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Abstract 

This review discusses the development of any QRS detection algorithm 

based on three assessment criteria: robustness to noise, parameter choice, and 

numerical efficiency. This is because of there is a need nowadays for fast and 

robust QRS detection algorithms to be deployed on mobile phones, and run 

over large ECG databases and wireless medical body area network. Till now, 

there is no satisfying universal solution for detecting QRS complex given the 

fact it was a topic of investigation for the last 30 years. The difficulty arises 

mainly because of the diversity of the QRS waveforms, abnormalities, low 

SNR and the artifacts accompanying the ECG signals. The existing QRS 

detection algorithms may provide an acceptable solution on small ECG 

segments, within a certain amplitude range, amid particular type of 

arrhythmia, or/and noise. These issues are discussed in comparison with the 

most conventional algorithms, followed by recommendations for developing 

a reliable QRS detection suitable for large-recorded ECG signals and battery-

driven devices. 
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1. Introduction 

 

According to the World Health Organization, cardiovascular diseases (CVD) are the 

number one cause of death worldwide. It is the leading cause of death in Australia, and 

the second leading cause of disease burden [1]. In 2007, CVD was the underlying 

cause of 34 per cent of all deaths in Australia (46,626 deaths [2]) and it is estimated 

that around 1.4 million Australians experience a disability associated with the 

cardiovascular system. These rates are consistent with those of other western developed 

countries such as New Zealand, the United States (US), the United Kingdom (UK) and 

the Scandinavian nations [3]. 

CVD is the most expensive disease group in terms of direct health-care expenditure. 

In 2008, it cost Australia about $5.9 billion [4]. As a consequence of the direct and 

indirect costs of CVD, medical researchers have placed significant importance on cardiac 

health research. This has produced a strong focus on preventative, medicinal and 

technological advances, both in Australia and abroad. One such research pathway is leading 

researchers towards improving the conventional cardiovascular-diagnosis technologies used 

in hospitals/clinics.  



The most commonly performed cardiac test is ECG as it is a useful screening tool 

for a variety of cardiac abnormalities, simple, risk-free and inexpensive. The advances 

in technology have done much change to the way we collect, store and diagnose ECG 

signals, especially the use of mobile phones to replicate these processes. It is expected 

that Holter devices will be replaced by mobile phones in the near future. The reason is 

Holter device does not detect arrhythmias automatically in realtime and it does not 

provide realtime information to the hospital/doctor/patient when critical heart 

condition occurs. 

On the other hand the advances in memory/storage technology have enabled us to 

store more ECG signals than ever before. Therefore, scientists are collecting more 

information in order to understand the mechanism of the cardiovascular diseases 

which will ultimately lead to effective treatments.  

Certainly, analysing ECG signals collected by a mobile phone needs to be fast as we 

have limitation in terms of phone memory and processor capability. The same holds 

for analysing large ECG recordings collected over one or more days. 

Recently, scientists are more interested in developing an efficient algorithm to run 

within a mobile phone to determine the quality of collected ECG signals. The 2011 

PhysioNet/Computing in Cardiology Challenge has been established to encourage the 

development of software that can run in a mobile phone, recording an ECG and 

providing useful feedback about its quality.  

PhysioNet provided a large set of ECG records for use in the Challenge, together 

with an open-source sample application that can run on an Android phone, and can 

classify ECGs as acceptable or unacceptable. Therefore, the next step is analysing the 

acceptable ECG signal for diagnosis without relying on an expert for interpretation. If 

this possibility becomes reality it will help the developing nations and rural population 

to benefit from inaccessible expertise. 
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Figure 1. Main Events in ECG signals. A typical ECG tracing of the cardiac cycle 

(heartbeat) consists of a P wave, a QRS complex, and a T wave. 

 

ECG signals contain features that reflect the way the heart is working. These 

features represent the physiological events that are the sequence of depolarisation and 

repolarisation of the atria and ventricles. Each beat in the ECG signal contains three 

T wave P wave 

R peak 

Q wave 
S wave 



main events: the P wave, the QRS complex, and the T wave; as shown in Figure 1. 

Each event (wave) has a peak. The analysis of ECG signals for monitoring or 

diagnosis requires the detection of these events. Once an event has been detected, the 

corresponding signal can be extracted and analysed in terms of its amplitude (peak), 

morphology, energy and entropy distribution, frequency content, intervals between 

events. 

The automatic detection of the P, QRS and T events is critical for reliable 

cardiovascular assessments, such as diagnosing cardiac arrhythmias [5-9], 

understanding the autonomic regulation of the cardiovascular system during sleep and 

hypertension [10, 11], detecting breathing disorders such as Obstructive Sleep Apnea 

Syndrome [12, 13], and monitoring other structural or functional cardiac disorders. 

Once the QRS, P and T events are detected accurately, a more detailed examination of 

ECG signals can be performed. 

The detection of QRS complexes has been extensively investigated in the past two 

decades. Many attempts have been made to find a satisfying universal solution for 

QRS complex detection. Difficulties arise mainly because of the diversity of the QRS 

waveforms, abnormalities, low SNR and the artifacts accompanying the ECG signals. 

Conversely, P and T event detection has not been investigated as much as QRS 

detection. The P and T event detection problem is still far from being resolved [14]. 

Reliable P- and T-wave detection is more difficult than QRS complex detection for 

several reasons, including low amplitudes, low SNR, amplitude and morphology 

variability, and possible overlapping of the P-wave and the T-wave.  

Any cardiac dysfunction associated with excitation from ectopic centres anywhere 

in the myocardium may lead to premature complexes (atrial or ventricular), which 

change the morphology of the waveform and the duration of the RR interval. The 

occurrence of multiple premature complexes is considered clinically important, as it is 

an indication for disorders in the depolarisation process preceding the critical cardiac 

arrhythmia. The detection of premature ventricular complexes has been extensively 

discussed in the literature, since they are associated with an increased risk of 

ventricular tachycardia or ventricular flutter/fibrillation, which can lead to sudden 

cardiac death [15]. The detection of premature atrial beats has not been widely 

investigated, although they can be used to predict supraventricular tachycardia, 

paroxysmal atrial fibrillation [6, 16] and postoperative atrial fibrillation [7]. Therefore, 

the atrial premature beats detection problem is also considered at the end of this 

chapter. 

There is a body of evidence to suggest that averaging multiple detectors, even in a 

simple voting structure, is superior to any single algorithm [17, 18]. While this is not 

the main objective of this review, discussing the current detection algorithms will help 

in investigating this concept. 

The motivation behind this review is to evaluate algorithms that detect the QRS 

complexes in arrhythmia ECG signal to be deployed on mobile phones and analyse 

large ECG signals in a time-efficient manner. The same criterion holds for the 

detection of P and T wave. To obtain a fast and robust assessment of ECG analysis 

performance, algorithms will be evaluated against the following aspects: 

1. Robustness to noise: there are many sources of noise (e.g. powerline 

interference, muscle noise and motion artifacts). Therefore, the developed 

algorithms should be robust to these noises. 

2. Parameter choice: The choice of parameters should lead to accurate 

detection. Parameters should not have to be manually adjusted for different 

recordings. 

3. Numerical efficiency: The developed algorithm may have a large number 

of iterations, parameters to adjust, features extracted, or classification steps. 

It is desirable to provide numerically efficient (simple, fast, and fewer 

calculations required) algorithms. Of course, computers are very fast today, 

so numerical efficiency is less important than it used to be. However, if a 



simple and fast algorithm can achieve good results, there is no need for 

complicated algorithms. In particular, when the algorithm is used online (in 

a slightly modified form from the offline version) in an embedded system, 

numerical efficiency would still be relevant. 

  

Aas shown in Figure 2, any automated QRS detection algorithm structures can be 

divided into two stages: QRS enhancement and QRS detection [19]. 

  

 

Figure 2. QRS detection structure. It consists of two stages: QRS enhancement (i.e. 

filtering) and QRS detection (or classification). 

 

The QRS enhancement stage is used to enlarge the QRS complex compared to the 

other ECG features (P, T, and noise). The QRS enhancement stage is occasionally 

called pre-processing or feature extraction. The QRS detection stage is used to 

demarcate the QRS complex by providing the onset and offset of the QRS complex. If 

the R peak is required to be detected, an extra step is needed to determine the 

maximum amplitude value within the detected QRS complex.  

This review is structured as follows. In the next section we discuss types of QRS 

enhancements techniques in time domain. Section 3 elaborates on the QRS 

enhancements in frequency domain, while Section 4 shows the QRS enhancements in 

time-frequency domain. Section 5 compares different QRS detection methods. Finally 

a conclusion and discussion is covered in Section 6. 

 

2. QRS Enhancement in Time Domain 

 

This section presents several signal processing techniques used to emphasise the 

QRS detection area. It is an important stage before detecting the QRS complex. 

 

2.1 First Derivative Only 

The differentiator is commonly used as a high-pass filter, to modify the phase of the 

ECG signals and to create zero crossings in the location of the R peaks.  

Usage in algorithms 

This first-derivative-only step has been used extensively in literature to detect QRS 

complexes as follows: 

 first derivative of ECG signal followed by threshold [20-22] (thresholding 

will be discussed in Section 5.1) 

 amplitude threshold applied to ECG signal followed by First derivative of 

ECG signal [23, 24] (see Section 2.2), followed by threshold 

 first derivative combined with second derivative of ECG signal [25, 26] 

(see Section 2.3), followed by threshold 

 first derivative of ECG signal followed by digital filters [27] (see section 

2.4), followed by threshold 
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ECG R peak mark/ 
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 digital filter applied to ECG signal followed by first derivative [28], 

followed by threshold 

 mathematical Morphology filtering applied to ECG signal followed by first 

derivative [29] (see Section 2.5), followed by threshold 

 first derivative can be used before applying Hilbert transform [30-32] (see 

Section 3.1), followed by threshold 

 first derivative can be used before applying Wavelet transform [33] (see 

Section 4.2), followed by threshold 

 

Assessment criteria: 

1. Robustness to noise: the first derivative does not remove high-frequency 

noise; however, it helps to reduce the motion artifacts and base line drifts 

[33]. 

2. Parameter choice:  

 The processed ECG segments have equally fixed lengths and 

thresholds [20-22]. 

 As mentioned above, researchers have introduced several 

differentiators without mentioning the reason behind their choices [20-

22]. 

3. Numerical efficiency: amplitude and first derivative class of algorithms is 

simple and contains one equation for features extraction. Most cases used 

Okada’s equation. The complexity of this class will increase if 

segmentation is applied. The order of complexity depends on the number of 

processed segments for each record. 

 

2.2 Amplitude and First Derivative  

In older algorithms, the amplitude threshold is applied before any differentiation 

to the signal is applied in order to horizontally cut the ECG signal to reduce the P and 

T waves’ influence compared to the R wave. The first derivative is applied after the 

amplitude threshold to steep up the slope of the QRS complex, where the amplitude 

threshold is calculated as a fraction of the measured ECG signal . 

 
Usage in algorithms: 

This amplitude and first derivative step has been used in literature to detect QRS 

complexes as follows: 

 amplitude threshold is applied to the ECG signal, followed by the first 

derivative of the ECG signal [23, 24] and then the threshold. 

 

Assessment criteria: 

1. Robustness to noise: the signal noise is not removed properly and is not 

considered by the first-derivative-only class of algorithms for features 

extraction. 

2. Parameter choice:  

 The processed segments have equally fixed lengths [23-27, 34].  

 The value of the   ratio must be adjusted once before the ECG signal 

analysis takes place. It is a fixed threshold through the entire ECG 

signal analysis [23-27, 34]. 

 As mentioned above, researchers have introduced several 

differentiators by without mentioning the reason behind their choices 

[23-27, 34]. 

 The choice of the processed ECG segment length is determined 

experimentally [23-27, 34]. 

 Friesen et al. [35] used ECG data with a fixed length of 33 seconds. 

Their algorithm scored a high accuracy because they processed small 



segments of ECG signals. It is expected that the performance of this 

algorithm on longer ECG signals will be poor unless the long ECG 

signals are separated into smaller segments. In this case, the 

performance will be better; however, there is a possibility of losing 

beats at the beginning and end of each processed ECG segment. 

3. Numerical efficiency: amplitude and first derivative class of algorithms is 

simple and contains one equation for features extraction. Most cases used 

Okada’s equation. The complexity of this class will increase if 

segmentation is applied. The order of complexity depends on the number of 

processed segments for each record. 

 

2.3 First and Second derivative 

Some algorithms compute the first and second derivatives of the measured ECG 

signals independently. A linear combination of the magnitudes of the first and second 

derivative is used to emphasise the QRS complex area compared to the rest of the 

ECG features.  

 

Usage in algorithms 

The first and second derivatives step has been used in literature to detect QRS 

complexes as follows: 

 first derivative combined with second derivative of ECG signal [25, 26], 

followed by threshold.  

 second derivative can be used before applying Hilbert transform [30, 32] 

(see Section 3.1), followed by threshold. 

 

Assessment criteria 

1. Robustness to noise: the signal noise is not removed properly and is not 

considered by the first-derivative-only class of algorithms for features 

extraction. 

2. Parameter choice:  

 The processed segments have equal and fixed lengths [23-27, 34].  

 The parameters used are fixed. 

 The choice of the first and second derivatives equations is 

experimentally conducted [25, 26]. Moreover, authors do not justify the 

combination of the first and second derivatives. 

 As mentioned above, researchers have introduced different 

differentiators without mentioning the reason behind their choices [25, 

26]. 

3. Numerical efficiency: first- and second-derivative classes of algorithms 

are simple and contains up to four equations for features extraction. The 

complexity of this class derives from the ECG segmentation. The order of 

complexity depends on the number of processed segments for each record. 

 

2.4 Digital Filters 

Algorithms based on more complicated digital filters were published in [20, 27, 35-

40]. 

A multiplication of backward difference (MOBD) algorithm is proposed in 

literature [41, 42] as digital filter to detect QRS complexes, which is basically an 

AND-combination of adjacent magnitude values of the derivative. 

Commonly, a bandpass digital filter used in detecting QRS complexes, especially 

the one introduced by Pan and Tompkins [28]. 

There have been more sophisticated digital filters published in literature [27, 28, 

43-50], as described briefly below. 

 



Usage in Algorithms 

Digital filters have been used extensively in literature to detect QRS complexes as 

follows: 

 first derivative of ECG signal followed by digital filters followed by 

threshold [27]. 

 bandpass filter applied to ECG signal followed by first derivative, followed 

by threshold [28] 

 bandpass filter applied first before Hilbert transform (see Section 3.1), 

followed by threshold [51] 

 bandpass filter can be followed by first derivative before applying Wavelet 

transform (see Section 4.2), followed by threshold [33] 

 Bandpass filter applied to ECG signal followed by matching filter (see 

Section 4.3), followed by threshold [52] 

 

Assessment criteria: 

1. Robustness to noise: the digital filter can increase the SNR ratio according 

to the nature of the used filter and its order. 

2. Parameter choice:  

 The processed segments have equal and fixed lengths [23-27, 34].  

 The parameters used are fixed. 

 The choice of the differentiator in the digital filters works as a notch 

filter. 

 In the digital filters algorithms, the low-pass filter is usually a 

symmetrical amplification. The values of amplifications are determined 

experimentally. 

 The mathematical operations used are not justified by authors (e.g. 

squaring, difference, multiplication). 

3. Numerical efficiency: the digital filters class of algorithms is simple and 

contains up to four equations for features extraction. The complexity of this 

class will increase if segmentation is applied. The order of complexity 

depends on the number of processed segments for each record. 

 

 

2.5 Mathematical Morphology 

The use of mathematical morphology operators for QRS detection was described in 

[53]. Mathematical morphology originates from image processing and was proposed 

for ECG signal enhancement in [54]. The successful removal of noise from the ECG is 

reported therein. 

 

Usage in algorithms 

The mathematical morphology algorithm has been used in literature to detect QRS 

complexes as follows: 

 mathematical morphology filtering applied to ECG signal, followed by 

threshold [55]. 

 mathematical morphology filtering applied to ECG signal, followed by first 

derivative, followed by threshold [29]. 

 

Assessment criteria 

1. Robustness to noise: the signal noise is partially addressed by the 

mathematical morphology class of algorithms. The use of a low-pass filter 

improves the SNR. 

2. Parameter choice:  

 The processed segments have equal and fixed lengths [23-27, 34].  

 The structuring element is fixed during the ECG analysis. 

 The length of the structuring element used is three which a fixed value. 



 The length of the structuring element is determined experimentally. 

The length of the operating structure element must be shorter than the 

product of the length of the signal wave and the sampling frequency 

[55]. Therefore, the length of the structuring element can be different to 

three. 

 The authors to not justify the multiplication operations used [23-27, 

34]. 

3. Numerical efficiency: the mathematical morphology class of algorithms is 

simple and contains at least 15 equations for features extraction. The 

complexity increases with the number of processed ECG segments. 

Certainly, the order of complexity is higher than the derivative-based 

algorithms and digital filter algorithms. 

 

 

2.6 Empirical Mode Decomposition 

The Empirical Mode Decomposition (EMD) has been introduced by Huang et al 

[56] for nonlinear and non-stationary signal analysis. The key part of this method is 

that any complicated data set can be decomposed into a finite and often small number 

of Intrinsic Mode Functions (IMFs) that admits well behaved Hilbert transforms.  

Usually when the raw ECG signals get decomposed into number of IMFs, the 

combination of the IMFs produces a signal where QRS is more salient. This process 

can be considered as an adaptive filtering, similar to the use of Wavelet transform. 

 

Usage in algorithms 

The empirical mode decomposition algorithm has been used in literature to detect 

QRS complexes as follows: 

 Empirical Mode Decomposition filtering applied to ECG signal followed by 

threshold [57]. 

 Empirical Mode Decomposition filtering applied to ECG signal followed by 

singularity and threshold [58],[59] 

 High-pass filter applied to ECG signal, followed by EMD filtering, 

followed by threshold [59]. 

 

Assessment criteria: 

1. Robustness to noise: the first several IMFs can filter out the noise and 

preserve the QRS content compared to the other ECG features [58]. 

Therefore the first several IMFs are mainly caused by the QRS complex 

and improve the SNR. 

2. Parameter choice:  

 The processed segments have equally fixed lengths [58]. 

 The number of IMFs depends on the length of the ECG segment. If 

the segment length is increased, the number of IMFs will increase. 

 The length of the ECG segment is not determined experimentally. 

 The choice of IMFs is determined by trial-and-error methodology. 

3. Numerical efficiency: the EMD class of algorithms is simple and 

contains at least nine steps with several equations for features extraction. 

The complexity increases with the number of processed ECG segments. 

Certainly, the order of complexity is higher than the derivative-based 

algorithms and digital filter algorithms. 

 

3. QRS Enhancement in the Frequency Domain 

 

3.1 Hilbert Transform 

 



The use of the Hilbert transform for QRS detection is proposed in [60, 61], and it is 

usually used to rectify the phase in order to create a signal with outstanding peaks in 

the location of the R peaks [30-32]. 

 

Usage in algorithms 

The Hilbert transform has been used in literature to detect QRS complexes as 

follows: 

 first derivative can be used before applying Hilbert transform followed by 

threshold [30-32] 

 bandpass filter applied before Hilbert transform, followed by threshold [51] 

 wavelet transform (see Section 4.2) applied before Hilbert transform, 

followed by threshold [62]. 

 

Assessment criteria 

1. Robustness to noise: the Hilbert transform does not improve the SNR 

itself. Therefore, some researchers filter the signal before applying the 

Hilbert transform to the signal. Benitez et al. [31] used bandpass filter 8−20 

Hz to remove muscular noise and maximise the QRS. 

2. Parameter choice:  

 The processed segments have equally fixed lengths [31, 63]. 

 When the FFT approach was implemented in calculating the Hilbert 

transform, no dependence of the envelope on the frame width was 

detected for frames of 512−2,048 points. 

 The length of the ECG segment is not determined experimentally. 

 The choice digital filters and moving average are determined 

experimentally. 

3. Numerical efficiency: the Hilbert transform algorithm contains at least 

nine steps with several equations for features extraction. However, the 

primary disadvantage of this method is the increased computational burden 

required for FFT calculations compared to the time domain approaches. 

Hilbert transform techniques generally have a large computation overhead 

[63]. Moreover, the complexity increases with the number processed ECG 

segments.  

 

4. QRS Enhancement in the Time-Frequency Domain 

 

4.1 Filter Banks 

 

Filter banks decompose the bandwidth of the input ECG signal into subband signals 

with uniform frequency bands. The subbands can be downsampled since the subband 

bandwidth is much lower than that of the input signal. The subbands provide 

information from various frequency ranges; thus, it is possible to perform time- and 

frequency-dependent processing of the input signal. 

Similar to EMD, a variety of features are indicative of the QRS complex can be 

designed by combining sub-bands of interest reported in [64]. 

These features have values that are proportional to the energy of the QRS complex. 

Finally, heuristic beat-detection logic can be used to incorporate some of the above 

features that are indicative of the QRS complex. 

 

Usage in algorithms 

The filter banks have been used in literature to detect QRS complexes as follows: 

 filter banks applied to ECG signal followed by threshold [64, 65]. 

 wavelet transform (see Section 4.2) applied to ECG signal, followed by 

filter banks, followed by correlation [66]. 



 

Assessment criteria 

1. Robustness to noise: the filter banks significantly improve the SNR for 

Gaussian noise compared to the mean and median averaging methods [67]. 

For muscle noise, the filter banks improve the SNR comparatively better 

than the mean and median averaging methods [67]. 

2. Parameter choice:  

 The length of the filter, number of subbands, transition-band width 

and stop-band attenuation have fixed values [68]. For example, the 

length of each of the finite impulse response (FIR) filters used by 

Afonso et al. [67] was 32. The input noisy ECG is decomposed by the 

analysis filters into eight uniform subband frequencies. The sub-band 

signal in the (0―12.5 Hz) range is not modified. The subband signal 

in the (12.5―25 Hz) range is attenuated in the period outside the QRS 

complex. Any high-frequency components outside the QRS complex 

are modelled as noise. Thus, in the remaining six sub-bands (25―100 

Hz), the signal is nulled in periods outside the QRS complex. 

 The filter bank complexity depends on four parameters [68]: length of 

filter, number of sub-bands, transition-band width and stop-band 

attenuation. Theses parameters are determined experimentally. 

 The main difficulty is choosing the optimal bank filters and their 

optimal combination in order to emphasise the QRS complexes.  

3. Numerical efficiency: The drawback of using filter banks is a relatively 

high computational cost due to the involvement of a large amount of 

multipliers in the FIR filters [65]. 

 

4.2 Wavelet Transform 

 

Wavelets are closely related to filter banks and EMD. It is defined as an integral 

transform, usually implemented using a dyadic filter bank where the filter coefficients 

are directly derived from the wavelet function used in the analysis [69, 70].  

 

Usage in algorithms 

The WT transform has been used in literature to detect QRS complexes as follows: 

 WT applied to ECG signal, followed by threshold [71, 72] 

 first derivative can be used before applying Wavelet transform followed by 

Zero crossing (see section 5.6), followed by threshold [73] 

 WT applied first before Hilbert transform, followed by threshold [74] 

 WT applied to ECG signal, followed by filter banks, followed by 

correlation [75] 

 WT applied to ECG signal, followed by neural networks (see Section 5.2) 

[73] 

 Wavelet transform applied to ECG signal, followed by singularity (see 5.7) 

and zero crossing (see Section 5.6), followed by threshold [74] 

 

Assessment criteria: 

1. Robustness to noise: WT does not increase the SNR, but the SNR can be 

improved by selecting the coefficients with the largest amplitude [75]. 

2. Parameter choice:  

 Choosing the mother wavelet is usually determined by the shape of 

the wavelet, which should be closer to the QRS complex shape, and it 

depends on the researcher’s methodology in detecting the QRS 

complex. 

 One mother wavelet (i.e. Haar, Daubechies, Biorthogonal, Mexican 

hat must be chosen once during the entire ECG analysis. 



 Choosing the length of the processed ECG segment does varies in 

literature. Ahmed et al (2000) split the ECG signals into 2.4-seconds 

segments while Zheng and Li split the signals into 11 seconds. 

 Choosing the wavelet scale for varies in literature. Szilagyi and 

Szilagyi [76] used scales 2
3
 and 2

4
, which reflect the QRS complex, 

while Xu et al. [77] used scales from 2
2
 to 2

4
 to detect QRS 

complexes. 

 Choosing the sampling frequency of the processed ECG signal;. 

Martinez et al (2004) recommended to resample the signal at 250 Hz.   

3. Numerical efficiency: if the ECG is segmented (this is usually the case), 

the length of the segment reflects the tradeoff between the accuracy and 

computational time-consumption of the algorithm [71]. In general, WT, 

similar to filter banks, is relatively high in computational cost [78]. 

 

5. QRS Detection 

 

After extracting the QRS features using the discussed algorithms, the next step is to 

detect QRS complexes. This step comes after extracting the ECG features that contain 

QRS that is more emphasised compared to the noise and other ECG features. 

 

5.1 Threshold 

Thresholding can be applied to time-domain [23, 24] and time-frequency ECG 

signals. The use of a fixed threshold to detect QRS complexes is simple and efficient 

for stationary ECG signals with normal beat morphology. Due to severe baseline 

drifting and movement of patients, an ECG signal waveform may vary drastically 

from one heartbeat to the next, as shown in Figure 3. Therefore, the probability of 

missing QRS complex is high. With adaptive thresholding, the probability of missing 

QRS complexes decreases. Adaptive thresholding mainly uses multiple thresholds 

empirically. 
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Figure 3 Fixed threshold in ECG segment. The measured ECG signals carry significant 

clinical information for a cardiologist, especially R peak detection in ECG signals. R-

peak detection generally uses the threshold value, which is fixed. The QRS cannot be 

detected below the fixed threshold value. Moreover, the fixed threshold will affect the 

detection of P and T waves. 

 
 
Usage in algorithms 

Fixed Threshold 



The threshold step has been used in literature as the last stage for most of the QRS 

detection algorithms [20-22] [23-26] [30-33] [29] 

 

Assessment criteria 

1. Robustness to noise: The performance of the threshold approach will be 

affected by low SNR signals [28, 35]. 

2. Parameter choice:  

 The threshold is a fixed value [21, 25, 27, 28]. 

 The threshold is experimentally defined [21, 25, 27, 28]. The real 

difficulty derives from choosing the optimal threshold. 

3. Numerical efficiency: the threshold approach is simple. It is an IF-

THEN-ELSE statement. Therefore, it is considered computationally 

efficient by researchers [21, 25, 27, 28]. 

 

 

5.2 Neural Networks 

Artificial neural networks (ANNs) mimic the biological neural process, similar to 

the human brain, by modelling the neurological information processing by means of a 

mathematical paradigm. Different types of ANNs have been used in literature to 

classify classical linear and non-linear approaches. However, mostly the multilayer 

perceptrons (MLP), radial basis function (RBF) networks and learning vector 

quantization (LVQ) networks are used in the analysis of ECG signals. 

RBF networks are closely related to fuzzy-logic methods [78]. The advantage of 

RBF networks over MLP networks is, similar to fuzzy-logic methods, the possibility 

to interpret the parameters. This makes the results more predictable and hence reliable. 

The LVQ network consists of an input layer, a competitive layer and a linear layer. 

The competitive layer automatically learns to classify input vectors into sub-classes, 

where the maximum number of subclasses N equals the number of competitive 

neurons. In this layer, classification is accomplished on the basis of the Euclidian 

distance between the input vector and the weight vector of each of the competitive 

neurons. Finally, the linear layer combines the subclasses of the first layer with the 

user-defined target classes. 

To accomplish the classification, the parameters of the network need to be trained. 

Whereas the MLP and RBF networks are trained by supervised learning algorithms, 

the LVQ network is adjusted in an unsupervised manner. Appropriate training 

algorithms are described in the literature; for example, in [79, 80] 

The application of neural networks in the field of ECG waveform classification is 

reported in [19, 43, 81-89]. Some of these algorithms [19, 87, 89, 90] are also 

concerned with the QRS detection problem. 

 

Usage in algorithms 

The neural networks (NNs) have been used in literature to detect QRS complexes as 

follows: 

 WT applied to ECG signal, followed by NNs [73] 

 wavelet applied first to ECG signal, followed by Hidden Markov Model 

(HMM; see Section 5.3) [91] 

 NNs (used as a filter) applied to ECG signal, followed Matched Filter (see 

Section 5.4) [90] 

 

Assessment criteria 

1. Robustness to noise: NNs are highly sensitive to noise [92]. The performance 

of the classifier can be significantly reduced if the NNs is constructed with a 

proper architecture and trained with appropriate data. 

2. Parameter choice:  

 The type of the NNs must be chosen and adjusted before the analysis. 



 Number N of inputs to NNs: to have just one single NN with a fixed 

number N of inputs, with each one receiving one of the samples from the 

window. The number of samples per window must then be fixed [93]. 

 There is a range of samples to be selected as the number of NN inputs, for 

example, García-Berdonés et al. [93] used 20 samples as the number of 

inputs.  

 Choosing the number of neurons in the NN hidden layer still remains a 

challenge. There is no definite way of determining the right number of 

neurons in hidden layer. 

3. Numerical efficiency: the training phase can be a numerically inefficient as it 

is an iterative process for adjusting the NN’s weights [94]. If the number of 

hidden neurons is too large, the NN will need more storage and the 

computational load for training. 

 

 

5.3 Hidden Markov Model 

HMMs models have proved to be a powerful and flexible class of statistical model 

for describing many different types of sequential data [92]. Coast and Cano [95] were 

first to prove that HMM is a promising technique for detecting QRS complexes in 

ECG signals.  

The objective of the algorithm is to infer the underlying state sequence from the 

observed signal. The advantage of this detection method is that not only is the QRS 

complex determined, but the P- and T-waves are also detected.  

 

Usage in algorithms 

The HMM has been used in literature to detect QRS complexes as follows: 

 bandpass filter applied to ECG signal, followed by HMM [95, 96] 

 wavelet applied to ECG signal, followed by HMM [91]  

 

Assessment criteria 

1. Robustness to noise: HMM is sensitive to noise, baseline wander, DC drift 

and heart rate variation [97]. 

2. Parameter choice:  

 Determining the number of states, transition probabilities and output 

function has been done experimentally.  

 The parameters of a HMM cannot be directly estimated from training data 

using maximum likelihood estimation formulas, since the underlying state 

sequence that produced the data is unknown [95].  

 HMM parameters are to be fixed. 

3. Numerical efficiency:  
 The problems of the method include a necessary manual segmentation for 

training prior to the analysis of a record, its patient dependence, and the 

considerable computational complexity, even when the computationally 

efficient Viterby algorithm [98] is applied.  

 The number of parameters that need to be set in an HMM is large―there 

are usually from 15 to 50 parameters that need to be evaluated. 

 

 

5.4 Matched Filters 

There are linear matched filtering approaches as, for example, reported in literature 

[99-102]. A bandpass filter is usually recommended before using the matched filter to 

improve the SNR. Moreover, real-time computations of matched filters are reported in 

[99] and [101]. 

 

Usage in algorithms 



The matched filters have been used in literature to detect QRS complexes as 

follows: 

 Matched filters applied to ECG signal [103] 

 Digital filter applied to ECG signal, followed by matched Filters [100, 104] 

 NNs (used as a filter) applied to ECG signal, followed matched Filter [90] 

 

Assessment criteria 

1. Robustness to noise: the matched filter improves the SNR [105]. 

2. Parameter choice:  

 fixed template length. 

 The template length and filter are determined experimentally. 

3. Numerical efficiency:  
Template multiplication is computationally inexpensive due to the sample by 

sample comparison. In general, it is computationally expensive because of the 

sample-by-sample moving comparison with the template along the ECG 

signals. 

 

 

5.5 Syntactic Method 

A syntactic algorithm has been used for ECG signal analysis in [106-108]. A 

syntactic method is assumed to be a concatenation of linguistically represented 

primitive patterns; that is, strings. Using a grammar, this string representation is 

parsed for strings coding a search pattern. Therefore, a syntactic algorithm for pattern 

recognition essentially requires the definition of primitive patterns, a suitable 

linguistic representation (alphabet) of the primitive patterns, and the formulation of a 

pattern grammar. In ECG processing, the signal is split into short segments of a 

variable or fixed length. Each segment is then represented by a primitive, and then 

coded using the predefined alphabet. Most algorithms use line segments as primitives 

for the signal representation. In [108] the set of line primitives is extended by peaks, 

parabolic curves and additional attributes. 

 

Usage in algorithms 

The syntactic method is applied to an ECG signal to detect a QRS complex by itself 

[106-108]. 

 

Assessment criteria 

 Robustness to noise: the syntactic method is sensitive to noise [108]. 

 Parameter choice:  

 The length of the segment is fixed. Belforte et al. [106] used 30-seconds 

duration per segment. 

 Four fixed attributes used the syntactic method [107]: degree of curvature, 

arc length, chord length and arc symmetry, which are determined 

experimentally.  

 Numerical efficiency:  
The syntactic method has a high computational cost compared to the 

discussed approaches. Measurements of the various parameters have to be 

performed; powerful grammars capable of describing syntax as well as 

semantics are needed as a model for the formulation of a pattern grammar. 

 

 

 

5.6 Zero Crossing 

Kohler et al (2001) proposed the QRS detection based on zero crossing counts. A 

bandpass filter is usually applied first to the ECG signal.  



 

Usage in algorithms 

The zero-crossing technique has been used in literature to detect QRS complexes as 

follows: 

 bandpass filter applied to ECG signal, followed by zero crossing [109] 

 WT applied to ECG signal, followed by zero crossing, followed by 

threshold [110, 111] 

 WT applied to ECG signal, followed by singularity and zero crossing, 

followed by threshold [74] 

 

Assessment criteria: 

1. Robustness to noise: the zero crossing is sensitive to noise [109]. 

2. Parameter choice:  

 The threshold used for counting the number of zero crossings per segment 

is fixed [109] and determined experimentally. 

 Choosing the wavelet scales to search for zero-crossing varies in literature 

[111, 112]. 

3. Numerical efficiency: the zero-crossing approach is simple but 

computationally inefficient. This is  because of the time consuming stages in 

the maximum/minimum search for the temporal localisation of the R wave 

[109]. 

 

 

5.7 Singularity 

Mallat and Hwang [112] introduced the singularity algorithm. To detect the QRS 

complex, the R peak must be detected first. The detection of R peaks is performed by 

scanning for simultaneous modulus maxima in the relevant scales of the WT. For a 

valid R peak, the estimated Lipschitz regularity must be greater than zero. 

Besides the condition on the Lipschitz regularity, the algorithm applies further 

heuristic decision rules such as conditions on the sign and the timing of the peak 

occurrence within the different scales. Once the R peak is detected, the Q and S waves 

can be detected. The onset of the QRS complex (Q wave) corresponds to the first 

modulus maximum before the R wave, and the offset of QRS complex (S wave) 

corresponds to the first modulus maximum after the R wave. 

Many other QRS detection algorithms based on local maxima are presented in 

[113],  [114] and [115]. In [74], characteristic points are detected by comparing the 

coefficients of the discrete WT on selected scales against fixed thresholds. 

 

Usage in algorithms 

The singularity technique has been used in literature to detect QRS complexes as 

follows: 

 EMD filtering applied to ECG signal, followed by singularity and threshold 

[58] 

 WT applied to ECG signal followed by singularity and zero crossing, 

followed by threshold [74] 

 

 
Table 1. Comparison based on techniques used in the QRS enhancement and detection 

stages, and subjective numerical efficiency. SE and +P stand for sensitivity and positive 

productivity respectively. 

Publication QRS Enhancement QRS detection Database 
Number of 

 beats 

Numerical 

Efficiency 

SE 

(%) 

+P 

(%) 

        



Pan and 

Tompkins [28] 

First derivative + 

squaring + bandpass 
filter 

Multiple thresholds MIT-BIH 116137 Medium 99.76 99.56 

Kadambe et al. 
[116] 

First derivatives + 
moving averages 

Threshold CSE-3 17988 High 98.5 99.18 

Arzeno et al. and 
Benitez et al. 

[30, 31] 

First derivative + Hilbert 
transform 

Threshold MIT-BIH 109257 Medium 99.13 99.31 

Arzeno et al. 

[30] 

First derivative + Hilbert 

transform 

Two thresholds MIT-BIH 109517 Medium 99.29 99.24 

Arzeno et al. 
[30] 

First derivative + 
squaring + bandpass 

filter 

Multiple thresholds MIT-BIH 109504 Medium 99.68 99.63 

Arzeno et al. 

[30] 

First derivative + 

squaring + bandpass 

filter 

Variable thresholds 

comparison 

MIT-BIH 109436 Medium 99.57 99.58 

Arzeno et al. 
[30] 

Second derivative + 
squaring + bandpass 

filter 

Variable thresholds 
comparison 

MIT-BIH 108228 Medium 98.08 99.18 

Ayat et al.  

[117] 

Bandpass Filter + First 

Derivative + Moving 

average 

Threshold MIT-BIH N/R High 99.74 99.81 

Ayat et al.  
[117] 

Bandpass Filter + First 
Derivative + Moving 

average 

Threshold AHA N/R High 99.47 99.73 

Moraes et al. 

[118] 

Low pass filter + First 

derivative + modified 

spatial velocity 

Threshold MIT-BIH 109481 Medium 99.69 99.88 

Chouhan and 

Mehta [119] 

Digital filters Threshold MIT-BIH 102654 Medium 99.55 99.49 

Hamilton [120] Digital filters Multiple thresholds MIT-BIH 109487 Medium 99.77 99.64 

Lee et al.  

[121] 

WT Multiple thresholds 

+ zero Crossing 

MIT-BIH 104182 Medium 99.89 99.94 

Chen et al.  

[122] 

WT Multiple thresholds 

+ zero Crossing 

MIT-BIH 109428 Medium 99.8 99.86 

Adnane et al. 

[123] 

Filter banks Multiple thresholds MIT-BIH  90909 Low 99.59 99.56 

Martinez et al. 

[124] 

Continuous WT Threshold MIT-BIH 109837 Medium 99.91 99.72 

Afonso et al. 
[125] 

Discrete WT + Cubic 
Spline Interpolation + 

moving average 

Threshold MIT-BIH  N/R Low 98.68 99.59 

Ghaffari et al. 
[126] 

Hybrid Complex WT Threshold MIT-BIH 24000 Low 99.79 99.89 

Ghaffari et al. 

[126] 

Complex Frequency B-

Spline WT 

Threshold MIT-BIH 24000 Low 99.29 99.89 

Ghaffari et al. 

[126] 

Complex Morlet WT Threshold MIT-BIH 24000 Medium 99.49 99.29 

 

Assessment criteria: 

1. Robustness to noise: the singularity approach is sensitive to noise [127]. 

2. Parameter choice:  

 Choosing the wavelet scales to search for singular points is performed 

experimentally [127, 128]. 

 The threshold used for detecting R peaks per segment is fixed [127]. 



 The threshold used for detecting R peak counts per segment is determined 

experimentally. 

3. Numerical efficiency: the singularity approach load is more complicated than 

the zero-crossing approach. It is computationally inefficient because of the 

consuming stages in the search and the optimisation to detect R waves in ECG 

segments [74, 127]. 

 

 

6. Discussion and conclusions 

 

Performance of QRS detection algorithm is typically done using two statistical 

measures: SE=TP/(TP+FN) and +P=TP/(TP+FP), where TP is the number of true 

positives (QRS complexes detected as QRS complexes), FN is the number of false 

negatives (QRS complexes has not been detected as QRS complexes), and FP is the 

number of false positives (non-QRS complexes detected as QRS complexes). The 

sensitivity SE reports the percentage of true beats that were correctly detected by the 

algorithm. The positive predictivity +P reports the percentage of beat detections that 

were true beats. 

The performance of current QRS detection algorithms is not completely assessed in 

terms of robustness to noise, parameter choice, and numerical efficiency. Moreover, 

many of the QRS algorithms were not tested against a standard database or any 

database at all. Many researchers scored high detection performance using few 

records. This issue makes the results difficult to compare and evaluate. 

Few algorithms from the literature demonstrate the idea of scoring high 

performance using few ECG recordings: 

  Xue et al. reported sensitivities of 99.84 per cent and 99.09 per cent and 

positive predictivity of 99.61per cent and 98.59 per cent based on just two 

records―numbers 105 and 108―from the MIT−BIH Arrhythmia Database 

[129]. 

  Lee et al. [121] scored 0.15 per cent false detections based on 46 files from 

the MIT−BIH Arrhythmia Database [129], excluding files 214 and 215. 

  Several publications have listed the use of all files in the MIT−BIH 

Arrhythmia Database, excluding patients with pacemakers. For example, 

Fard et al. [128] achieved a sensitivity of 99.22 per cent and specificity of 

99.73 per cent after excluding records (108, 200, 201 and 203) of patients 

with pacemakers. 

  Alvarado et al. [130] reported a sensitivity of 99.87 per cent and a positive 

predictivity of 99.82 per cent after using nine files out of 48 from the 

MIT−BIH Arrhythmia database. 

  [29] scored accuracy of 99.67 per cent after using five files out of 48  from 

MIT−BIH Arrhythmia database. 

  [33] scored accuracy of 99.69 per cent after using nine files out of 48  from 

MIT−BIH Arrhythmia Database.  

  Chen et al. [122] excluded segments with ventricular flutter in record 207 of 

MIT−BIH Arrhythmia Database (2 min 24 s). 

As discussed above, the number of records affects the overall accuracy of all 

detection algorithms. This means that there is an extra problem added to the previous 

three problems (robustness to noise, parameter choice, and numerical efficiency), 

which is the number of records used in testing the developed algorithm.  

 

 



Amplitude First derivative Second derivative
0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

R
e
a
lt
im

e
 F

a
c
to

r 
(m

s
)

Realtime Factor for Nokia N91

 

 

Amplitude First derivative Second derivative

0.075

0.08

0.085

0.09

0.095

0.1

0.105

R
e
a
lt
im

e
 F

a
c
to

r 
(m

s
)

Realtime Factor for Siemens C75

 

Amplitude First derivative Second derivative
0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

R
e
a
lt
im

e
 F

a
c
to

r 
(m

s
)

Realtime Factor for Nokia 6280

 
Figure 4 Realtime factors for three different mobile phones. Three QRS detection 

algorithms have been tested, as reported by [131]. The QRS enhancement phase was 

amplitude, first-derivative, and second-derivative based, while the QRS detection was 

thresholding. Realtime factor is the processing time needed to run the QRS detection 

algorithm for an individual ECG entry within one measurement window size of 60 

seconds. 

 

As discussed, some authors excluded records from the MIT−BIH Arrhythmia 

Databasee for the sake of reducing the amount of noise in the processed ECG signals; 

consequently their algorithms achieved better performance. Other researchers 

excluded segments with ventricular flutter [122] and paced patients [128] from their 

(a) 

(b) 

(c) 



investigations. Therefore, a robust algorithm is required to analyse ECG signals 

without excluding any records or particular segments.  

As the essential quality is real-time monitoring with enough overhead left to 

perform classification, the numerical efficiency (complexity) will play a major role in 

the algorithm selection. The simpler the algorithm, the faster it is. However, it does 

not mean that a faster algorithm will be more accurate. In here, the numerical-

efficiency will be considered independently of the accuracy factor. 

Many QRS detection algorithms have been published; therefore, a comparison 

needs to be conducted. An algorithmic comparison regarding the numerical efficiency 

assessment criteria has been carried out subjectively. As shown in Table I, each 

algorithm has been categorised as low, medium or high in terms of its numerical 

efficiency, based on the number of iterations and the number of equations (e.g. 

multiplications, additions, differentiations) used. The higher the numerical efficiency, 

the faster the algorithm, and vice versa. Consequently, the faster the algorithm, the 

more suitable it is for real-time monitoring. 

Table I shows that Chouhan and Mehta algorithm [119] and Hamilton [120] are 

highly-numerically efficient, and the use of first derivative with/out moving average in 

the QRS enhancement phase is promising. Moreover, applying a dynamic threshold in 

the QRS detection phase can be efficient. However, these two algorithms tested on 

small ECG segments and their performance is lower than other algorithms. 

With advances in computation, the demand for numerical efficiency gets lower and 

lower. Perhaps this is the case when the ECG signals are collected and analysed in 

hospitals, but it is not the case for portable ECG devices which are battery driven, 

especially the use of mobile phone for collecting ECG signals for patient monitoring. 

Therefore, there is a need for developing numerically efficient algorithms to 

accommodate the new wave of mobile ECG device and to analyse long-term recorded 

signals in a time-efficient manner. 

Sufi et al. [131] investigated three QRS algorithm suitable for mobile phones. The 

QRS enhancement phase of their algorithms were amplitude, first-derivative, and 

second-derivative based while the QRS detection phase was a threshold based. For 

sure, they used simple methodologies for QRS enhancement and detection to be 

implemented over mobile phones. This simplicity has been confirmed in table I when 

we found the first derivative and threshold are efficient combination for detecting 

QRS if developed properly. 

It turns out that Nokia 6280 consumes the least processing time, shown in Figure 4. 

As expected the amplitude based QRS enhancement technique was faster than the 

first-derivative and second derivative based techniques. In their study the quality of 

ECG signals has been discussed and data used was clean. However, their result is a 

foundation step for monitoring ECG signals using mobile phone, but it had some 

limitation in terms of memory and processing time.  

Nowadays, smartphones have advanced processing and storage capabilities, which 

include a powerful CPU, memory and a GPU with high-speed data access via Wi-Fi or 

mobile broadband [132]. Therefore, implementing the discussed QRS detection 

algorithms over smartphone is becoming more feasible. Moreover, the consideration 

of the assessment critera (robustness to noise, parameter choice, and numerical 

efficiency) will improve the quality of diagnosis with respect to processing time.  

Another aspect that has been ignored in literature is the clinical utility of the 

discussed ECG algorithms. It is rare to find an article that addresses the usefulness of 

the developed detector(s) in a clinical setting. As far as we are aware, there is no 

evidence that shows whether the discussed algorithms are currently implemented in 

practice (such as clinics or/and hospitals). 

In conclusion, this overview provides a valuable indication of the required 

algorithms based on literature and our experience. The use of first-derivative 

methodology is recommended as it is highly-numerically efficient for the QRS 

enhancement phase, but it is sensitive to noise and arrhythmia; therefore, an adaptive 



thresholding is needed in the classification phase. Both of these suggested 

methodologies are simple and computationally efficient to detect QRS complexes for 

mobile-phone applications. The simplicity and efficiency are required in developing 

QRS detection algorithms for processing long-term recordings and large databases, 

and expanding our telemedicine capabilities in the near future. 
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