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Abstract

Background: Analyzing acceleration photoplethysmogram (APG) signals mea-
sured after exercise is challenging. In this paper, a novel algorithm that can de-
tect a waves and consequently b waves under these conditions is proposed. Ac-
curate a and b wave detection is an important first step for the assessment of ar-
terial stiffness and other cardiovascular parameters. Methods: Nine algorithms
based on fixed thresholding are compared, and a new algorithm is introduced to
improve the detection rate using a testing set of heat stressed APG signals con-
taining a total of 1,540 heart beats. Results: The new a detection algorithm
demonstrates the highest overall detection accuracy—99.78% sensitivity, 100%
positive predictivity—over signals that suffer from 1) non-stationary effects, 2)
irregular heartbeats, and 3) low amplitude waves. In addition, the proposed
b detection algorithm achieved an overall sensitivity of 99.78% and a positive
predictivity of 99.95%. Conclusions: The proposed algorithm presents an ad-
vantage for real-time applications by avoiding human intervention in threshold
determination.

Introduction

Although the clinical significance of Accelerated Plethysmograph (APG) mea-
surement has been well-investigated [1, 2, 3, 4], there are still a lack of studies
focusing on the automatic detection of a and b waves in APG signals. However,
Matsuyama [5] attempted to determine which of the nine QRS algorithms of
Friesen’s ECG algorithms [6] suit the detection of a waves in APG signals—this
is because the morphology of the R peak in ECG signal is similar to the a wave
in the APG signal. The detection rate was below 63% for all nine algorithms,
even after modifying the thresholds with different values. Matsuyama [5] rec-
ommended that a new robust algorithm be developed for both APG and ECG
signals. Therefore, our investigation herein is aimed at developing a robust al-
gorithm to detect a waves in APG signals and to compare its performance with
the prior nine a detection algorithms [5]. Up to the present there has been

1



no attempt to detect b waves in APG signals; and therefore a new method for
detecting the b wave is now introduced. To validate the robustness of the devel-
oped algorithms, noisy APG signals—measured at rest and after exercise—were
tested.

Photoelectric plethysmography is the most commonly used method for pulse-
wave analysis—it is also know as photoplethysmography (PTG/PPG) or digital
volume pulse (DVP) analysis. In this paper, the acronym PPG will be used
throughout, as recommended by [7]. Fingertip PPG mainly reflects the pulsatile
volume changes in the finger arterioles, as shown in Figure 1. Application of the
second derivative is typically applied to accentuate subtle changes in the PPG
contour [1]. It is the second derivative of the PPG signal that is the APG, also
known as SDPPG [7].

As depicted in Figure 1, the APG waveform comprises four systolic waves
(a, b, c, and d waves) and one diastolic wave (e wave) [2]. In our study, the
height of detected a and b waves was measured from the baseline—the values
of a waves are positive (above the baseline), while the values of b waves are
negative (under the baseline). The main focus of this study is to provide a
robust detection algorithm for a and b that can be used in clinical studies, e.g.,
carotid distensibility and ageing [8].

Materials and Methods

Ethics Statement

There is one annotated APG database available at Charles Darwin University.
The data were collected during rest (before exercise) and after one hour of
exercise (walking) on a treadmill in the climate control chamber at Northern
Territory Institution of Sport (Darwin, Australia). The speed of treadmill was
set to 5 km/h with a one percent incline increment corresponding to the effort
required to walk with 8 kg of webbing. The exercise was considered to be of
moderate intensity, and the background of the entire project can be found in [5].
All subjects provided written informed consent before participation, which was
approved by the Charles Darwin University Ethics Committee. The database
is available upon request at Charles Darwin University: http://www.cdu.edu.
au/ehse.

Data Used

The PPGs of 27 healthy volunteers (males) with a mean ± SD age of 27 ±
6.9 were measured using a photoplethysmography device (Salus APG, Japan),
with the sensor located at the cuticle of the second digit of the left hand, in
which all subjects were included. Measurements were taken while the subject
was at rest on a chair. The PPG data were collected at a sampling rate of 200
Hz and the duration of each recording was 20 seconds. The PPG recordings of
20 seconds are intentionally much shorter than is usual for ECG recordings to
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exclude motion artefacts and other noise [9]. This also serves as a preliminary
test of feasibility, where the ease of shorter recording lengths is desirable in a
clinical setting.

The annotations were carried out by only one PPG specialist, which is suffi-
cient for this preliminary proof-of-concept study. The signals measured during
rest, before exercise, contained a total of 584 heartbeats, whilst the PPG signals
collected after one hour of exercise with a total of 885 heartbeats, and two hours
of exercise with total of 956 heart beats; the background of the entire project
can be found in [5]. For signal analysis and wave detection, MATLAB 2010b
(The MathWorks, Inc., Natick, MA, USA) was used.

Training Set

The PPG signals collected after 1 hour of exercise were used for training as they
includes different shapes of PPG waveforms and noise. Moreover, it contained
fast rhythm PPG signals, with a total of 885 heart beats, which had an impact
on the detection accuracy.

Test Set

PPG signals were measured at rest (before the exercise), with a total of 584
heart beats, and after 2 hours of exercise, with a total of 956 heart beats, were
used for testing.

Methodology

We discuss and evaluate nine algorithms that are used by Matsuyma [5] to
detect a waves in APG signals, and introduce a new algorithm that demonstrates
greater robustness and accuracy for the a wave detection under conditions of
heat stress. All of the algorithms we evaluate are advantageous in that they
do not impose an extensive computational overhead that is often required in
biosignal analysis.

In describing the algorithms for a wave detection in this article, note that
X[n] refers to the raw PPG signal; while S[n] refers to the filtered X[n] signal.
Here, THR1, THR2, and THR3 refer to the the first, second, and third threshold,
consequently.

Nine Algorithms

1. AF1: This algorithm is based on the algorithm developed by Morizet-
Mahoudeaux [10]. The algorithm examines the amplitudes and slopes
of the APG signals, which form the distinctive feature of the a wave,
exceed certain thresholds. The slope is the first derivative of the APG
signal, S[n] = X[n + 1] − X[n − 1], followed by three fixed thresholds.
The optimal values of these thresholds are defined by Matsuyama [5] as
follows: THR1 = 0.31 max(X[n]), THR2 = 0.0001, and THR3 = −0.001.

3



2. AF2: This algorithm is based on the algorithm developed by Fraden and
Neuman [11]. The algorithm examines the amplitudes and the slopes of
the APG signal. The optimal threshold values for the amplitudes and
slopes (positive) are THR1 = 0.21 max(X[n]) and THR2 = 0.75 [5]. The
APG signal X[n] is rectified. The absolute value of the APG signal is
taken as X1[n] = |X[n]|. This signal X1[n] is then modified using the
amplitude threshold THR1 as follows: X2[n] = X1[n] if X1[n] > THR1

and X2[n] = THR1 if X1[n] < THR1. Then, the first derivative of X2[n],
S[n] is calculated as S[n] = X2[n+ 1]−X2[n− 1], followed by a threshold
S[n] > THR2.

3. AF3: This algorithm is based on Gustafson’s algorithm [12]. This algo-
rithm not only examines the positive slopes but also the product of the
slope and amplitude of the APG signal. The first derivative S[n] is de-
fined as S[n] = X[n+1]−X[n−1], followed by an optimal threshold value
THR1 = 62 [5].

4. FD1: The concept for this algorithm was taken from Menrad [13]. This
algorithm examines the slopes of the APG signal. Menard defined the first
derivative as follows: S[n] = −2X[n−2]−X[n−1]+X[n+1]+2X[n+2],
followed by an optimal slope threshold THR1 = 0.099 max(S[n]).

5. FD2: This algorithm is based on the method developed by Holsinger [14].
The algorithm examines the slopes of the APG signal. The first derivative
S[n] is described as: S[n] = X[n + 1] −X[n − 1]. The optimal threshold
value for the positive slopes is: THR1 = 150 [5].

6. FS1: This algorithm is a simplified version of the technique presented
by Balda [15]. The first and second derivatives of the APG signal are
employed. The following absolute values of the first and second derivative
of the APG signals are obtained by X1[n] = X[n + 1] − X[n − 1] and
X2[n] = X[n+2]−2X[n]+X[n−2]. The filtered PPG signal is calculated
using these derivatives as follows: S[n] = 1.3X1[n] + 1.1X2[n], followed by
an optimal threshold value THR1 = 154.5 [5].

7. FS2: This algorithm adapts the QRS detection technique developed in
1983 by Ahlstrom and Tompkins [16]. This algorithm examines the first
and second derivative of the APG signal. The rectified first derivative
is calculated as X1[n] = abs(X[n + 1] − X[n − 1]). The rectified first
derivative is then smoothed as X2[n] = (X1[n−1]+2X1[n]+X1[n+1])/4.
The absolute value of the second derivative is calculated as X3[n] = X[n+
2]−2X[n]+X[n−2]. The smoothed absolute values of the first derivative
are added to the absolute values of second derivative as follows Y [n] =
X2[n] + X3[n], followed by two thresholds THR1 = 0.1 max(S[n]) and
THR2 = 0.8 max(S[n]).

8. DF1: This algorithm is adapted from the one developed by Engelse and
Zeelenberg [17]. The algorithm employs digital filters, such as a differen-
tiator and a low-pass filter. A differentiator is applied to the APG signals

4



X1[n] = X[n] − X[n − 4], then passed through a digital lowpass filter
S[n] = X1[n] + 4X1[n− 1] + 6X1[n− 2] + 4X1[n− 3] +X1[n− 4], followed
by a threshold THR1 = 21.

9. DF2: This algorithm is based on Okada’s QRS detection algorithm [18].
The algorithm uses digital filters, such as a moving average filter and a
low-pass filter. The first step is to smooth the APG signals with a three-
point moving average filter X1[n] = X[n−1]+2X[n]+X[n+1]. Then pass
X1 through a low-pass filter as follows X2[n] =

∑n+m
k=n−mX1[k]/(2m+ 1),

where m = 3. The next step is squaring the difference between the in-
put X1[n] and output X2[n] of the low-pass filter X3 = (X1[n]−X2[n])2,
followed by a filtering step X4[n] = X3[n](

∑n+m
k=n−mX3[k])2. A modifica-

tion step is done as follows X5[n] = X4[n], if [X1[n]−X1[n−m]][X1[n]−
X1[n + m]] > THR1, otherwise X5[n] = 0, where THR1 = 1. The last
step is thresholding with THR2 = 0.006 max(X5[n]) [5].

Proposed Method

In this study, a novel algorithm, adapted from the framework proposed by El-
gendi for detecting systolic waves in PPG signals [19], for detecting QRS com-
plexes in ECG signals [20, 21], and for detecting c, d, and e waves in APG signals
[22], will be evaluated. The same approach will be used here to detect the a
waves. The method consists of three main stages: pre-processing (bandpass
filtering and squaring), feature extraction (generating potential blocks using
two moving averages), and classification (thresholding). The structure of the
algorithm is given in Figure 2.

Bandpass Filter

A zero-phase second-order Butterworth filter, with bandpass 0.5–15 Hz based on
a brute force search that will be discussed later in the parameter optimization
section, was implemented to remove the baseline wander and high frequencies
that do not contribute to the a wave (cf. Figure 3). The output of the zero-
phase Butterworth filter applied to the PPG signal—at rest and after exercise—
produced a filtered signal S[n], as shown in Figure 4. The code line of this step
is line 2 in the pseudocode of the a detection algorithm (Algorithm I), where
F1 = 0.5 Hz and F2 = 15 Hz.

Second Derivative

To obtain the APG signals, the second derivative was applied to the filtered
PPG in order to analyze the APG signals. Equations 1 and 2 represent a non-
causal filter; the three-point centre derivative was created with a delay of only
two samples.

S′[n] =
dS

dt
|t=nT =

1

2T
(S[n+ 1]− S[n− 1]), (1)
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Z[n] =
dS′

dt
|t=nT =

1

2T
(S′[n+ 1]− S′[n− 1]), (2)

where T is the sampling interval and equals the reciprocal of the sampling
frequency and n is the number of data points. Figure 4 shows the second
derivative of the filtered PPG signal measured at rest and after exercise. The
code line of this step is line 3 in the pseudocode of the a detection algorithm
(Algorithm I).

Cancellation of b wave

At this stage, the a wave of the APG needs to be emphasized to distinguish
it clearly for detection. This can be done by clipping the negative parts of the
APG signal (Z[n] = 0, if Z[n] < 0). The code line of this step is line 4 in the
pseudocode of the a detection algorithm (Algorithm I).

Squaring

Squaring emphasizes the large differences resulting from the a wave, which
suppress the small differences arising from the diastolic wave and noise, as shown
in Figure 4. This step results in the output

y[n] = Z[n]2, (3)

which is important for improving the accuracy in distinguishing the a wave
segment in APG signals. The code line of this step is line 5 in the pseudocode
of the a detection algorithm (Algorithm I).

Generating Blocks of Interest

Blocks of interest are generated using two event-related moving averages that
demarcate the a wave and heartbeat areas. The particular method used to
generate blocks of interest has been mathematically shown to detect systolic
waves [19] and QRS complexes [20].

In this procedure, the first moving average (MApeak) is used to emphasize
the a wave area, as the dotted signal shows in Figure 5, and is given by

MApeak[n] =
1

W1
(y[n− (W1− 1)/2] + · · ·+ y[n] + · · ·+ y[n+ (W1− 1)/2]), (4)

where W1 represents the window size of the systolic-peak duration. The result-
ing value is rounded to the nearest odd integer. The exact value for W1 of 175
ms is determined after a brute force search, which will be discussed later in the
parameter optimization section.

The second moving average (MAbeat) is used to emphasize the beat area to
be used as a threshold for the first moving average, shown as a dashed signal in
Figure 5, and is given by
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MAbeat[n] =
1

W2
(y[n− (W2− 1)/2] + · · ·+ y[n] + · · ·+ y[n+ (W2− 1)/2]), (5)

where W2 represents a window size of approximately one beat duration. Its
value is rounded to the nearest odd integer. The exact value for W2 of 1000
ms is determined after a brute force search, which will be discussed later in the
parameter optimization section. The code lines of this step are lines 6–7 in the
pseudocode of the a detection algorithm (Algorithm I).

Thresholding

The equation that determines the offset level (α) is βz̄, where β = 0 based on
a brute force search that will be discussed later in the parameter optimization
section, while z̄ is the statistical mean of the squared filtered PPG signal. The
first dynamic threshold value was calculated by shifting the MAbeat signal with
an offset level α, as follows:

THR1 = MAbeat[n] + α. (6)

In this stage, the blocks of interest were generated by comparing the MApeak

signal with THR1, in accordance with the lines 10–17 the code lines shown in
the pseudocode of Algorithm I. Many blocks of interest will be generated, some
of which will contain the APG feature (a wave), while others will primarily
contain noise. Therefore, the next step is to reject blocks that result from noise.
Rejection is based on the anticipated systolic-peak width. In this paper, the
undesired blocks are rejected using a threshold called THR2, which rejects the
blocks that contain diastolic wave and noise. By applying the THR2 threshold,
the accepted blocks will contain a waves only,

THR2 = W1. (7)

As discussed, the threshold THR2 corresponds to the anticipated a wave dura-
tion. If a block is wider than or equal to THR2, it is classified as an a wave.
If not, it will be classified as noise. The last stage is to find the maximum
absolute value within each block to detect the a wave; the code lines of this
step are lines 19–26 in the pseudocode of the a detection algorithm (Algorithm
I). Consecutive a waves are shown in Figure 5 to demonstrate the idea of using
two moving averages to generate blocks of interest. Not all the blocks contain
potential a waves; some blocks are caused by noise and need to be eliminated.
Blocks that are smaller than the expected width for the a wave duration are
rejected. The rejected blocks are considered to be noisy blocks and the accepted
blocks are considered to contain an a wave. The detected a waves are compared
to the annotated a waves to determine whether they were detected correctly.
The search range for the true a wave was fixed to ± 50 ms for all algorithms to
ensure consistency of comparison.
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Detection of b waves

Figure 6(a) shows the b wave as a global minimum in a subject with good
circulation, while Figure 6(b) shows the d wave as a global minimum in a
subject with poor circulation—blood flow becomes restricted to certain parts of
the body such as the fingers [23]. However, in both cases, the b wave is the first
minimum after the a wave. The b wave can therefore be detected by finding
the local minimum, as follows:

(|APG(awaves[i]+k)| > |APG(awaves[i]+k−1|))∧(|APG(awaves[i]+k)| > |APG(awaves[i]+k+1|)),
(8)

where APG is the second derivative of the PPG signal (calculated in line 3 in
Algorithm I), i is a counter for the detected a waves, k is the search interval
for the b waves, and ∧ is logical AND operator. To reduce the computational
complexity for finding b waves, the interval k has been set to vary from 8 ms to
136 ms.

Algorithm I: DetectoraWaves(PPGsignal, F1, F2,W1,W2, β)

1 : awaves ← {}
2 : Filtered = Bandpass(PPGsignal, F1–F2)
3 : APG = CentralSecondDerivative(Filtered)
4 : Clipped = Clip(APG)
5 : Qclipped = Square(Clipped)
6 : MApeak = MA(Qclipped,W1)
7 : MAbeat = MA(Qclipped,W2)
8 : z̄ = mean(Qclipped)
9 : α = βz̄ + MAbeat

10 : THR1 = MAbeat + α
11 : for n = 1 to length(MApeak) do
12 : if MApeak[n] > THR1 then
13 : BlocksOfInterest[n] = 0.1
14 : else
15 : BlocksOfInterest[n] = 0
16 : end if
17 : end for
18 : Blocks← onset and offset from BlocksOfInterest

19 : set THR2 = W1

20 : for j = 1 to number of Blocks do
21 : if width(Blocks[j]) ≥ THR2 then
22 : awaves ← index of max. value within the block
23 : else
24 : ignore block
25 : end if
26 : end for
27 : return (awaves)
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Parameter Optimization

Performance of a wave detection algorithms is typically evaluated using two
statistical measures: sensitivity (SE) and positive predictivity (+P); whereas
SE = TP/(TP + FN) and +P = TP/(TP + FP). Here, TP is the number of true
positives (a wave detected as an a wave), FN is the number of false negatives
(a wave has not been detected), and FP is the number of false positives (non-a
wave detected as an a wave). The SE reported the percentage of true a waves
that were correctly detected by the algorithm. The +P reports the percentage
of the detected a waves that were true a waves. Similarly, the same statistical
measures were used for evaluating the b waves.

The function of the a wave detector (cf. pseudocode of Algorithm I) has
five inputs: the PPG signal (PPGsignal), frequency band (F1–F2), event-related
durations W1,W2, and the offset (β). Any change in these parameters will
affect the overall performance of the proposed algorithm. These parameters are
interrelated and cannot be optimized in isolation. A rigorous optimization via
brute-force search, over all parameters, was conducted (cf. Table 2). This is a
time-consuming process, but it is required before making definitive claims. The
data used in this training phase were the PPG signals measured at after 1 hour
of exercise. Optimization of the beat detector’s spectral window for the lower
frequency resulted in a value within 0.5–1 Hz with the higher frequency within
7–15 Hz. The window size of the first moving average (W1) varied from 100 ms
to 200 ms, whereas the window size of the second moving average (W2) varied
from 1000 ms to 1.250 s. The offset α was tested over the range 0–10% of the
mean value of the squared filtered PPG signal. The QRS complex corresponds
roughly to the systolic duration (a wave duration) in APG, which is 100± 20
ms in healthy adults [24]. Interestingly, the algorithm uses an optimal value of
W1 (175 ms) corresponded to the a wave duration, and an optimal value of W2

(1000 ms) for the heartbeat duration. It is clear from Table 2 that the optimal
frequency range for the systolic detection algorithm over the database was 0.5–
15 Hz. Moreover, the optimal values for the moving-average window sizes and
offset are W1 = 175 ms, W2 = 1000 ms, and α = 0. The systolic algorithm was
adjusted with these optimal parameters. Then, the detector was tested on two
PPG datasets (PPG measured at rest and after 2 hours of exercise) without any
further adjustment.

Results and Discussion

Based on the parameter optimization step, the value of α = 0, which means
there is no need for an offset to improve the detection rate, as it was required
in detecting QRS in ECG signals [20] and systolic peaks in PPG signals [19].
This is perhaps because of the sharp clear peak (high amplitude) of the a wave
compared to the other APG waves (c, d, and e waves).

The a wave detection algorithms were tested on 27 subjects, with the APG
signals measured before exercise and after 2 hours of exercise; with a total
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of 54 recordings. The main objective was to evaluate the robustness of the
algorithms against the non-stationary effects, low SNR, and high heart rate
exhibited after exercise in conditions of heat stress. Under normal conditions,
analyzing stationary APG signals is straightforward; as a waves have similar
amplitudes, the statistical characteristics of the signals (i.e., mean and standard
deviation) do not change appreciably with time, and a simple threshold level
can effectively detect a waves. Figures 7(a) and 8(a) represent the APG signals
with stationarity effects for volunteer G2 (before exercise) and L3 (after 2 hours
of exercise)—all a waves are almost straight-lined. By contrast, under stress,
APG signals become non-stationary, which makes analysis difficult since the
standard deviation changes with time—note that a wave amplitudes vary with
time and simple level thresholds cannot optimally detect a waves. This has
a negative effect on detection algorithm performance, which is clearly seen in
Table 3 when the nine amplitude-dependent algorithms were applied to the APG
signals. Moreover, Matsuyama [5] reported that none of the nine amplitude-
dependent algorithms achieved acceptable a wave detection rates even after
optimizing the threshold values. Most of these nine algorithms, such as AF2,
AF3, FD1, FD2, DF1, and FS1, strictly followed the morphology of the QRS
complex. However, it is clear that amplitude-dependent algorithms are not
optimal methodologies for detecting a waves in APG signals under varying
conditions.

The proposed algorithm scored the highest sensitivity and positive predic-
tivity rates when compared to the nine algorithms. The proposed algorithm
appears to be more robust against effects of post-exercise measurement non-
stationarity. The results show that the proposed method was able to detect
a waves correctly in non-stationary APG signals before exercise, as shown in
Figure 7(b), and after 2 hours of exercise, as in Figure 8(b). Moreover, the pro-
posed algorithm was also able to detect a waves correctly in low amplitude APG
signals (small voltage), as shown in Figure 7(c), and after 2 hours of exercise,
as in Figure 8(c). However, the algorithm did incur a few instances of failure,
with exactly five FNs, as shown in Table 3. The cause of the failure was due
to the sudden drop in amplitude of the a waves in heat-stressed APG signals
(cf. Figure 9). The proposed method, however, handled varying amplitudes well
compared to the other nine algorithms. In fact, it is clear that the proposed
algorithm is more amplitude-independent and was able to detect the a waves in
various voltage ranges.

The analysis of a regular heart rhythm is simple, as the a waves are repeated
with an equally spaced pattern. This regularity helps the time-domain thresh-
old methodologies to detect a waves successfully. The regular heart rhythm is
called the normal sinus rhythm in APG signals [23], which means the rhythm
is constant and the occurrence of the next beat is predictable. The proposed
algorithm easily detects a waves correctly in APG signals with a regular heart
rhythm, as shown in Figure 7(a,b,c). The sensation of an irregular heart rhythm
is usually related to either premature beats or atrial fibrillation. The proposed
algorithm also successfully detected the a waves with premature beats in both
conditions at rest and after exercise, as shown in Figures 7(d) and 8(d).
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As the detection of b waves depends on the detection of a waves, the perfor-
mance of the b wave detection scored almost the same result as the a detection
algorithm. Because the proposed b detection incurred only one instance of fail-
ure, which is a TP shown in Figure 9, the +P becomes 99.95%. This result
reflects the robustness of the proposed b detection algorithm against noisy APG
signals.

Limitations of the Study and Future Work

One of the next steps regarding the results of this study is to examine the
correlation of the a/b ratio—based on the accurately detected a and b waves—
using APG signals with age, body mass index, and core temperature. Moreover,
there is a need for developing an algorithm that detects the c, d, and e waves.

The proposed algorithm was only tested on normotensive young subjects.
The physiology of the photoplethysmogram significantly changes according to
health status. As such, the robustness of the proposed algorithm needs to be
verified by a study in unhealthy subjects—to diagnose and monitor abnormali-
ties such as arrhythmia, hypertension, diabetes and hyperlipidemia.

It is important to note that the number of PPG records (total of 27) used
in the training was modest. A larger sample size and a more diverse data set
are needed in order to generalize the findings of this study. Moreover, sampling
the PPG signals at a higher rate (above 200 Hz) is required to capture the b
waves with greater fidelity. The evaluation of a wave detection was challenging
in this study because the number of annotated beats did not allow all possible
morphologies found in APG signals under conditions of heat stress to be well
represented. To our knowledge, there is no available APG database measured
after heat stress that would allow a more thorough assessment and comparison
of the tested algorithms.

Conclusion

For all nine QRS algorithms, the detection errors arose from a variety of factors
including the existence of irregular heartbeats, low-amplitude peaks, and signals
with non-stationary effects. The application of an event-related dual moving
average would allow the accurate, computationally simple algorithm we propose
to be used for real-time applications and the processing of large databases. A
detection algorithm for a waves in APG signals measured after exercise has
not been previously addressed in the literature, with the exception of the work
of Matsuyama. However, it has been demonstrated that a robust algorithm
can be developed for detecting a waves in APG signals collected in a noisy
environment with high-frequency noise, low amplitude, non-stationary effects,
irregular heartbeats, and high heart rates. The a wave detection algorithm
was evaluated using 27 records, containing 1,540 heartbeats (584 heartbeats
measured at rest and 956 heartbeats measured after 2 hours of exercise), with
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an overall sensitivity of 99.78%, and the positive predictivity was 100%, while
the b detection algorithm scored an overall sensitivity of 99.78% and a positive
predictivity of 99.95%.
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Figure 1: Fingertip photoplethysmogram signal measurement [25]. (a)
Fingertip photoplethysmogram. (b) Second derivative wave of photoplethysmo-
gram. The photoplethysmogram waveform consists of one systolic wave and
one diastolic wave, while the second derivative photoplethysmogram waveform
consists of four systolic waves (a, b, c, and d waves) and one diastolic wave (e
wave).
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Figure 2: Flowchart of the knowledge-based a wave detection algo-
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interest based on prior knowledge), and thresholding (based on prior knowl-
edge).
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Figure 3: Fourier transform of noisy PPG signals: (a) PPG signal and
(b) Fourier transform (spectrum) of the PPG signal. The spectrum
illustrates peaks at the fundamental frequency of 50 Hz, as well as the second
and third harmonics at 100 Hz. The spectrum shows that the main energy of
the PPG signal lies below 20 Hz.
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Figure 4: The proposed algorithm output for PPG measured at rest
and after exercise.
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Figure 5: Demonstrating the effectiveness of using two moving averages
to detect a and b waves. (a) Two beats APG signal; (b) generating blocks
of interest after using two moving averages: the dotted black line is the first
moving average MApeak and the solid green line is the second moving average
MAbeat; and (c) the detected a and b waves after applying the thresholds. Here,
‘*’ represents the detected a wave and ‘+’ represents the detected b wave by
the proposed algorithm.
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Figure 7: Detected a and b waves in APG signals at rest (before ex-
ercise). It contains (a) stationary signals, (b) non-stationary signals, (c) low
amplitudes, and (d) irregular heart rhythm. Here, ‘*’ represents the detected a
wave and ‘+’ represents the detected b wave by the proposed algorithm.
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Figure 8: Detected a and b waves in APG signals after 2 hours of
exercise. It contains (a) stationary signals, (b) non-stationary signals, (c) low
amplitudes, and (d) irregular heart rhythm. Here, ‘*’ represents the detected a
wave and ‘+’ represents the detected b wave by the proposed algorithm.
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Figure 9: Instances of failure occurring with the proposed algorithm
(subject: A1 after 2 hours of exercise). Here, ‘*’ represents the detected
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false positive of the b wave, which was the only false positive inccurred by the
proposed b detection algorithm in the testing dataset.
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Tables

Table 1: A rigorous optimization over all parameters of the a wave
detection algorithm: frequency band, W1, W2, and the offset β. All
possible combinations of parameters (5,610 iterations) have been investigated
and sorted in descending order according to their overall accuracy. The data
used in this training phase were PPG measured after 1 hour of exercise, with
885 heartbeats. The overall accuracy is the average value of SE and +P.

Iterations
FrequencyA

Band
W1 W2

Offset
(%)

SEA
(%)

+PA
(%)

Overall
Accuracy

(%)
1 0.5-15 Hz 35 200 0 99.72 100.00 99.86

2 0.5-11 Hz 25 200 0 99.92 99.78 99.85

3 1-15 Hz 35 200 0 99.68 100.00 99.84

4 0.5-13 Hz 35 200 0 99.67 100.00 99.84

5 0.5-14 Hz 20 220 0 100.00 99.64 99.82

6 1-14 Hz 35 200 0 99.64 100.00 99.82

7 0.5-14 Hz 20 200 0 99.92 99.71 99.82

8 0.5-14 Hz 20 210 0 99.92 99.71 99.82

9 0.5-13 Hz 25 200 0 99.84 99.78 99.81

10 1-14 Hz 25 200 0 99.84 99.78 99.81

11 1-14 Hz 25 210 0 99.84 99.78 99.81

12 0.5-13 Hz 20 200 0 99.92 99.66 99.79

13 1-15 Hz 30 200 0 99.75 99.82 99.79

14 0.5-15 Hz 30 200 0 99.68 99.89 99.78

15 1-9 Hz 35 200 0 99.55 100.00 99.78

16 0.5-12 Hz 25 220 0 100.00 99.55 99.78

17 0.5-14 Hz 35 200 0 99.54 100.00 99.77

18 1-15 Hz 30 250 0 99.75 99.79 99.77

19 0.5-15 Hz 25 200 0 99.92 99.61 99.76

20 0.5-12 Hz 25 200 0 99.84 99.68 99.76

. . . . . . .

. . . . . . .

. . . . . . .
5606 0.5-8 Hz 40 230 10 90.22 99.88 95.05
5607 0.5-7 Hz 40 230 9 89.80 99.88 94.84
5608 0.5-7 Hz 40 240 9 89.96 99.68 94.82
5609 0.5-7 Hz 40 230 10 89.21 99.88 94.55
5610 0.5-7 Hz 40 240 10 89.38 99.68 94.53
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Table 2: Performance of the proposed a wave detection algorithm
on the testing dataset (APG signals measured at rest and after 2
hours of exercise). The PPG signals were collected from 27 subjects for
20 seconds during the 5 minutes break between each exercise [5]. To compare
the performance of the proposed algorithm with the nine algorithms [5], two
statistical measures were used: SE = TP/(TP + FN) and +P = TP/(TP + FP),
where TP is the number of true positives (a wave detected as a wave), FN is
the number of false negatives (a wave has not been detected), and FP is the
number of false positives (non-a wave detected as a wave).

Before3Exercise After 2 Hours3of3Exercise

Record
No3of3
beats

TP FP FN Se3(L) +P3(L)
No3of3
beats

TP FP FN Se3(L) +P3(L)

A1 26 26 0 0 100 100 43 41 0 2 95.34 100

A2 24 24 0 0 100 100 47 47 0 0 100 100

B1 17 17 0 0 100 100 44 43 0 1 97.72 100

B2 26 26 0 0 100 100 38 38 0 0 100 100

C2 20 20 0 0 100 100 37 37 0 0 100 100

C3 20 20 0 0 100 100 23 23 0 0 100 100

D2 22 22 0 0 100 100 39 39 0 0 100 100

D3 19 19 0 0 100 100 27 27 0 0 100 100

E1 22 22 0 0 100 100 30 30 0 0 100 100

E2 22 22 0 0 100 100 30 30 0 0 100 100

E3 19 19 0 0 100 100 38 38 0 0 100 100

G2 30 30 0 0 100 100 49 48 0 1 97.95 100

G3 19 19 0 0 100 100 42 41 0 1 97.61 100

H3 23 23 0 0 100 100 32 32 0 0 100 100

I1 22 22 0 0 100 100 35 35 0 0 100 100

I2 17 17 0 0 100 100 31 31 0 0 100 100

J2 23 23 0 0 100 100 41 41 0 0 100 100

L2 24 24 0 0 100 100 37 37 0 0 100 100

L3 24 24 0 0 100 100 39 39 0 0 100 100

N2 18 18 0 0 100 100 24 24 0 0 100 100

N3 20 20 0 0 100 100 31 31 0 0 100 100

O1 24 24 0 0 100 100 33 33 0 0 100 100

O2 17 17 0 0 100 100 34 34 0 0 100 100

P1 26 26 0 0 100 100 34 34 0 0 100 100

P2 20 20 0 0 100 100 34 34 0 0 100 100

Q1 22 22 0 0 100 100 28 28 0 0 100 100

Q2 18 18 0 0 100 100 36 36 0 0 100 100
27 

volunteers 584 584 0 0 100 100 956 951 0 5 99.57 100
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Table 3: Comparison of different a wave detection performance on the
testing dataset (APG signals measured at rest and after 2 hours of
exercise). The PPG signals were collected from 27 subjects for 20 seconds dur-
ing the 5 minutes break between each exercise [5]. To compare the performance
of the proposed algorithm with the nine algorithms [5], two statistical measures
were used: SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the
number of true positives (a wave detected as a wave), FN is the number of
false negatives (a wave has not been detected), and FP is the number of false
positives (non-a wave detected as a wave). Here, NA stands for Not Applied,
while NaN stands for Not-a-Number.

Algorithm
TP
(%)

FN
(%)

FP
(%)

Se
(%)

+P
(%)

ThresholdDValues

THR1 THR2 THR3

ProposedD
algorithm

100 0.32 0 99.78 100 MAbeat + α W2 NA

AF1D 69.5 7.5 30.5 90.25 69.5 0.31 0.0001 -0.001
AF2D 0.018 0.27 99.98 6.25 0.018 0.21 0.75 NA
AF3D 0 0 100 NaN 0 62 NA NA
FD1D 0.27 2.8 99.73 8.79 0.27 0.099 NA NA
FD2D 0 0 100 NaN 0 150 NA NA
DF1D 0 0 100 NaN 0 21 NA NA

DF2 48.8 14.2 51.2 77.46 48.8 1 0.06 NA

FS1D 2.42 0.3 97.58 88.97 2.42 154.5 NA NA
FS2D 42.46 6.9 57.54 86.02 42.46 0.55 0.47 NA
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