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Abstract

Cardiovascular diseases are the number one cause of death worldwide. Currently,
portable battery-operated systems such as mobile phones with wireless ECG sensors
have the potential to be used in continuous cardiac function assessment that can be
easily integrated into daily life. These portable point-of-care diagnostic systems can
therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis
is a robust detection of the prominent QRS complex, as well as other ECG signal
characteristics. However, it is not clear from the literature which ECG analysis
algorithms are suited for an implementation on a mobile device. We investigate
current QRS detection algorithms based on three assessment criteria: 1) robustness
to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a uni-
versal fast-robust detector. Furthermore, existing QRS detection algorithms may
provide an acceptable solution only on small ECG segment signals, within a certain
amplitude range, or amid particular types of arrhythmia and/or noise. These issues
are discussed in the context of a comparison with the most conventional algorithms,
followed by future recommendations for developing reliable QRS detection suitable
for implementation on battery-operated mobile devices.

1 Introduction

According to the World Health Organization, cardiovascular diseases (CVDs) are the
number one cause of death worldwide [1]. An estimated 17.3 million people died from
CVDs in 2008, representing 30% of all global deaths [1]. Moreover, it is expected that
the number of mortalities due to CVDs, mainly from heart disease and stroke, will reach
23.3 million by 2030 and are projected to remain the single leading cause of death for
several decades [2].

In 2010, the global direct and indirect cost of CVD was approximately $863 billion

1



and is estimated to rise by 22% to $1,044 billion by 2030. Overall, the cost for CVD
alone is projected to be as high as $20 trillion over the next 20 year period [3].

As a consequence of direct and indirect costs of CVD, medical researchers have
placed significant importance on cardiac health research. This has led to a strong focus
on technological advances with respect to cardiac function assessment. One such research
pathway is the improvement of conventional cardiovascular-diagnosis technologies used
in hospitals/clinics.

The most common clinical cardiac test is electrocardiogram (ECG) analysis. It rep-
resents a useful screening tool for a variety of cardiac abnormalities because it is simple,
risk-free, and inexpensive [4]. Advances in technology have led to much change in the
way we collect, store and diagnose ECG signals, especially the use of mobile phones to
implement the clinical routine of ECG analysis into everyday life [5, 6, 7, 8, 9]. Thus,
in the near future, it is expected that Holter devices, which are traditionally used for
ECG analysis in the clinic, will be replaced by portable, battery-operated devices such
as mobile phones in the near future [10]. The reason is that Holter devices do not detect
arrhythmias automatically in real-time, and do not provide real-time information to the
hospital/doctor/patient when a critical heart condition occurs.

Moreover, the advances in memory/storage technology have enabled us to store more
ECG signals than ever before. Therefore, researchers are collecting more information
in order to understand the mechanisms underlying CVDs, which is expected to ulti-
mately lead to effective treatments. The trend towards using mobile smart phones for
ECG assessment further speeds up this process, as the conveniently collected data can
potentially be added to databases via the existing Internet link.

The analysis of ECG signals collected by a mobile phone needs to be fast and feasible
in real-time, despite the existing limitations in terms of phone memory and processor
capability. The same holds for the ability to analyse large ECG recordings collected over
one or more days.

Recently, researchers have put an increased effort into developing efficient ECG anal-
ysis algorithms to run within mobile phones, including algorithms for determining the
quality of collected ECG signals [11]. This increased effort is also evidenced in the 2011
PhysioNet/Computing in Cardiology Challenge [12], which has been established to en-
courage the development of ECG software that can run on a mobile phone, recording an
ECG and providing useful feedback about its quality.

PhysioNet provided a large set of ECG records for use in their Cardiology Challenge,
along with an open-source sample application for an Android phone (Google Inc., USA),
and that can classify ECGs as acceptable or unacceptable. Therefore, the next step is
to analyse the acceptable ECG signal for diagnosis, without relying on an expert for
interpretation. If this possibility becomes a reality, it will help developing nations and
rural populations, by benefitting from otherwise inaccessible expertise.

Note that ECG signals contain features that reflect the underlying operation of the
heart. These features represent electrophysiological events that coincide with the se-
quence of depolarisation and repolarisation of the atria and ventricles. The signal of
each heartbeat contains three main events: the P wave, the QRS complex, and the T
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Figure 1: Main Events in ECG signals. A typical ECG trace of the cardiac cycle
(heartbeat) consists of a P wave, a QRS complex, and a T wave.

wave (as shown in Figure 1). Each event (wave) has its corresponding peak. The analysis
of ECG signals for monitoring or diagnosis requires the detection of these events. Once
an event has been detected, the corresponding signal can be extracted and analysed in
terms of its amplitude (peak), morphology, energy and entropy distribution, frequency
content, intervals between events and other more complex parameters. The automatic
detection of the P, QRS and T events is critical for reliable cardiovascular assessment,
such as diagnosing cardiac arrhythmias [13, 14, 15, 16, 17], understanding autonomic
regulation of the cardiovascular system during sleep and hypertension [18, 19], detecting
breathing disorders such as obstructive sleep apnea syndrome [20, 21], and monitoring
other structural or functional cardiac disorders. Once the QRS, P and T events are
detected accurately, a more detailed analysis of ECG signals can be performed.

The detection of QRS complexes has been extensively investigated over the past
two decades. Many attempts have been made to find a satisfying universal solution for
QRS complex detection. Difficulties arise mainly because of the diversity of the QRS
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waveforms, abnormalities, low signal-to-noise ratio (SNR) and as well as artefacts ac-
companying ECG signals. Conversely, P and T event detection has not been investigated
as much as QRS detection, and the P and T event detection problem is still far from
being solved [22]. Reliable P and T wave detection is more difficult than QRS complex
detection for several reasons, including low amplitudes, low SNR, amplitude and mor-
phology variability, and possible overlapping of the P wave and the T wave. Any cardiac
dysfunction associated with excitation from ectopic centres in the myocardium may lead
to premature complexes (atrial or ventricular), which change the morphology of the
waveform and the duration of the RR interval. The occurrence of multiple premature
complexes is considered clinically important, as it indicates disorders in the depolari-
sation process preceding the critical cardiac arrhythmia. For all the above-mentioned
reasons, the accurate detection of QRS complexes is clinically important. Prior to devel-
oping a fast-robust QRS detector that suits battery-driven applications and continuous
24/7 ECG monitoring, it is necessary to evaluate the performance of the current algo-
rithms against the following three assessment criteria:

1. Robustness to noise: there are several sources of noise (e.g. power line inter-
ference, muscle noise and motion artefacts). Therefore, the developed algorithms
should be robust to these noises.

2. Parameter choice: The choice of parameters should lead to accurate detection.
Parameters should not have to be manually adjusted for different recordings.

3. Numerical efficiency: The developed algorithm may have a large number of
iterations, parameters to adjust, features extracted, or classification steps. It is
desirable to provide numerically efficient (simple, fast, and fewer calculations) al-
gorithms. Of course, computers have become very fast, and therefore numerical
efficiency is less important than it used to be. However, if a simple and fast algo-
rithm can achieve good results, there is no need for more complex algorithms. In
particular, when the algorithm is used online (in a slightly modified form from the
offline version) in a mobile phone embedded system, numerical efficiency is still
relevant.

In the remainder of this review article, these proposed assessment criteria will be used
to evaluate several well-known QRS algorithms in their two important stages: QRS en-
hancement and QRS detection. The QRS enhancement stage is used to enlarge the
QRS complex relative to the other ECG features (P, T, and noise). This stage is oc-
casionally referred to as pre-processing or feature extraction. The QRS detection stage
is used to demarcate the QRS complex by providing the onset and offset points of the
QRS complex, and especially the location of the prominent R peak. The remainder of
this review is structured as follows: the next section delineates several types of QRS
enhancements techniques, whilst Section 3 compares different QRS detection methods.
Finally a discussion and concluding remarks are presented in Section 4.
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Table 1. Comparison of QRS enhancement techniques based on algorithm usage and assessment criteria. 

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency  

Amplitude 

 

� Amplitude threshold is applied to the ECG signal, usually followed 

by the first derivative of the ECG signal [23,24] with a second 

threshold. 

 

� The signal noise is 

not removed properly 

and is not considered 

by the first-

derivative-only class 

of algorithms for 

feature extraction. 

� The processed segments have equally fixed lengths [23,24,25,26,27,28].  

� The value of the β ratio must be adjusted once before ECG signal analysis 

takes place. The threshold remains fixed throughout the entire ECG signal 

analysis [23,24,25,26,27,28]. 

� Investigators have introduced several differentiators without noting the 

reason behind their choices [23,24,25,26,27,28]. 

� The length of the processed ECG segment is determined experimentally 

[23,24,25,26,27,28]. 

� Friesen et al. [29] used ECG data with a fixed length of 33 seconds. Their 

algorithm scored a high accuracy because they processed small segments. It 

is expected that the performance of this algorithm on longer ECG trace will 

be poor unless the long ECG signals are separated into smaller segments. In 

this case, the performance will likely improve, however there is a possibility 

of losing beats at the beginning and end of each processed ECG segment 

� Amplitude and first derivative class of algorithms 

is simple and usually contain a threshold and first 

derivative equation for feature extraction. The 

complexity mainly depends on the threshold used 

and segmentation if applied. 

First 

Derivative 

Only 

 

� First derivative of ECG signal followed by threshold [30,31,32] 

(thresholding will be discussed in Section 3) 

� Amplitude threshold applied to ECG signal followed by first 

derivative of ECG signal [23,24] (see Section 2.2), followed by 

another threshold 

� First derivative combined with second derivative of ECG signal 

[26,27] (see Section 2.3), followed by threshold 

� First derivative of ECG signal followed by digital filtering [28] (see 

section 2.4), followed by threshold 

� Digital filter applied to ECG signal followed by first derivative [33], 

followed by threshold 

� Mathematical morphology filtering applied to ECG signal followed 

by first derivative [34] (see Section 2.5), followed by threshold 

� First derivative can be used before applying Hilbert transform 

[35,36,37] (see Section 3.1), followed by threshold 

� First derivative can be used before applying Wavelet transform [38] 

(see Section 4.2), followed by threshold 

 

� The first derivative 

does not remove 

high-frequency noise; 

however, it helps to 

reduce motion 

artifacts and base line 

drifts [38]. 

� The processed ECG segments have equally fixed lengths and thresholds 

[30,31,32]. 

� As mentioned above, researchers have introduced several differentiators 

without mentioning the reason behind their choices [30,31,32]. 

 

� First derivative class of algorithms are simple and 

contain one equation for feature extraction. Most 

cases used Okada’s equation [30]. The complexity 

of this class will increase if segmentation is 

applied. The order of complexity depends on the 

number of processed segments for each record. 

First and 

Second 

derivative 

 

� First derivative combined with second derivative of ECG signal 

[26,27], followed by threshold. 

� Second derivative can be used before applying Hilbert transform 

[35,37] (see Section 3.1), followed by threshold. 

� The signal noise is 

not removed properly 

and is not considered 

by the first-

derivative-only class 

of algorithms for 

feature extraction. 

� The processed segments have equal and fixed lengths [23,24,25,26,27,28].  

� The parameters used are fixed. 

� The choice of the first and second derivative equations is experimentally 

determined [26,27]. Moreover, authors do not justify their combination of 

first and second derivatives. 

� As mentioned above, investigators have introduced various differentiators 

without noting the reason behind their choices [26,27]. 

� First- and second-derivative classes of algorithms 

are simple and contain only up to four equations 

for feature extraction. The complexity of this class 

derives from the number of equations used and 

segmentation, if applied. 

Digital 

Filter 

 

� First derivative of ECG signal followed by digital filters followed by 

threshold [28]. 

� Bandpass filter applied to ECG signal followed by first derivative, 

followed by threshold [33] 

� Bandpass filter applied before Hilbert transform (see Section 3.1), 

followed by threshold [39] 

� Bandpass filter can be followed by first derivative before applying 

Wavelet transform (see Section 4.2), followed by threshold [38] 

� Bandpass filter applied to ECG signal followed by matching filter 

(see Section 4.3), followed by threshold [40] 

� The digital filter can 

increase the SNR 

ratio depending on 

the nature of the filter 

and its order 

� The processed segments have equal and fixed lengths [23,24,25,26,27,28].  

� The parameters used are fixed. 

� The choice of differentiator in the digital filters functions as a notch filter. 

� In the digital filter algorithms, the low-pass filter is usually a symmetrical 

amplification. The amplification values are determined experimentally. 

� The mathematical operations (e.g. squaring, difference, multiplication) used 

are not justified by the authors  

 

� The digital filters class of algorithms is simple and 

contains up to only four equations for feature 

extraction. The complexity of this class will 

increase if segmentation is applied. The order of 

complexity depends on the number of processed 

segments for each record. 

 

 

 



Table 1 (continued). Comparison of QRS enhancement techniques based on algorithm usage in and assessment criteria. 

 

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency  

Mathematical 

Morphology 

� Mathematical morphology filtering applied to ECG signal, 

followed by threshold [41]. 

� Mathematical morphology filtering applied to ECG signal, 

followed by first derivative, followed by threshold [34]. 

 

 

� The signal noise is 

partially addressed by the 

mathematical morphology 

class of algorithms. The 

use of a low-pass filter 

improves the SNR. 

� The processed segments have equal and fixed lengths [23,24,25,26,27,28].  

� The structuring element is fixed during the ECG analysis. 

� The length of the structuring element used is 3, which remains a fixed value. 

� The length of the structuring element is determined experimentally. The length of the 

operating structure element must be shorter than the product of the length of the signal wave 

and the sampling frequency [41]. Therefore, the length of the structuring element can be 

different to 3. 

� The authors do not justify the multiplication operations used [23,24,25,26,27,28]. 

 

� The mathematical morphology 

class of algorithms is simple and 

contains at least 15 equations for 

feature extraction. The 

complexity increases with the 

number of processed ECG 

segments. The order of 

complexity is higher than the 

derivative-based algorithms and 

digital filter algorithms. 

Empirical 

Mode 

Decomposition 

(EMD) 

� EMD filtering applied to ECG signal followed by threshold 

[42]. 

� EMD filtering applied to ECG signal followed by singularity 

and threshold [43],[44]. 

� High-pass filter applied to ECG signal, followed by EMD 

filtering, followed by threshold [44]. 

� The first several IMFs can 

filter out the noise and 

preserve the QRS content 

compared to the other 

ECG features [43]. 

Therefore the first several 

IMFs are mainly caused by 

the QRS complex and 

improve the SNR. 

 

� The processed segments have equally fixed lengths [43]. 

� The number of IMFs depends on the length of the ECG segment. If the segment length is 

increased, the number of IMFs will increase. 

� The length of the ECG segment is not determined experimentally. 

� The choice of IMFs is determined by trial-and-error. 

 

� The EMD class of algorithms is 

simple and contains at least nine 

steps with several equations for 

feature extraction. The 

complexity increases with the 

number of processed ECG 

segments. Certainly, the order of 

complexity is higher than the 

derivative-based algorithms and 

digital filter algorithms. 

  Hilbert 

Transform 

� First derivative can be used before applying Hilbert transform 

followed by threshold [35,36,37]. 

� Bandpass filter applied before Hilbert transform, followed by 

threshold [39]. 

� Wavelet transform (WT), see Section 4.2, applied before 

Hilbert transform, followed by threshold [45]. 

 

� The Hilbert transform does 

not improve the SNR 

itself. Therefore, some 

investigators filter the 

signal before applying the 

Hilbert transform. Benitez 

et al. [36] used a bandpass 

filter 8−20 Hz to remove 

muscular noise and 

maximise the QRS. 

 

� The processed segments have equally fixed lengths [36,46]. 

� When the FFT approach was implemented in calculating the Hilbert transform, no 

dependence of the envelope on the frame width was detected for frames comprised of 

512−2,048 data points. 

� The length of the ECG segment is not determined experimentally. 

� The choice digital filters and moving average are determined experimentally. 

 

� The Hilbert transform algorithm 

contains at least nine steps with 

several equations for features 

extraction. However, the primary 

disadvantage of this method is 

the increased computational 

burden required for FFT 

calculations compared to the time 

domain approaches. Hilbert 

transform techniques generally 

have a large computation 

overhead [46]. Moreover, the 

complexity increases with the 

number of processed ECG 

segments.  

Filter Banks 

� Filter banks applied to ECG signal followed by threshold 

[47,48]. 

� WT (see Section 4.2) applied to ECG signal, followed by filter 

banks, followed by correlation [49]. 

 

� The filter banks 

significantly improve the 

SNR for Gaussian noise 

compared to the mean and 

median averaging methods 

[50]. For muscle noise, the 

filter banks improve the 

SNR more than the mean 

and median averaging 

methods [50]. 

�  

� The length of the filter, number of sub-bands, transition-band width and stop-band attenuation 

have fixed values [51]. For example, the length of each of the finite impulse response (FIR) 

filters used by Afonso et al. [50] was 32. The input noisy ECG is decomposed by the analysis 

filters into eight uniform sub-band frequencies. The sub-band signal in the (0―12.5 Hz) range 

is not modified. The sub-band signal in the (12.5―25 Hz) range is attenuated in the period 

outside the QRS complex. Any high-frequency components outside the QRS complex are 

modelled as noise. Thus, in the remaining six sub-bands (25―100 Hz), the signal is nulled in 

periods outside the QRS complex. 

� The filter bank complexity depends on four parameters [51]: length of filter, number of sub-

bands, transition-band width and stop-band attenuation. Theses parameters are determined 

experimentally. 

� The main difficulty is choosing the optimal bank filters and their optimal combination in 

order to emphasise the QRS complexes.  

� The drawback of using filter 

banks is a relatively high 

computational cost due to the 

involvement of a large amount of 

multipliers in the FIR filters [48]. 

  Wavelet 

Transform 

(WT) 

� WT applied to ECG signal, followed by threshold [52,53]. 

� first derivative can be used before applying Wavelet transform 

followed by zero crossing (see section 5.6), followed by 

threshold [54]. 

� WT applied first before Hilbert transform, followed by 

threshold [55]. 

� WT applied to ECG signal, followed by filter banks, followed 

by correlation [56]. 

� WT applied to ECG signal, followed by neural networks (see 

Section 5.2) [54]. 

� Wavelet transform applied to ECG signal, followed by 

singularity (see 5.7) and zero crossing (see Section 5.6), 

followed by threshold [55]. 

� WT does not increase the 

SNR, but the SNR can be 

improved by selecting the 

coefficients with the 

largest amplitude [56]. 

 

� Choosing the mother wavelet is usually determined by the shape of the wavelet, which should 

be closer to the QRS complex shape, and it depends on the investigator’s methodology for 

detecting the QRS complex. 

� One mother wavelet (i.e. Haar, Daubechies, Biorthogonal, Mexican hat must be chosen once 

during the entire ECG analysis. 

� Choosing the length of the processed ECG segment does vary in literature. Ahmed et al. [57] 

split the ECG signals into 2.4-seconds segments while Xiuyu et al. [55] split the signals into 

11 seconds. 

� Choosing the wavelet scale varies throughout the literature. Szilagyi and Szilagyi [58] used 

scales 23 and 24, which reflect the QRS complex, while Xu et al. [59] used scales from 22 to 24 

to detect QRS complexes. 

� In regards to the sampling frequency of the processed ECG signal, Martinez et al. [60] 

recommended to resample the signal at 250 Hz.   

 

� If the ECG is segmented (this is 

usually the case), the length of 

the segment reflects the tradeoff 

between accuracy and 

computational time-consumption 

of the algorithm [52]. In general, 

WT, similar to filter banks, is 

relatively high in computational 

cost [61]. 



2 QRS Enhancement

This section presents several signal processing techniques [23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62] which have been used to emphasise the QRS segment in
time, frequency and time-frequency series, as shown in Table 1. Figure 2 demonstrates
the importance of the QRS enhancement stage as a prerequisite for detecting the QRS
complex. In describing the algorithms for QRS enhancement and detection in this article,
we note that X[n] refers to the raw ECG signal collected from any ECG monitoring
system, including battery-operated devices.

0 1 2 3 4 5 6
Time(sec)

MIT−BIH:Arrhythmia:DB,:Record:100

(a)

(b)

(c)

(d)

(e)

Figure 2: QRS enhancement stage in ECG signals. (a) ECG signal (top: from
record 100 of the MIT-BIH Arrhythmia Database [62]), (b) amplitude from Eq.1 where
β = 0.3, (c) first derivative from Eq.4, (d) first derivative and second derivative from
Eq.7, and (e) digital filter from Ref. [33]. Signal amplitudes have been manipulated to
fit all signals in one figure. Here, a red asterisk represents the annotated R peak.

2.1 Amplitude

This algorithm is considered the oldest for detecting R peaks in ECG signals; however,
for the last 30 years it is still useful and in common use. Recently, Sufi et al. [63] used the
algorithm for detecting heart rate using mobile phone. In older algorithms, amplitude
threshold was not used alone as in the case of Sufi et al. [63]; it was usually followed
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by a differentiation step to reduce the P and T wave influence relative to the R wave.
The first derivative is applied after the amplitude threshold to accentuate the slope of
the QRS complex. The amplitude threshold is calculated as a fraction of the measured
ECG signal

Xth = βmax{X[n]}, (1)

where β is the percentage of the ECG signal required to be removed and 1 > β > 0.
Different amplitude thresholds have also been used. Moriet-Mahoudeaux et al. [23]
developed a QRS detector using Xth = 0.3 max{X[n]}, which means that X[n] values
below 30% of the maximum positive signal amplitude is truncated from the signal, while
Fraden and Neuman [24] used Xth = 0.4 max{X[n]} .

2.2 First Derivative Only

In this class of QRS enhancement algorithms, a first-order differentiator is commonly
used as a high-pass filter, to enhance base-line wander and any undesired high frequency
noise, modify the phase of the ECG signals, and to create zero crossings in the location
of the R peaks. Many first derivative QRS detection algorithms, introduced in literature
[31] calculate the first derivative of the measured ECG signal according to:

Y [n] = −2X[n− 2]−X[n− 1] +X[n+ 1] + 2X[n+ 2]. (2)

In contrast, Holsinger [32] used a central finite-difference approach as:

Y [n] = X[n+ 1]−X[n− 1], (3)

whilst Okada [30] used a backward difference scheme:

Y [n] = X[n]−X[n− 1]. (4)

In these algorithms, a threshold criterion was subsequently applied to Y [n] for QRS
detection, as summarized in Table 3.

2.3 First and Second Derivative

QRS enhancement algorithms compute the first and second derivatives of the measured
ECG signal independently. A linear combination of the magnitudes of these derivatives
then used to emphasise the QRS complex area relative to the other ECG features. In
a seminal paper, Balda et al. [26] calculated the first and second derivatives of the
measured ECG signals according to:

Y0[n] = |X[n+ 1]−X[n− 1]|, (5)

Y1[n] = |X[n+ 2]− 2X[n] +X[n− 2]|. (6)

They then formed a linear combination of both derivatives as follows:

8



Y2[n] = 1.3Y0[n] + 1.1Y1[n]. (7)

Ahlstrom and Tompkins [27] calculated the rectified first derivative of the ECG as:

Y0[n] = |X[n+ 1]−X[n− 1]|. (8)

The rectified first derivative was then smoothed:

Y1[n] =
1

4
(Y0[n− 1] + 2Y0[n] + Y0[n+ 1]). (9)

A rectified second derivative was then calculated:

Y2[n] = |X[n+ 2]− 2X[n] +X[n− 2]|. (10)

Finally, the rectified smoothed first derivative was added to the rectified second deriva-
tive:

Y3[n] = Y1[n] + Y2[n]. (11)

For all these algorithms, a threshold criterion for QRS detection was applied to the
linear combination of derivatives. A summary of these threshold criteria is given in Table
3.

2.4 Digital Filters

There have been many sophisticated digital filters for QRS enhancement published in the
literature [28, 33, 64, 65, 66, 67, 68, 69, 70, 71], as described briefly below. Algorithms
utilizing more complex digital filters [28, 29, 30, 72, 73, 74, 75, 76] include Engelse and
Zeelenberg [28], who first passed the ECG signal through a differentiator:

Y0[n] = X[n]−X[n− 4]. (12)

This signal was then passed through a digital low-pass filter:

Y1[n] = (Y0[n] + 4Y0[n− 1] + 6Y0[n− 2] + 4Y0[n− 3] + Y0[n− 4]). (13)

A different digital filter algorithm was introduced by Okada [30], who first smoothed
using a three-point moving-average filter:

Y0[n] =
1

4
(X[n− 1] + 2X[n] +X[n+ 1]). (14)

The output of this filter was then passed through a low-pass filter:

Y1[n] =
1

2m+ 1

n+m∑
k=n−m

Y0[k]. (15)
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The difference between the input and output of this low-pass filter was then squared, in
order to suppress low amplitude waves relative to the R peak:

Y2[n] = (Y0[n]− Y1[n])2. (16)

This square difference was then filtered, in order to enlarge the QRS area compared to
the other ECG features:

Y3[n] = Y2[n]
{ n+m∑
k=n−m

Y2[k]
}2
. (17)

In addition to the above filters, a multiplication of backward difference (MOBD)
algorithm has also been proposed [77, 78] for QRS detection. In brief, this approach
consists of an AND-combination of adjacent magnitude values of the derivative. The
MOBD of order N is defined by

Z[n] =
N−1∏
k=0

(X[n− k]−X[n− k − 1]), (18)

where Z[n] contains the extracted QRS features, which can subsequently be detected
using an appropriate threshold. Another algorithm proposed by Dokur et al. [65] uses
two different bandpass filters, subsequently multiplying the filter outputs W [n] and F [n]
to form:

Z[n] = W [n] · F [n], (19)

where Z[n] contains the extracted QRS features. This procedure is based on the as-
sumption that each QRS complex is characterised by simultaneously occurring frequency
components within the passbands of each filter. The multiplication operation performs
the AND-combination. In other words, the output of the AND-combination (the feature
output) is ‘true’, and therefore indicates a QRS complex, only if both filter outputs
are ‘high’. The location of the maximum amplitude is taken as the location of the R
wave. Conversely, Pan and Tompkins [33] used a derivative after applying a bandpass
digital filter to the ECG signals. The bandpass filter consisted of a low-pass filter (Y1[n])
followed by a high-pass filter (Y2[n]) as:

Y1[n] = 2Y1[n− 1]− Y1[n− 2] +X[n]− 2X[n− 6] +X[n− 12], (20)

Y2[n] = 32Y1[n− 16]− (Y2[n− 1] + Y1[n]− Y1[n− 32]). (21)

The first derivative (Y3[n]) used after the bandpass filter was specified as:

Y3[n] =
1

8
(−Y2[n− 3]− 2Y2[n− 1] + 2Y2[n+ 1] + Y2[n+ 2]), (22)

The bandpass filtered signal (Y2[n]) was differentiated to emphasise high signal slopes,
suppressing smooth ECG waves and baseline wander.
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2.5 Mathematical Morphology

The use of mathematical morphology operators for QRS detection was described by Tra-
hanias [79]. The mathematical morphology approach originates from image processing
and was first proposed for ECG signal enhancement by Chu and Delp [80], who reported
the successful removal of noise from the ECG using the approach. Mathematical mor-
phology is based on the concept of erosion and dilation. Let f : F → I and k : K → I
denote discrete functions, where the sets F and K are given by F = 0, 1 . . . N − 1 and
K = 0, 1 . . .M − 1. Here, I is the set of integer numbers. The erosion of the function f
by the function k is defined as [80]:

(f 	 k)[m] = min
n=0,...,M−1

(f [m+ n]− k[n]) (23)

where k is also referred to as the structuring element, and m = 0, . . . , N −M . The
values of (f 	 k) are always less than those of f . The dilation of the function f by the
function k is defined as [80]

(f ⊕ k)[m] = min
n=0,...,M−1

(f [n]− k[m− n]) (24)

where in this case m = M−1,M . . . , N−1. The (f⊕k) values of are always greater than
those of f . Erosion and dilation may be combined for additional operations. Opening,
denoted by ◦ , is defined as erosion followed by dilation. Closing, denoted by • , is defined
as dilation followed by erosion. Both operators manipulate signals in a comparable way.
That is, to open a sequence f with a flat structuring element k will remove all peaks.
To close the sequence with the same structuring element will remove all pits (negative
peaks). In Trahanias [79], opening and closing operations are used for noise suppression
as proposed by Chu and Delp [80]; that is:

x̃ =
[(x ◦ k) • k] + [(x • k) ◦ k]

2
(25)

where k is a flat structuring element (zero line). The generation of a feature signal for
the QRS complexes is accomplished by the operation

z = x̃−
( [(x̃ ◦ k) • k] + [(x̃ • k) ◦ k]

2

)
. (26)

Zhang and Lian [34] used the first derivative after multiscale mathematical morphol-
ogy filtering to the ECG signal in order to remove motion artifacts and base line drifts.
They used Okada’s first-order differential equation, as shown in Equation 4 .

2.6 Empirical Mode Decomposition

Empirical mode decomposition (EMD) was introduced by Huang et al. [81] for nonlinear
and non-stationary signal analysis. The key part of this method is that any complex
data set can be decomposed into a finite and often small number of intrinsic mode
functions (IMFs), which admit well-behaved Hilbert transforms. Usually, when the raw

11



ECG signals are decomposed into number of IMFs, the combination of IMFs produces
a resulting signal where the QRS complex is more pronounced. This process can be
considered as adaptive filtering, similar to the use of wavelet transform. The EMD is
defined by a process called sifting. It decomposes a given signal into a set of components,
the IMFs. K modes dk[n] and a residual term r[n] [82, 83] are obtained and expressed
by:

X[n] =
K∑
k=1

dk + r[n]. (27)

The EMD algorithm is summarised by the following steps:

1. Start with the signal dk=1[n] = x[n]; followed by the sifting process
hj [n] = dk[n], j = 0.

2. Identify all local extrema of hj [n].

3. Compute the upper (EnvMax ) and lower envelopes (EnvMin) by cubic spline in-
terpolation of the maxima and minima.

4. Calculate the mean of the lower and upper envelopes,
m[n] = 1

2(EnvMax[n] + EnvMin[n]).

5. Extract the detail hj+1[n] = hj [n]−m[n].

6. If hj+1[n] is an IMF, go to step 7; otherwise, iterate steps 2 to 5 on the signal
hj+1[n], j = j + 1. (The definition of an IMF, although somewhat vague, consists
of two parts: (a) the number of the extrema equals the number of zeros and (b)
the upper and lower envelopes should have the same absolute value).

7. Extract the mode dk[n] = hj+1[n].

8. Calculate the residual rk[n] = x[n]− dk[n].

9. If rk[n] has less than two extrema, the extraction is finished r[n] = rk[n]; otherwise,
iterate the algorithm from step 1 on the residual rk[n], k = k + 1.

2.7 Hilbert Transform

The use of the Hilbert transform for QRS detection is proposed by Zhou et al. [84] and
Nygards and Srnmo [85]. In the time domain, the Hilbert transform of the ECG signal
X is defined as:

XH(t) = H{X} =
1

π

∞∫
−∞

X(τ)

t− τ
dτ (28)

=
1

π
⊗X(t), (29)
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where ⊗ denotes the convolution operator. In the frequency domain, the ECG signal
can be transformed with a filter of response:

XH(jω) = X(jω)⊗H(jω), (30)

where the transfer function of the Hilbert transform H(jω) is given by:

H(jω) =

{
−j 0 ≤ ω < π
j −π ≤ ω < 0

. (31)

Using the numerically efficient Fast Fourier Transform (FFT), the Hilbert transform can
easily be computed. The Hilbert transform XH[n] of the ECG signal X[n] is used for
the computation of the signal envelope [85], which is given for band-limited signals by

Xe[n] ≈
√
X2[n] +X2

H[n]. (32)

A computationally less expensive approximation to the envelope can be made by [85]

Xe[n] ≈ |X[n]|+ |XH[n]|. (33)

To remove ripples from the envelope and to avoid ambiguities in the peak level detec-
tion, the envelope is low-pass filtered in Nygards and Srnmo [85]. Additionally, they
propose a waveform adaptive scheme for the removal of low-frequency ECG components
is proposed. The method of Zhou et al. [84] is related to the algorithms based on the
Hilbert transform. In their study, the envelope of the signal is approximated using

Xe[n] ≈ |X1[n]|+ |X2[n]|, (34)

where and are the outputs of two orthogonal digital filters, namely:

X1[n] = X[n]−X[n− 6], and (35)

X2[n] = X[n]−X[n− 2]−X[n− 6]−X[n− 8]. (36)

In order to remove noise, the envelope signal Xe[n] is smoothed by a four-tap moving
average filter. Some investigators use a first derivative before applying the Hilbert trans-
form [35, 36, 37]. Differentiating the ECG modifies its phase, creating zero crossings at
the presumed location of the R peaks. Thus, a transformation is required to rectify the
phase in order to create a signal with marked peaks at the true location of the R peaks.

2.8 Filter Banks

Filter banks decompose the bandwidth of the input ECG signal into sub-band signals
with uniform frequency bands. The sub-bands can be downsampled, since the sub-band
bandwidth is much lower than the input signal. The sub-bands provide information from
various frequency ranges; thus, it is possible to perform time- and frequency-dependent
processing of the input signal.
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Figure 3: Filter bank schematic. A filter bank contains a set of analysis filters
that decompose the input signal into sub-bands ui with uniform bandwidths in order to
extract ECG features. Here, ↓ M is a downsampling process producing down-sampled
signals wi.

As shown in Figure 3, a filter bank contains analysis filters, which decompose the
input signal into sub-band signals with uniform frequency bandwidths, each of constant
length. The analysis filters bandpass the input ECG signal to produce the sub-band
signals:

ui(z) = Hi(z)X(z). (37)

The effective bandwidth of ui(z) is π/M and i = 0, 1, . . . ,M − 1 ; thus, they can be
downsampled to reduce the total rate. The downsampling process ↓ M (Fig. 3), keeps
one sample out of all samples. The downsampled signal wi(z) is

wi(z) =
1

M

M−1∑
k=0

ui(z
(1/M)W k), (38)

where W = e−j(2π/M). The sub-bands ui(z) and wi(z) are bandpassed versions of the
input, and wi(z) has a lower sample rate than ui(z) . The filtering process can be effi-
ciently conducted at 1/M the input rate by taking advantage of the downsampling. This
process is referred to as polyphase implementation and it contributes to the computa-
tional efficiency of filter bank algorithms [47]. A variety of features indicative of the QRS
complex can be designed by combining sub-bands of interest reported in Afonso et al.
[47]. For example, a sum-of-absolute values feature can be computed using sub-bands,
i = 1...4. From these sub-bands six features (p1, p2, p3, p4, p5, and p6) can be derived
as follows:
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p1[n] =
3∑
i=1

|wi(z)|, p2[n] =
4∑
i=1

|wi(z)|, p3[n] =
4∑
i=2

|wi(z)|, (39)

p4[n] =
3∑
i=1

(wi(z))
2, p5[n] =

4∑
i=1

(wi(z))
2, p6[n] =

4∑
i=2

(wi(z))
2. (40)

These features have values that are proportional to the energy of the QRS complex.
Finally, heuristic beat-detection logic can be used to incorporate some of the above
features that are indicative of the QRS complex.

2.9 Wavelet Transform

Wavelets are closely related to filter banks. The wavelet transform (WT) [86] of a
function f (t) is an integral transform defined by

Wf (a, b) =

∞∫
−∞

f(t)ψ∗a,b(t) dt, (41)

where ψ∗(t) denotes the complex conjugate of the wavelet function ψ(t). The transform
yields a time-scale representation similar to the time-frequency representation of the
short-time Fourier transform (STFT). In contrast to the STFT, the WT uses a set of
analysing functions that allow a variable time and frequency resolution for different
frequency bands. The set of analysing functions—the wavelet family ψa,b(t)—is deduced
from a mother wavelet ψ(t) by:

ψa,b(t) =
1√
2
ψ
( t− b

a

)
, (42)

where a and b are the dilation (scale) and translation parameters respectively. The scale
parameter a of the WT is comparable to the frequency parameter of the STFT. The
mother wavelet is a short oscillation with zero mean. The discrete wavelet transform
(DWT) results from discretised scale and translation parameters; for example, a = 2j

and b = n(2j), where j and n are integers. This choice of a and b leads to the dyadic
WT (DyWT):

Wf (2j , b) =

∞∫
−∞

f(t)ψ∗2j ,b(t) dt, (43)

ψ2j ,b(t) =
1

2j/2
ψ
( t− b

2j

)
, (44)

ψ2j ,b(t) =
1

2j/2
ψ
( t

2j
− n

)
. (45)

Although defined as an integral transform, the DyWT is usually implemented using
a dyadic filter bank where the filter coefficients are directly derived from the wavelet
function used in the analysis [87, 88, 89].
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Table 2. Comparison of QRS detection techniques based on algorithm usage and assessment criteria. 

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency  

Threshold 

 

� The threshold step has been used in the literature 

as the last stage for most QRS detection 

algorithms 

[23,24,26,27,30,31,32,34,35,36,37,38]. 

� The performance of the 

threshold approach will be 

affected by low SNR signals 

[29,33]. 

� The threshold is a fixed value [26,28,31,33]. 

� The threshold is experimentally defined [26,28,31,33]. The real 

difficulty is in choosing the optimal threshold. 

� The threshold approach is simple. It is an IF-THEN-ELSE 

statement. Therefore, it is considered computationally efficient by 

researchers [26,28,31,33]. 

Neural  

Networks 

(NN) 

 

� WT applied to ECG signal, followed by NNs [54] 

� Wavelet applied first to ECG signal, followed by 

Hidden Markov Model [90]. 

� NNs (used as a filter) applied to ECG signal, 

followed by a matched filter [91]. 

� NN are highly sensitive to 

noise [92]. The performance 

of the classifier can be 

significantly reduced if the 

NN is constructed with a 

proper architecture and 

trained with appropriate data. 

� The type of the NNs must be chosen and adjusted before the analysis. 

� Number N of inputs to NNs: to have just one single NN with a fixed 

number N of inputs, with each one receiving one of the samples from 

the window. The number of samples per window must then be fixed 

[93]. 

� There is a range of samples to be selected as the number of NN 

inputs, for example, García-Berdonés et al. [93] used 20 samples as 

the number of inputs.  

� Choosing the number of neurons in the NN hidden layer still remains 

a challenge. There is no definite way of determining the right number 

of neurons in hidden layer. 

� The training phase can be numerically inefficient as it is an iterative 

process for adjusting the NN weights [94]. If the number of hidden 

neurons is large, the computational load for training is high. 

� Even while the NN is implemented only in the trained version on 

the mobile device, it often needs a considerable amount of memory 

to store the neuron weights. Moreover, a nonlinear (most often 

sigmoid) function needs to be evaluated in the operating phase, 

which is computationally inefficient. 

 Hidden    

 Markov 

Models 

(HMM) 

� Bandpass filter applied to ECG signal, followed 

by HMM [95,96]. 

� Wavelet applied to ECG signal, followed by 

HMM [90]. 

� HMM is sensitive to noise, 

baseline wander and heart 

rate variation [97]. 

� Determining the number of states, transition probabilities and output 

function has been done experimentally.  

� The parameters of a HMM cannot be directly estimated from training 

data using maximum likelihood estimation formulas, since the 

underlying state sequence that produced the data is unknown [95].  

� HMM parameters are to be fixed. 

� The problems of the method include a necessary manual 

segmentation for training prior to the analysis of a record, its patient 

dependence, and its considerable computational complexity, even 

when the computationally efficient Viterby algorithm [98] is 

applied.  

� The number of parameters that need to be set in a HMM is 

large―there are usually 15 to 50 parameters that need to be 

evaluated [95,96]. 

Matched 

Filters 

� Matched filters applied to ECG signal [99]. 

� Digital filter applied to ECG signal, followed by 

matched filters [100,101]. 

� NNs (used as a filter) applied to ECG signal, 

followed matched Filter [91]. 

� The matched filter improves 

SNR [102]. 

� Fixed template length. 

� The template length and filter are determined experimentally. 

 

�  Efficient implementations are available [103]. In general, however, 

it is computationally expensive because of the sample-by-sample 

moving comparison with the template along the ECG signals. 

 

Syntactic 

Method 

� The syntactic method is applied to an ECG signal 

to detect a QRS complex by itself [104,105,106]. 

 
 

� The syntactic method is 

sensitive to noise [106]. 

� The length of the segment is fixed. Belforte et al. [104] used 30-

seconds duration per segment. 

� Four fixed attributes used the syntactic method [105]: degree of 

curvature, arc length, chord length and arc symmetry, which are 

determined experimentally.  

� The syntactic method has a high computational cost compared to 

other approaches. Measurements of various parameters have to be 

performed; powerful grammars capable of describing syntax as well 

as semantics are needed to model the formulation of a pattern 

grammar. 

Zero-

Crossing 

� The zero-crossing technique has been used in the 

literature to detect QRS complexes as follows: 

� Bandpass filter applied to ECG signal, followed 

by zero crossing [107]. 

� WT applied to ECG signal, followed by zero 

crossing, followed by threshold [107]. 

� WT applied to ECG signal, followed by 

singularity and zero crossing, followed by 

threshold [55]. 

� The zero crossing is sensitive 

to noise [107]. 

 

� The threshold used for counting the number of zero crossings per 

segment is fixed [107] and determined experimentally. 

� Choosing the wavelet scales to search for zero-crossing varies in 

literature  [107,108]. 

 

� The zero-crossing approach is simple but computationally 

inefficient. This is  because of the time consuming stages in the 

maximum/minimum search for temporal localisation of the R wave 

[107]. 

Singularity 

� EMD filtering applied to ECG signal, followed 

by singularity and threshold [43]. 

� WT applied to ECG signal followed by 

singularity and zero crossing, followed by 

threshold [55]. 

� The singularity approach is 

sensitive to noise [109]. 

� Choosing the wavelet scales to search for singular points is performed 

experimentally [109,110]. 

� The threshold used for detecting R peaks per segment is fixed [109]. 

� The threshold used for detecting R peak counts per segment is 

determined experimentally. 

� The singularity approach load is more complex than the zero-

crossing approach. It is computationally inefficient because of the 

consuming stages in the search and optimisation for detecting R 

waves in ECG segments [55,109]. 

 

 

 

 

 



3 QRS Detection

After enhancing the QRS features using the previous algorithms, the next step is to
detect the QRS complexes. Through the previous enhancement step, QRS complexes
are filtered and magnified relative to other ECG features and noise. There are many
detection techniques used in the literature, as shown in Table 2. This include thresh-
olding, neural networks [91, 111, 112, 113], Hidden Markov Model [95], matched filters
[114, 115], syntactic methods [104, 105, 106], zero-crossing [107], and singularity tech-
niques [116, 117, 118]. In the summary of Table 3, all these algorithms are numeri-
cally inefficient except thresholding. As the main purpose of this article is to highlight
suitable algorithms for ECG monitoring using battery-operated, portable devices, only
thresholding will be considered for the detection phase for simplicity and efficiency. In
this context, it has to be emphasised that thresholding can be applied to time-domain
[23, 24, 119] as well as time-frequency [120, 121, 122] ECG signals. However, the use of a
fixed threshold to detect QRS complexes is simple and only efficient for stationary ECG
signals with similar beat-to-beat morphology. Due to severe baseline drift and movement
of patients, an ECG waveform may vary drastically from one heartbeat to the next in
mobile applications. Therefore, the probability of not accurately detecting QRS com-
plexes is high. Using adaptive thresholding [59, 123, 124, 125], the probability of missing
QRS complexes decreases. However, the main drawback of these adaptive-thresholding
based algorithms is the setting of multiple thresholds empirically. Therefore, currently,
these algorithms cannot provide a universal solution to the QRS detection problem, since
they may work perfectly on some clean signals, but not those containing arrhythmias or
noisy QRS complexes.

4 Discussion and Conclusions

The performance of QRS detection algorithms are typically assessed using two statistical
measures: sensitivity SE = TP/(TP + FN) and positive predictivity +P = TP/(TP + FP),
where TP is the number of true positives (QRS complexes detected as QRS complexes),
FN is the number of false negatives (QRS complexes which have not been detected), and
FP is the number of false positives (non-QRS complexes detected as QRS complexes).
The sensitivity reports the percentage of true beats that were correctly detected by the
algorithm, whilst the positive predictivity reports the percentage of beat detections that
were true beats. The performance of current QRS detection algorithms described in the
literature has not been completely assessed in terms of robustness to noise, parameter
choice, and numerical efficiency. Moreover, many of the QRS algorithms have not been
tested against a standard database, or any database at all making the results difficult
to compare and evaluate. Furthermore, many algorithms scored a high detection per-
formance using the overall number of detected beats (i.e. QRS complexes), as shown in
Table 3. It is worth noting that the algorithm of Li et al. [126] scored the highest overall
performance with a sensitivity of 99.89% and a specificity of 99.94%.
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Table 3. Comparison of ECG beat detection algorithms based on techniques for QRS 

enhancement and detection on the MIT-BIH arrhythmia database [62]. SE and +P stand for 

sensitivity and positive productivity respectively, while N/R denotes not reported. 

Publication QRS Enhancement QRS detection 

Number  

of 

 beats 

Numerical 

Efficiency 

SE 

(%) 

+P 

(%) 

Chiarugi et al. [127] 
Bandpass Filter + first 

Derivative 
Multiple thresholds 109494 High 99.76 99.81 

Christov [123] 
Multiple moving averages + 

first derivative 
Multiple thresholds 109494 High 99.76 99.81 

Elgendi [128] 
Bandpass filter+ first 

derivative + squaring  

Thresholding using 

two moving averages 
109984 High 99.78 99.87 

Zidelmal [129] 
WT+coefficients 
multiplication 

Two thresholds 109494 Medium 99.64 99.82 

Choukri [130] 
WT+histogram +moving 

average 
Two thresholds 109488 Low 98.68 97.24 

Li [126] WT+digital filter 
Singularity+multiple 

thresholds 
104182 Low 98.89 99.94 

Pan and Tompkins [33] 
Bandpass filter+first derivative 

+ squaring + moving average 
Multiple thresholds 116137 Medium 99.76 99.56 

Arzeno et al. [35] and 
Benitez et al. [36] 

First derivative + Hilbert 

transform 
Threshold 109257 Medium 99.13 99.31 

Arzeno et al. [35] 
First derivative + Hilbert 

transform 
Two thresholds 109517 Medium 99.29 99.24 

Arzeno et al. [35] 
First derivative + squaring + 

bandpass filter 
Multiple thresholds 109504 Medium 99.68 99.63 

Arzeno et al. [35] 
First derivative + squaring + 

bandpass filter 

Variable thresholds 

comparison 
109436 Medium 99.57 99.58 

Arzeno et al. [35] 
Second derivative + squaring + 

bandpass filter 

Variable thresholds 

comparison 
108228 Medium 98.08 99.18 

Moraes et al. [131] 

Low pass filter + First 

derivative + modified spatial 

velocity 

Threshold 109481 Medium 99.69 99.88 

Chouhan and Mehta 

[119] 
Digital filters Threshold 102654 Medium 99.55 99.49 

Elgendi et al. [124] Digital filters Multiple thresholds 44677 Medium 97.5 99.9 

Chen et al. [60] WT 
Multiple thresholds + 

zero Crossing 
109428 Medium 99.8 99.86 

Adnane et al. [132] Filter banks Multiple thresholds 90909 Low 99.59 99.56 

Martinez et al. [120] Continuous WT Threshold 109837 Medium 99.91 99.72 

Afonso et al. [121] 

Discrete WT + Cubic Spline 

Interpolation + moving 

average 

Threshold N/R Low 98.68 99.59 

Ghaffari et al. [122] Hybrid Complex WT Threshold 24000 Low 99.79 99.89 

Ghaffari et al. [122] 
Complex Frequency B-Spline 

WT 
Threshold 24000 Low 99.29 99.89 

Ghaffari et al. [122] Complex Morlet WT Threshold 24000 Medium 99.49 99.29 

 



However, Li et al. excluded files 214 and 215 from the MIT-BIH arrhythmia database
[62], and therefore their algorithm may not superior in terms of performance. In addition,
their algorithm was based on wavelet feature extraction and singularity for classification,
which is considered numerically inefficient. As noted some investigators have excluded
records from the MITBIH arrhythmia database [62] for the sake of reducing noise in
the processed ECG signals; consequently their algorithms achieved better performance.
Other researchers excluded segments with ventricular flutter [60] and paced patients
[110] from their investigations. Therefore, a robust algorithm is required to analyse ECG
signals without excluding any records or particular segments, especially if the main goal
is to provide a robust algorithm for long-term ECG signals recorded over a few days.
Many QRS detection algorithms have been published, and a comparison between them
needs to be conducted. An algorithmic comparison regarding numerical efficiency has
been carried out empirically. As shown in Table 3, each algorithm has been categorised
as low, medium or high in terms of its numerical efficiency, based on the number of
iterations and the number of equations (e.g. multiplications, additions, differentiations)
employed. The better the numerical efficiency, the faster the algorithm, and vice-versa.
Consequently, the faster the algorithm, the more suitable it is for real-time monitoring.

Table 3 shows that the Chiarugi et al. [127] as well as Christov [123] and Elgendi
[128] algorithms are highly-numerically efficient, and the use of a first derivative with
or without moving average in the QRS enhancement phase is promising. Moreover,
applying a dynamic threshold in the QRS detection phase can be efficient. However,
these two algorithms were tested on small ECG segments and their performance is lower
than other algorithms.

With advances in computational power, the demand for numerical efficiency has
decreased. However, this is still more the case when the ECG signals are collected and
analysed in hospitals, but not for the case of portable ECG devices, which are battery
driven. This leads to especially high demands on algorithms for use within a mobile
phone for monitoring ECG signals of patients in a mobile, unobtrusive at home setting.
Therefore, there is a need for developing numerically efficient algorithms to accommodate
the new trend towards mobile ECG devices and to analyse long-term recorded signals
in a time-efficient manner.

Typically, processing large databases is carried out on PC workstations with high-
speed, multi-core processors and efficient memory. This advantage is still not available
for battery-operated devices: even the current smartphone platforms have limited RAM
and processing power [8, 10, 133]. In general, battery-driven ECG devices follow one of
these schemes: 1) collect data for offline analysis; 2) collect data for real-time analysis
within the device itself; or 3) collect data for real-time analysis via a remote connection
to a separate server. Certainly, each scheme has its own advantage and disadvantage in
terms of processing time and power consumption.
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Figure 4: A showcase of realtime factors for three outdated mobile phones.
Three QRS detection algorithms were tested, as reported by Sufi et al. [63]. The
QRS enhancement phase was based on amplitude, first-derivative, and second-derivative
techniques, whilst the QRS detection phase employed thresholding. Realtime factor is
the processing time needed to run the QRS detection algorithm for an individual ECG
entry within one measurement window size of 60 seconds.
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Figure 5: QRS enhancement stage in ECG signals. (a) ECG signal (top: from
record 107, bottom: from record 108 of the MIT-BIH Arrhythmia Database [62]), (b)
amplitude from Eq.1 where β = 0.3, (c) first derivative from Eq.4, (d) first derivative
and second derivative from Eq.7, and (e) digital filter from Ref. [33]. Signal amplitudes
have been manipulated to fit all signals in one figure. Here, a red asterisk represents the
annotated R peak.
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The Holter device is the most commonly-used ECG battery-operated platform, es-
pecially for monitoring and recording ECG signals to be processed offline. With the
advancement of smartphones in terms of memory and processors, investigators are try-
ing to replace the Holter devices by smartphones [8]. Furthermore, the use of a smart-
phone has extra advantages from the patient perspective such as mobility, familiarity
and guaranteed usage [134]. Thus, recently, there have been some contributions in phone
applications that analyse ECG signals collected wirelessly via Bluetooth [8, 10, 135] and
Zigbee radio protocols [133].

Mobile telemedicine systems often use mobile phones/PDAs to just collect the ECG
datawirelessly or wiredand send them to a central monitoring station using GSM or
internet for further analysis [136, 137]. In such cases, some analysis can be done locally
on the smartphone before transmission; however, it is not always recommended as the
transmission can consume more power than the ECG analysis itself [138]. There is no
doubt that the essential quality for any algorithm used for real-time analysis is its sim-
plicity (numerical efficiency), provided this does not decrease accuracy. The simpler the
algorithm (while retaining accuracy), the faster it will be in processing large databases
[35, 139], and it will consume less power for battery-operated devices [63, 133, 140].
Moreover, a simple algorithm also offers low cost of hardware implementation in both
power and size for body sensor networks [141]. Sufi et al. [63] investigated three simple
QRS algorithms suitable for mobile phones. The QRS enhancement phase of these al-
gorithms consisted of amplitude, first-derivative, and second-derivative methods, while
the QRS detection phase was threshold-based. They used simple methodologies for QRS
enhancement and detection for implementation over mobile phones. This simplicity has
been confirmed in Table 3 where it is evident that the first derivative and threshold are
an efficient combination for detecting QRS if developed properly.

To demonstrate the importance of processing time on a mobile phone, a showcase
is demonstrated in Figure 4 for three outdated mobile phones [63]. It can be seen that
the Nokia 6280 consumes the least processing time, as shown in Fig. 4(c). As expected,
the amplitude-based QRS enhancement technique was faster than the first-derivative
and second derivative based techniques. In this study [63], the quality of ECG signals
was discussed and the data used was relatively noise-free, as the ECG signal shown in
Figure 2 illustrates. However, this does not mean that a simple (or faster) algorithm
will be more accurate. For example, Figure 5 shows that a simple amplitude threshold
or first derivative method does not emphasize the QRS complex for the case of paced
beats (record 107) and inverted QRS complexes (record 108). Nevertheless, the Sufi et al.
result is considered a foundational step for monitoring ECG signals using mobile phones,
but their algorithm exhibited some limitations in terms of memory and processing time.

Nowadays, smartphones possess advanced processing and storage capabilities, includ-
ing a powerful CPU, more memory and GPUs with high-speed data access via Wi-Fi
or mobile broadband [142]. Therefore, implementing a sophisticated QRS detection
algorithm on a smartphone is becoming more feasible.

Gradl et al. [8] implemented Pan-Tompkins algorithm [33] on three smartphones:
SamsungTM GT-I9000, SamsungTM GT-N7000, and
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HTCTM Wildfire S A510e. The authors showed that processing of the wirelessly streamed
ECG signal is feasible in real-time on the mentioned devices; however, they stated that
battery lifetime was affected negatively by running the monitoring application.

Certainly, the implementation of the Pan-Tompkins algorithm is more resource-
demanding, and therefore consumes more time and power, than the three simple al-
gorithms investigated by Sufi et al. [63]. Nevertheless, recent wearable devices can
easily fulfil the real-time requirement. For example, the real-time factor for processing
record 100 of the MIT-BIH Arrhythmia Database [62] using Pan-Tompkinss algorithm
over three recent tablet computers / smartphones: the Asus Transformer Prime, the
Samsung Galaxy S III, as well as the Samsung Galaxy S II was 0.14×, 0.13×, and 0.2×,
respectively. In contrast, the real-time factors for processing the same record using the
first-derivative algorithm on the outdated phones: the Nokia N91, the Siemens C75, and
the Nokia 6280 were 0.13×, 0.1×, 0.016×, respectively.

Figure 6: Screenshot showing the main interface of the ‘Hearty’ application
implemented by Gradl et al. (2012) [8]. From top to bottom: Panel showing
various clinically relevant parameters that are automatically detected including heart
rate (HR) and RR interval; Panel showing the detected ECG signal, which is wirelessly
streamed to the application; Panel showing the QRS detection with filled circle markers
for the Q, R and S waves; Panel showing the detected beat-to-beat heart rate.
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The current advances in battery-driven devices such as smartphones and tablet com-
puters have made these technologies invariably part of daily life, even in developing
countries [12]. It has also increased the possibility of implementing more sophisticated
algorithms such as the Pan-Tompkins method [33] on smartphones as shown in Figure
6. However, there is a significant trade-off as there will always be a power-consumption
limitation in processing ECG signals on battery-operated devices. Therefore, prior to
deploying any algorithm on modern mobile devices, comprehensive evaluation of the
algorithm based on robustness to noise, parameter choice, and numerical efficiency is
required to improve the quality of diagnosis with respect to processing time or power
consumption. One of the recent studies that confirms this recommendation is done by
Hyejung et al. [143] who developed a simple algorithm to detect QRS complexes for
Holter devices. Their simple algorithm, which consists of bandpass filter followed by
multiple thresholds, was faster and more efficient compared to relatively more complex
methods [35, 144].

Another aspect that has been ignored in the literature is the clinical utility of the
ECG algorithms. It is rare to find a study that addresses the usefulness of the developed
algorithm in a clinical setting. As far as we are aware, there is no evidence that shows
whether the discussed algorithms are currently implemented in the clinic.

In conclusion, we have provided a summary of the required algorithms for ECG de-
tection based on the literature and our own investigations. The use of the first-derivative
of the filtered ECG with or without a moving-average filter is recommended, as this ap-
proach is highly numerically efficient for the QRS enhancement phase, but is sensitive
to noise and arrhythmia; therefore, an adaptive thresholding approach is needed in the
detection phase. Both of these suggested methodologies are simple and computationally
efficient for the detection of QRS complexes in mobile-phone applications. If more pro-
cessing power is available, as is the case on modern tablet computers and smartphones,
implementation of the classical Pan-Tompkins algorithm [33] is also a feasible choice.
Overall, simplicity and efficiency are required in developing QRS detection algorithms
for processing long-term recordings and large databases, as well as for expanding our
telemedicine capabilities in the near future.
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