 

All other real part arguments of vwI�:� than 7 = 1/2 cause the function to tilt 
away from either zero or one (the phase cannot be determined by isosceles 
triangles) in terms of rational arguments.  In other words, it requires irrational 
arguments to obtain values of zero for the even reciprocals of 7 when 0 < 7 < 1 
and irrational arguments to obtain values of one for even 7 when 0 < 7 > 1.  
The opposite is true in both circumstances for odd values.  A detailed example is 
required to explain this properly.  

Consider vw
/«�:�, where the even reciprocal of 7 is eight and 0 < 7 < 1.  
Taking : also 1/8-at-a-time, the first 1 occurs at : = 1/8.  The period for vw
/«�:�, calculable from the real part of ! and the real part of {, is 8, but upon 
inspection of the values, we get no zeros anywhere throughout that period.  In 
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fact, taking it at smaller and smaller increments (1/16,1/64,1/1000, etc.) we see 
that no rational increments provide zeros.  The zeros, however, may still be 
obtained from irrational values.  For instance, the value of vw
/«�:�, such that vw
/«�0.12499999999… �~1/8, does in fact result in vwI�:� = 0.  Also 
consider the odd real part of ! equal to three, apply then as vw��:�.  We get the 
first one at vw��0� and a zero in that same vicinity at vw��0.999999… �.  While 
there is some debate (often less than professionally) in certain circles today as to 
whether or not 0.999999… = 1 [45], our proof is fortunately aside such 
discussion, as applying it to the neutronic equation  

 0.99999…− 0.99999… 	Z@g	22 , 
 

outputs a fraction of 0.99999… due to the floor function.  The floor function is 
such that the fractional part sawtooth function, introduced by Gauss [46] by {2} for real 2, defined by the formula 

 {2} = 2 − í2î, 
 

for all 2 
 0 ≤ {2} < 1, 
 

we get results less than the same fraction of 1.  To round to any decimal precision 
such that 0.99999… < 1, for instance, and let 2 = 2 (arbitrarily chosen for a 
straight forward argument) in the above, we get the result of the Neutronic 
function as 

 0.99999 − 0.99999	Z@g	22 = .49995 ≠ 12. 
 
It is this about fact that permits inspection of both the Dirac function (and 

similarly the Heaviside function) by means of vwI�:�.  It shows how it is not only 
necessary, but intuitive that these functions decrease “sufficiently rapidly” to zero 
(in the neighborhood of infinity; for instance, as 0.99999… → 1) in order to 
insure the existence of the Fourier integral.  And while the Fourier transform of 
such simple functions as polynomials may not exist in the classical sense, we have 
removed the obstacles by reducing a probability distribution to a polynomial {$�,�, in order to return to the classical interpretation by means of the Neutronic 
function, consequently eliminating the constants altogether. 

We then prove the proposition with the real parts of both !, {$�,� becoming 
analog to the attenuation constant of a signal of a propagating wave, 
corresponding to a Hermitian matrix whose elements are {$�,�, thus a probability 
distribution based on its intricate links to M$�,� and the fundamental theorem of 
arithmetic.  The triangular periodic function 

 

vwI�:� = 1ℎ − 1k = yI�:�7� , 
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expresses the necessary and sufficient condition for Fourier series convergence in 
for vI�:�, in that the Fourier series converges if an only if the period is equal to 
the greatest common divisor of the reciprocal of the real part of the argument ! 
(the eigenvalue of the root of natural decay) and the reciprocal of the product of 
the real part of ! and the real part of the corresponding elements {$�,� of the 
Hermitian matrix.   It is this too that allows the above ratio to converge on the 
function itself.  In this case, the necessity for Fourier series convergence is simply 
due to the reducibility by the greatest common denominator, the period itself 
anywhere up to infinity, proving Proposition 7.  We have also shown how every 
element of said matrix is calculated from the real part of ! alone, independently 
from :m, :& and independently from the Fourier series without constants (at 
least constants that cannot be expressed in closed form), from the arguments ! 
and the prime numbers of the Riemann zeta function, which proves Proposition 
7.0.  ∎   
 
Probabilities and the Triangle Function.  While we already know our values of vwI�:� algebraically and already that its values are bounded by zero and one for 
positive arguments !, we want to briefly express them as assignments of 
probabilities to events in order to derive the sawtooth function from the variance, 
which in turn produces a symmetric triangle function . 

Let vwI�:� be a random variable with mean value �: 
 ÀÙvI�:�Û = �. 
 
Here the operator À denotes the average or expected value of vwI�:�. Then 

the standard deviation of vwI�:� is the quantity 
 

Þ = ²ÀÙpvï7�:� − �q�Û = ²Àðvï7�:�2ñ − pÀðvï7�:�ñq�. 
 

Considering � from earlier, 
 � = 12∀	!m, 
 

and for vw
/��:� (such that : are applied in increments of 1/8, the smallest 
increment of reducibility, wherein it exposes its ones and zeros in a single period) 
we get that Þ itself takes on a symmetric triangular periodic pattern to infinity, 
bounded by zero and 1/2 .  In this case, Þ
/��:� = |!aò	@@	ℎ|, having an 
amplitude of 1/2, containing all even and odd harmonics. 

 
7. Cancellation Property in Terms of Roots.   

 
Discriminants and Limits.  We prove the following. 
 
Proposition 8.  Given an equation in the form of 
 

(lim	k − ℎ)#� − (ℎ)� = C�� ⇔ ℎ = 0, 
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where �� is the discriminant of ℎ (the function of the polynomial’s  coefficients that gives 
information about the nature of its roots) there is only one rational argument ℎ that provides any 
meaningful solution to the equation. 

We seek a definition and solution for  ℎ (the same constants arising in Fourier 
transforms) in order to identify the relationship between the modulus of the 
complex roots of a polynomial and the continuity of a given function.  Any 
multiplicative or additive rearrangement of k and/or ℎ above will not alter the 
method used to determine ℎ, as the most elementary relationship k of ℎ to some 
coefficient a is always such that the �k − ℎ�	ℎ coefficient aâ#�  is related to a 
signed sum of all possible subproducts of roots, taken ℎ-at-a-time.   

Consider Vieta's formulas [47].  Any general polynomial 
 |�2� = a&{& + a&#
{&#
 +⋯+ a
{ + a3 
 

(with the coefficients being real or complex numbers and a& ≠  0) is known by 
the fundamental theorem of algebra to have � (not necessarily distinct) complex 
roots {
,  {
,  . . . ,  {& [47]. Vieta's formulas relate the polynomial's coefficients {a^} 
to signed sums and products of its roots {{9} as follows: 

 

óôô
õ
ôôö{
 + {� + ⋯ + {&#
 + {& = − a& − 1a&({
{� + {
{� + ⋯ + {
{&) + ({�{� + {�{� + ⋯ + {�{&) + ⋯ + {&#
{& = − a& − 2a& …

{
{� … {& = −1& a3a&
 

 
which gives the sum 

 " {=
{=� … {=^ = (−1)^ a& − da&
÷=
ø=�ø⋯ø=^÷&  

 
for d =  1,  2,  . . . ,  � (where we wrote the indices 9^ in increasing order to ensure 
each subproduct of roots is used exactly once).  The left hand sides of Vieta's 
formulas are the elementary symmetric functions of the roots [47].   

However, now with rational k in place of �, solvable exclusively by !, instead 
of only natural � we can refer back to vwI(:), getting the indices above in 
increments of k (though it would cease to be a polynomial by definition, the 
equivalence stills holds), such that 

 " {$(,)=
{$(,)=� … {$(,)=^ = (−1)^ aâ − daâ
÷=
ø=�ø⋯ø=^÷â . 
 

Now more specifically to the heart of the proof, consider {$(,) of the formation 
of the period of vwI(:), it being the roots of 

 {$(,)� + {$(,)([$(,) + 1) + [$(,)−16 = 0, 
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which is a polynomial, whose values {$�,� become the eigenvalues of a matrix 
whose trace is −�[$�,� + 1�.  We get 

 

a½ = [$�,�−16 , a& = 1:		{$�,�
	{$�,�� = −1� [$�,�−16  

 
and find the resilient relationship 

 1z ∙ 	 a3a& = 7 + �, ∀	!, 
 

where � is the mean variance of the periodic triangular function, such that 
 � = 12	∀	!. 

 
Again, z is the real part of {$�,�, and 

 a3a& = |{$�,�|� = ��, ∀	!, 
 

where |{$�,�| (or �) is the magnitude (or modulus) of the complex {$�,�.  When 
a complex number is expressed as a matrix the square of the modulus then is 
equal to the determinant of the matrix [14]; thus, a3/a& too becomes the 
determinant of any matrix expressed by {$�,�; 

 � = |{$�,�| = Cz� +ù� = a3a& : {$�,� = z + 9ù. 
 
And we confirm the above for all ! by sufficiently defining the limits of {$�,�, 

the magnitudes of {$�,�, as well as the phases of {$�,� in closed form from zero 
to plus and minus infinity: 

 
The limits of ú¦�§� 

 {3�,� = 16 + 9 1√18, 
 lim	{$�,�!	 → ±∞ = 9 14, 
 

The limits of |ú¦�§�| 
 |{3�,�| = 1√12, 
 lim|{$�,�|!	 → ±∞ = 1√16, 
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The limits of ûüý�ú¦�§�� 
 

arg({3(,)) = a�??@!9�5 ¹�13¼, 
 lim arg({$(,))! → ±∞ = a�??@!9�5(0) =  L2. 
 
It is in this same sense we can come to understand from below how the 

neutronic sequence  
 VW@	(XI)& − VW@	(XI)& Z@g ℎℎ  

  
plays out in the earlier construction of the function, being a modular 
rearrangement of Vieta’s formula that converges absolutely—though the exact 
modular expression of Vieta’s formula would be 

 VW@	(XI)& − ℎ Z@g VW@	(XI)&VW@	(XI)& , 
 

which converges either to 1 or becomes undefined for any given argument VW@	(XI) or ℎ, but is always finite.  We can then construct an infinite series 
definition for a single neutronic equation in the sequence as 

 " {=
{=� … {=� = (−1)& VW@	(XI)& − ℎ Z@g VW@	(XI)&VW@	(XI)&
÷=
ø=�ø⋯ø=�÷& , 
 

where above we swap out d for ℎ, which gives now further insight into the 
formation of 

 vwI(:) = 1ℎ − 1k. 
 
While  
 ℎ Z@g VW@	(XI) 
 

may be constant, we know where it came from algebraically and can always 
express it in closed form.  For instance, letting ! = 1/2 + 09, we get k =2/7, ℎ = 1/4, VW@	(XI) = −7/8 and thus ℎ Z@g VW@	(XI) = −5/8, and 
even the value of the neutronic equation can be expressed in closed form  

 �14 − 14  Z@g − 78� − 87 = − 164. 
  

We consider this significantly convenient for a number of solutions.  One of 
which is, by considering sums and products in the form of 
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�−1�� a& − ℎa& , 
 

is already equal to a sum of the products of the roots, so it too can be made the 
sum of other products as well.   

It is these above expressions that become more useful, as we now have the 
sequences containing all the algebraic information one should require from a 
given complex argument ! in terms of Δ.  From this standpoint, one can begin to 
study  

 �lim	k − ℎ�#� − �ℎ�� = CΔ�. 
 

Any algebraic rearrangement to solve for ℎ (not knowing ahead of time that ℎ is 
constant) will prove difficult even if we assume simply CΔ� = ℎ in 

 �k − ℎ�#� − �ℎ�� = ℎ, 
 

as one finds there are only two possible arguments that make the above true: k = ∞,ℎ = 0, as the left hand side of the equation converges on the right as k 
approaches infinity.  ∎ 
 
The Cancellation Property of the Zeta Function Non-Trivial Zeros. 
  From the proceeding proof, we have demonstrated a scenario that allows us to 
illustrate an important rearrangement of it, as will be shown—as we now begin to 
inspect why the non-trivial zeros reduce the Riemann zeta function to zero.  We 
begin first into a cancellation property of the prime numbers, as Riemann’s paper, 
and the origin of the hypothesis, focused on the number of primes up to a given 
magnitude, and provided its solution in terms of the Riemann zeta function roots 
through a Mobius inversion.  Thus, these roots are tightly bound to the primes, as 
is commonly understood.  We then consider the mean � of the assigned random 
values of our periodic triangle function.   
 
Proof of the Riemann Hypothesis.  We prove the following. 
 
Proposition 9.  Let the cancellation property of all prime numbers , occur in the subtraction 
of the mean value of assigned probabilities from the ratio of a multiplicative factor of the field of 
fractions from its numerator, also the eigenfunction of the root of natural decay containing the 
elements of prime factors, further subtracted from a continuous real part of the Riemann zeta 
function; 
 

7 − 5#$ �&�-�-2	VW@	�XI�	 − �. 
 
If the cancellation property of the product of a multiplicative factor of the field of fractions and the 

root determinants of a Hermitian matrix expressed by {$�,�, also required for determining the 
period of the oscillations � is the mean value of, occurs correspondingly to 
 −16	VW@	�XI�		lim	|{$�,�|� = 1, 
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then continuity exists in 7m (of the roots of the Riemann zeta function) as {$�,� too correlates 
to a factor of the ratio of the primes to the roots.  Given  
 

lim ln�,�ln	�:m�!�� = n, 
 

where :m�!� are the values of the imaginary parts of the roots of the Riemann zeta function,  
 

limR� n	−4	|{$�,�|� + 4�#
 − 1S = 1	 ⇔ 7 = 12, 
 
such that 
  �!� = 0 ⇔ 7m = 12	∀	1 > 7 > 0, 
 
where all the real parts of the non-trivial zeros of the Riemann zeta function equal one half. 

We derive the form 
 

�√32�27 − � − [$�,���#� = �−[$�,� − 12 �� + C�1 + [$�,��� + [$�,�4#
4  

 
where again [$�,� are the denominators of VW@	�XI�.  The form is the same as  
 �k − ℎ�#� − �ℎ�� = CΔ� 

 
save some multiplicative factors.  We subtract ℎ to the power of two from both 
sides, which gives. 
 �k − ℎ�#� = �ℎ�� + CΔ�, 

 
which puts it in the form our equation is in.  Next, because 
 √24 = R√22 S�, 
we write 

 �√32�27 − � − [$�,���#�
 

 

= �−[$�,� − 12 �� + ºC�1 + [$�,��� + [$�,�4#
2 »�, 
 

where the terms on the right are the squares of the values of the real and 
imaginary parts of {$�,� respectively.  Give the square root of both sides and we 
get  
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�√32�2�7 − �� − [$�,���#� = |{$�,�|, 
 

which also has only one argument ! that provides any meaningful solution, which 
is at ! = 1/2 + 09, in the same as 

  (k − ℎ)#� − (ℎ)� = CΔ�. 
 
It is this form that allows one to find continuity, along with our proportionate 

zeta function from earlier, as there is only one possible root magnitude of {$(,) 
possible to allow for 

 1z ∙  a3a& = 7 + �, ∀ ! 

 
and 

 a3a& = |{$(,)|� = ��, ∀ !, 
 

for it to be universally true for all arguments !.  We will demonstrate why.  
Rearrange our magnitude of {$(,) equation up above to  

 

�8 ¹7 − 5#$ NO(-)-2 VW@	(XI) − �¼
#


= |{$(,)|, 
 

where we now express the equation in terms of !, the prime numbers and VW@	(XI), returning once again to  
 

5#$ NO(-)- = M- = 0(2)03 . 
 
Next, let 8 = �(!) be a point of continuity in �(!) and then solve for �(!).  

We get 
 

�(!) =  |{$(,)|#� ¹7 − 5#$ �&(-)-2 VW@	(XI) − �¼. 
 

In this way �(!) has a solution for any arguments !  except in the event it 
becomes undefined.  We also can derive a simpler form of �(!) from the above, 
such that 

 �(!) = 7 + zz� + ù�, 
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though the proceeding equation gives more insight, as it has the cancellation 
property at argument ! = 1/2 + 09 so that the prime numbers cancel within the 
parenthesis, dependently on the magnitude of {$�,�, as by taking 

 

|{$�,�|#� ¹− 5#$ �&�-�-2	VW@	�XI�¼ = 8 ⇔ ! = 1/2 + 09 
 

we get 
 

5#$ �&�-�- = −2	VW@	�XI�	�8	|{$�,�|�� = M$�,� = 0�2�03 ⇔ ! = 1/2 + 09, 
 

and equally 
 
  �!� = *�1 + �2	VW@	�XI�	�8	|{$�,�|���-�#


- ⇔ ! = 12 + 09, 
 

Which links the single point of continuity in ��!� to the zeta function when the 
real part of ! is equal to one half.  The entire domain of ��!� can be linked to the 
zeta function with the following: 

  �!� = *�1 + �2	VW@	�XI�	���!�	|{$�,�|���-�#
- ∀	! 

 
Thus, if M$�,� is constructed from both parts of !, but always converges to 

natural 1, and the limit of {$�,� is constructed exclusively from the real parts of ! 
and VW@	�XI�, which is also constructed exclusively from the real parts of !, we 
would only get a single limit of the squared magnitude of {$�,� for all values of 
the roots of the Riemann zeta function, as  

 a3a& = |{$�,�|� 

 
is the determinant of any matrix expressed by {$�,�.  In other words, throughout 
the prime numbers the magnitudes of {$�,� for all the non-trivial zeros would all 
map to the same place, all having the same limits.  And we have already expressed {$�,� as the elements of the matrix involving the zeta ! in the second section of 
this paper.  Likewise, we would not get the same magnitudes for other shared 
values throughout the Riemann zeta function.  For instance the trivial zeros 
(−2,−4,−6,	etc.) would each have different magnitudes of {$�,�.  Additionally, 
the inverse of the real part of {$�,� in  

 | = gcd�17 , 17	lim	z� 
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could only equal the inverse of the modulus and both would be equal to the 
minus ;�7� in 

 1|{$�,�|� = −;�7� = −<�7�	VW@	�XI� ⇔ ! = 7 + 9:m,⇔ 7 = 12. 
 
Similarly, the one half part occurs because � = 1/2 in 
 

7 − 5#$ �&�-�-2	VW@	�XI�	 − �, 
 

which is not only the mean value of v
/�p:mq, but the mean for all v
/��:�, in 
that 

 −2	VW@	�XI�	���!�	|{$�,�|�� − M$�,� → 0	∀	! <> 0. 
 

Considering 

<�7� = √7#�VW@	�XI� + 1, 
 
 1|{$�,�|� = −<�7�	VW@	�XI� 	⇔ 7 = 12, 
 

as  
 <�7� = 16	∀	7 = 12	. 
 

In  M$�,�|{$�,�|� = −16	VW@	�XI�		∀	!, 
 

the primes always cancel and only cancel if 7 = 1/2.  Less generally, they cancel 
out of  

 8 = 7 + zz� +ù� ⇔ ! = 12 + 90, 
 

whereby the only oscillating value in vwI�:� out of y, ;�7�, <�7� or 7� is y, as 
the others are constant, each having the domain of the analog of the attenuation 
constant, which leaves any encoded information of change into this numerator of 
the root amplitude 

 y3~7 − 27 − 8 − 7#
. 
 
Applying then the real part of ! = 1/2 + 9: to the above, we get 
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y3~ 12#
 − 212 − 8 − 12
#
 : ! = 	12 + 9:, 

 y3~− 10:	! = 	12 + 9:, 
 
as 
 − 10vï7�:� = −20:	−10−20 = 12. 
 

This is no coincidental result out of consideration of 
 1z ∙ 	 a3a& = 7 + �, ∀	!, 
 

where z is the real part {$�,�, which is required to determine the period of vwI�:� along with !, due to  the correlation between the finite number of 
elements M$�5� in sequential eigenfunction M$�,� and the factors pertaining to the 
fundamental theorem of arithmetic, in that they are equivalent.  It is also cannot 
be considered by any means trivial in that {$�,� is fundamentally tied to the 
Riemann zeta function through M$�,� and the primes in 

 lim	M$�,� = −16	VW@	�XI�	lim		|{$�,�|�	∀	!, 
 

as {$�,� is intricately linked to  	VW@	�XI�	Z@g	ℎ, 
 

the cycle used to encode the ramification data for the extensions of a global field, 
such that 

 lim	M$�,�lim	|{$�,�|� = −16	VW@	�XI�		∀	! 

 
or 
 1lim	|{$�,�|� = −16	VW@	�XI�		∀	!. 
 
We proved this earlier with the infinite series 
 

" {$�,�=
{$�,�=�…{$�,�=^ = �−1�^ aâ − daâ
÷=
ø=�ø⋯ø=^÷â , 
 

in that  a3/a& too becomes the determinant of any matrix expressed by {$�,�: 
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 � = |{$�,�| = Cz� +ù� = a3a& : {$�,� = z + 9ù. 
 

The consequence becomes that all the limits of |{$�,�| corresponding to all the 
roots of the Riemann zeta function must map to the same place: 

 lim H{
�¾=ÐÑ�,�H = 1√14	∀	! = 12 + 9:m.	 
 

And it must follow that this can only occur because 
 lim	 1	|{$�,�|� = −;�7� = −<�7�	VW@	�XI� ⇔ ! = 7 + 9:m,⇔ 7 = 12. 
 
We can begin to complete this proof by returning to the previous section 

pertaining to the proportionate Riemann zeta function, where we found 
 

: = 5NO�-�	�t�-�n!�,� . 
 

Replace M$�,� in the equation with the right hand side of 
 lim M$�,� = −16	VW@	�XI�	lim|{$�,�|� ∀	!, 
 

which defines all sequential values with exactness to the entire domain: 
 

:m�!� = 5#
�	��½K�	
�		|�t�-�|� 	 NO�-�	st�-� ∀	!. 
 

Rearrange the above and solve for n$�,�.  This gives 
  

n$�,� = −16	VW@	�XI�		|{$�,�|� 	 ln�,�	ln	�:m�!�� ∀	!. 
 

Taking that through all the known non-trivial zeros (of which it is known that at 
least the first two million of them have a real part ½ by Odlyzko, and also 
confirmed up to one trillion by others since Odlyzko) [48], if we get convergence 
in 

 

n$�,� = −16	VW@	�XI�		|{$�,�|� 	 ln�,�ln	�:m�!�� 	∀	!, 
 

we get our proof by definition of the limit of n$�,�, as the limit would denote 
continuity in  

 H{
�¾=ÐÑ�,�H = 1√14, 
 

and thus continuity in  
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 7 = 12	∀	Ì. 
 
 
Proposition 10.  The prime numbers and the non-trivial zeros of the zeta function are 

asymptotically equivalent; 
 n = 1:	,	~	:m.	 
 
Due to the unexpected and unlikely nature of the proposition above, this proof 

is necessary as there have not been enough primes numbers or non-trivial 
numbers (even into the billions) that suggest that convergence of the above is 
likely—nor should it seem so.  By looking at graphs of the ratio of the natural 
logarithm of the primes over the natural logarithm of the values of the non-trivial 
zeros, it visually appears as if they could be converging, but taking the value of n$�,� out to the trillionth or so known non-trivial zero there indeed may remain 
some question of true convergence, as its rate of convergence is extremely slow 
and there certainly are some points in n$�,� that call into question convergence on 
mere assumption alone.  One point is into the first few hundred values in that it 
appears to converge roughly above one, but then begins to come back down; but 
then it retains this downward approach out into the billions upon billions of 
primes and zeros, all the while the difference of n$�,&� − n$�,&#
� seemingly 
tends to converge absolutely.  However, a clear high precision decimal value is 
impossible to obtain with the known prime numbers and known non-trivial zeros 
alone, as if convergence does occur definitively, it does so farther out toward 
infinity.  That is why the below proof is necessary. 

It is at this point that we can use our periodic function vwI�:� to explore the 
regions near infinity.  We apply this tool to explore the regions near infinity once 
more to demonstration with the following, as it is the infinite prime number and 
infinite non-trivial zero that is of fundamental significance in the Riemann 
hypothesis.  

Recalling from earlier that 
 

vwI�:� = limR�VW@	�XI�& + 1��VW@	�XI� + 1�7 + |:| S#


−−�VW@	�XI� + VW@	�XI�	Z@g	ℎ�ℎ + 7 + |:|, 
 

we now opt to assign a probability oscillation to n for some imaginary arguments :s, so that   
 

vwIp:sq = 1ℎ − 1k = n − 1 = ln�,�lnp:mq − 1. 
 
In other words, we wish to define some arguments of the oscillation so that every 
value output of the function equals n − 1.  The reason we do not choose to 
output values exactly equal to n will be explained during the proof, but in short it 
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is due to an uncertainty relation in the ratio n of the equation above that is 
unequal for all primes and non-trivial zeros less than 89 and 87.42527… 
respectively at the �	ℎ prime 89 (� = 24).   

First we define a new field of fractions VW@	�XÐ� for said imaginary part 
arguments : of ! (recalling that the previous field of fractions was defined by the 
real part of ! alone), which will now be used in conjunction with VW@	�XI�.  This 
is done using the same equation as before, this time using : instead of 7; 
 

VW@	�XÐ� = �2: + 1�#
 − 44 = ;�:�<�:�. 
 
We find that the following equalities hold for our oscillation whenever the real 
part of ! equals one half:  
 

lim<�:� = 1VW@	�XÐ� + 1 = 1ℎ ⇔ 7 = 12 

 
and 
 

− VW@	�XÐ��8|:|) + 3) = 1
ℎ
⇔ 7 =

1
2

 

 
in that 
 
(2|:| + 1)#
 − 4

4
+ 1 = lim

(VW@	(XI)& + 1)(VW@	(XI) + 1)
7 + |:|

⇔ 7 =
1
2
. 

 
Next, because  
 

VW@	(XI) = −
7
8
⇔ 7 =

1
2

 

 
and 
 

VW@	(XI)& = 0	∀	7 =
1
2
, 

 
we get 
 

(VW@	(XI)& + 1)(VW@	(XI) + 1) =
1
8
	∀	7 =

1
2
, 

 
(2|:| + 1)#
 − 4

4
+ 1 =

1
8(7 + |:|)

⇔ 7 =
1
2
, 
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8�7 + |:|� = ℎ ⇔ 7 = 12, 
 

4 + 8|:| = ℎ ⇔ 7 = 12 

 
and 
 

2��2|:| + 1�#
 − 4� + 8 = 112 + |:| 	⇔ 7 = 12. 
 

We only are interested at this point in the ratio between the primes and the 
non-trivial zeros, so in this we can ignore the rest of the domain of the zeta 
function that is not generated with a real part 1/2.  That said; there is no solution 
for omega in the above in that omega becomes indeterminate.  So, we solve using 
the statistical oscillation, where we know another certain equivalence that occurs 
only when the real part of ! equals 1/2. 

 

vwI�:� = 4.5 + 9|:| − −78 + 78 	Z@g	4 + 8|:|4 + 8|:| ⇔ 7 = 12 

 
Thus, applying real part arguments equal to 1/2 and the imaginary parts 
arguments such that it equals n$�,� − 1, we get sequence :s�,� that can be 
applied as arguments to 
 

vw
�p:s�,�	q = 4.5 + 9B:s�,�	B − −78 + 78 	Z@g	4 + 8B:s�,�	B4 + 8B:s�,�	B= n$�,� − 1	∀	n$�,� − 1 > 1,		 
 
that corresponds to the sequence of the values of the non-trivial zeros :m�,� to 

the �	ℎ prime greater than twenty three; 
 

n$�,&� − 1 = ln�,&�lnp:m&q − 1 = ln � ,&:m&�lnp:m&q 	∀	� > 23, 
 
as n$�,&� is less than one for all primes and non-trivial zeros less than 89 and 87.42527… respectively at � = 24 (at which the argument :s�89� =0.49943… applied at � = 24, and at � = 25, :s�97� = 0.49724…, and so on; 
but it will be shown that there are actually two solutions for any given prime being 
that it is quadratic).  This is the reasoning behind solving for values of n − 1 
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instead of simply n.  Due to the uncertainty relation, and the inequality for small 
values of �, n − 1 instead usable for what follows.   

We find because all arguments ! are complex in our periodic oscillation, we can 
explore the real part of the denominator of M$�,� for a result that occurs for the 
sequence :s�,�, that which is the value of the decaying amplitude 0 (or quanitity �) at distance zero (or time zero respectively).  Because 03 = −! = −1 × !, by 
rules of multiplication of complex numbers, we get the solution for 03 from the 
real and imaginary parts of ! in the following:    
 X5�03� = −77� + :�. 
 
And in keeping to our real part equal to one half, this can be written as 
 

X5�03� = −0.50.25 + :� ⇔ 7 = 12. 
 

We note that the imaginary arguments of ! that impose vw
/�p:s�,�q = n$�,� −1 also tends to impose the ratio of �1/2�/:s�,� = −X5�03�, but that which is 

only uniquely true in terms of :s in 
 0.50.25 +:� = 0.5: ⇔ vw
��:� = n$�,� − 1:	: = :s , 
 
as 
 12:s�,� + X5�03� = 0	∀	, > 89. 
 

Thus we get a vigorous relationship between our decaying quantity 0 and n, 
signifying their inherent prospective relationship.  Because of this, we can 
construct a polynomial whose arguments :s�,� alone is proven true from 
 77� + lim	:s�,�� = 7lim	:s�,�. 
 
The above presents a quadratic equation for the limit of :s�,�.  Solving for the 

two solutions of the limit of :s�,�, we get both solutions given by 
 

lim:s�,� = 1 − √1 − 47�2 = 12 :	7 = 12 

 
and 
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lim:s�,� = 1 + √1 − 47�2 = 12 :	7 = 12. 
 
Because of this straight forward result, we can now solve for the limit of n$�,�; 
 

vw
� �12� = lim	n$�,� − 1 = 0: lim ln�,�ln �:m�!�� = 1. 
 
In other words, because lim n$�,� − 1 = 0, the limit of n$�,� is one; the natural 
logarithm of the primes and the natural logarithm of the non-trivial zeros of the 
zeta function are asymptotically equivalent; 
 ln�,� ~ ln �:m�!��, 

 
 

which reduces to 
 ,	~	:m. ∎ 
 
We then sum up the proof of the Riemann Hypothesis.  Upon inspection of −16	VW@	�XI�		|{$�,�|�, we see that it reduces to 1 whenever |{$�,�| =1/√14, such that the limit of n
/�¾=Ð�,� for all the known non-trivial zeros 

becomes the same as 
 

lim ln�,�ln	�:m�!�� = n$�,� = 1. 
 
 A sequence {³�} of functions converges uniformly to a limiting function ³ if 

the speed of convergence of ³��2� to ³�2� does not depend on 2 [49].  We see 
above that :m�!� converges to 5NO�-� independently from −16	VW@	�XI�		|{$�,�|�.  Thus continuity and Riemann integrability, are 
transferred to the limits of either of our choices n$�,�, the limits  of the |{$�,�|� 
or the real parts of the non-trivial zeros of the Riemann zeta function, as the 
convergence is uniform.  And we find the above true in our sequence by means of 
the Uniform convergence theorem [49]. 

Noting now that the limit of n$�,� = 1, the prime numbers and the herein 
proposed limits of all the non-trivial zeros (one divided by the square root of 
fourteen) we fully define the consequence that if 

 

VW@	�XI� = �	27 + 1�#
 − 44 , 
 

and 
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�	27 + 1�#
 − 44 = n!�,�	ln	�:m�!��−16	 ln�,�	|{$�,�|�, 
 

and solving for the real part, 
 

7 = 12ºR n!�,�	ln	�:m�!��−4	 ln�,�	|{$�,�|� + 4S#
 − 1». 
 

We then apply lim	nm�!� = 1 to 
 1	ln	�:m�!��−4	 ln�,�  

 
to get 

 

lim1	ln	�:m�!��−4	 ln�,� = −14, 
 

thus 
 

¹n
�¾=ÐÑ�,�	ln	�:m�!��−4	 ln�,�	|{$�,�|� + 4¼
#


− 1 = 1	 ⇔ 7 = 12, 
 

which is the equivalent statement of 
 

limR� 1	−4	|{$�,�|� + 4�#
 − 1S = 1	 ⇔ 7 = 12. 
 
Next, we apply the non-trivial zeros to  
 12R� 1	−4	|{$�,�|� + 4�#
 − 1S 

 
to get 

 

lim12�
�
�
� 1	
−4	 H{
�¾=ÐÑ�,�H�

+ 4
��
�#


− 1
��
� = 12, 

 
in that the real part of the non-trivial zeros is continuous and equal to one half to 
infinity in the same manner that if any  

 lim H{
�¾=ÐÑ�,�H = 1√14, 
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corresponding to the non-trivial zeros of the Riemann zeta function, then all the 
non-trivial zeros do, as a consequence to the prime numbers cancelling out in   

 

7 − 5#$ �&�-�-2	VW@	�XI�	 − � 

 
and both cancelling in  

 

lim ln	�:m�!��−4	 ln�,� = −14, 
so that finally  

 

limR� 1	−4	|{$�,�|� + 4�#
 − 1S = 1	 ⇔ 7 = 12. 
 
We find no way around this.  Only 7 = 1/2 could cause the cancellation 

property, and at this most fundamental level, due to the field of fractions at this 
value: 

 VW@	�XI� = −1416 ⇔ 7 = 12, 
 

such that the cancellation property that causes the Riemann zeta function to go to 
zero when ! > 0 is a consequence and requirement of its real part being equal to 
one half, as the reducibility of the primes (the Riemann zeta function converging 
to zero in the roots) occurs from 

   

a½ = [$�,�−16 , a& = 1:		{$�,�
	{$�,�� = −1� [$�,�−16  

 
at the roots.  The primes are asymptotically equivalent to the non-trivial zeros 
through lim	n$�,� = 1, as the previous proposition had been proved, and cancel 
from  

 

7 − 5#$ �&�-�-2	VW@	�XI�	 − �, 
 

becoming arbitrary values if and only if 7 = 1/2.  If this could occur somewhere 

other than 7 = 
�, then 
 

a½ ≠ [$�,�−16 , a& ≠ 1:		{$�,�
	{$�,�� ≠ −1� [$�,�−16 . 
 

However, the above is indeed true due to Vieta’s formulas and the fundamental 
theorem of algebra; thus, all the non-trivial zeros of the Riemann zeta function 
have a real part equal to one half; 
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 �!� = 0 ⇔ 7m = 12	∀	1 > 7 > 0 

 
because  
 

limR� 1	−4	|{$�,�|� + 4�#
 − 1S = 1	 ⇔ 7 = 12, 
 
as they both correspond to (and are derived by) the same eigenfunction, roots and 
matrices comprising exponential decay. 
 
JEFFREY N. COOK 
MAUMEE, OH, USA 
Email: jnoelcook@yahoo.com 
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