STATISTICAL PERFORMANCE PROVISIONING AND ENERGY EFFICIENCY IN DISTRIBUTED COMPUTING SYSTEMS

Nikzad Babaii Rizvandi

Supervisors: Prof.Albert Y.Zomaya Prof. Aruna Seneviratne

OUTLINE

- Introduction
- Background
- Our research direction
- Part 1 Energy efficiency in Hardware using DVFS
 - Background
 - Multiple frequencies selection algorithm
 - Observations and mathematical proofs
- Part 2 Statistical performance provisioning for jobs on MapReduce framework
 - Background
 - Statistical pattern matching for finding similarity between MapReduce applications → grouping/ classification
 - Statistical learning for performance analysis and provisioning of MapReduce jobs → modeling

INTRODUCTION

- World data centres used*
 - 1% of the total world electricity consumption in 2005
 - equivalent to about seventeen 1000MW power plants
 - growth of around 76% in five years period (2000-2005, 2005-2010)
- Improper usage of 44 million servers in the world **
 - Produce 11.8 million tons of carbon dioxide
 - Equivalent of 2.1 million cars

* Koomey, J.G., "Worldwide electricity used in data centres", Environ.Res. Lett., 2008
** Alliance to Save Energy (ASE) and 1E, "Server Energy and Efficiency Report," 2009

INTRODUCTION

- U.S. data centres used 61 billion kWh of electricity in 2006**
 - 1.5% of all U.S. electricity consumption
 - double compare to 2000
 - Estimation of 12% growth per year
- Improper usage of server in U.S.
 - produces 3.17 million tons of carbon dioxide
 - Equal to 580,678 cars

* Koomey, J.G. ,"Worldwide electricity used in data centres", Environ.Res. Lett., 2008
** Alliance to Save Energy (ASE) and 1E, "Server Energy and Efficiency Report," 2009

ENERGY CONSUMPTION IN DISTRIBUTED SYSTEMS

OUR RESEARCH

- Work on MapReduce framework
- Grouping/classifying MapReduce applications
- Modeling and provisioning completion time of MapReduce jobs
 - Proposing Multiple Frequency Selection algorithm using DVFS
- Mathematically proving of efficiency of this algorithm

PART 1 - ENERGY EFFICIENCY IN DISTRIBUTED COMPUTING SYSTEMS USING DVFS

BACKGROUND – Dynamic Voltage Frequency Scaling

• In CMOS circuits:
$$\begin{cases} E = kfv^2t \\ f \propto v \end{cases} \Rightarrow E \propto f^3t$$

• Example:

$$f \to f' = \frac{f}{2} \Rightarrow \begin{cases} t' = 2t \\ E' = k(f')^2 t' = k \left(\frac{f^3}{8}\right)(2t) = \frac{E}{4} \end{cases}$$

BACKGROUND – Dynamic Voltage Frequency Scaling

- Each task has a maximum time restriction.
- In hypothetical world
 - processors has continuous frequency.
 - For k^{th} task, Optimum Continuous Frequency $(f_{optimum}^{(k)})$ is a frequency that uses the maximum time restriction of the task.

BACKGROUND – Dynamic Voltage Frequency Scaling

- In reality
 - processors has a discrete set of frequencies $\{f_1 > \cdots > f_N\}.$
 - The best frequency is slightly over $f_{optimum}^{(k)}$.

BACKGROUND – Energy-Aware Task Scheduling Using DVFS

• Research question:

What is the suitable frequency selection to schedule tasks on a set of processors (1) to meet tasks' time restrictions, (2) to consume less energy

• Energy-aware scheduling scheme:

 Optimize a new cost function including energy Cost function = f(Makespan, energy)

e.g.,

Cost function = $\alpha \times Makespan + \beta \times Energy$

BACKGROUND – Energy-Aware Task Scheduling Using DVFS

- Slack reclamation
 - On top of scheduled tasks
 - Any slack on processors is used to reduce the speed of running task

OUR WORK – Multiple Frequency Selection (MFS-DVFS) for Slack Reclamation

- Current scheme: use one frequency for a task (RDVFS algorithm)
- Our idea: use linear combination of all processor's frequencies for each task.

OUR WORK - Optimization Problem in MFS-DVFS

In literature: P_d(f, v) = kf v²
For kth task in scheduling

$$\begin{cases} Minimize : E^{(k)} = \sum_{i=1}^{N} t_i^{(k)} P_d(f_i, v_i) + P_{Idle} \left(T^{(k)} - \sum_{i=1}^{N} t_i^{(k)} \right) \\ subject to: \\ 1 \cdot \sum_{i=1}^{N} t_i^{(k)} f_i = K^{(k)} \\ 2 \cdot \sum_{i=1}^{N} t_i^{(k)} \le T^{(k)} \\ 3 \cdot t_i^{(k)} \ge 0, \quad for \ i = 1, 2, ..., N \end{cases} \xrightarrow{\text{Power}} t_i^{(k)}$$

MFS-DVFS-Algorithm

Input: the scheduled tasks on a set of P processors

- 1. For k^{th} task $(A^{(k)})$ scheduled on processor P_j
- 2. Solve optimization problem by linear programming
- 3. end for
- 4. return (the voltages and frequencies of optimal execution of the task)

- In literature: $P_d(f, v) = kfv^2$
- Generalization: $P_d(f, v)$
 - If $(f_i, v_i) < (f_j, v_j)$ then $P_d(f_i, v_i) < P_d(f_j, v_j)$
- Observation #1
 - In hypothetical world, the cont. frequency that uses maximum time restriction of k^{th} task gives the optimum energy saving $(f_{optimum}^{(k)})$
- Observation #2
 - For k^{th} task, always up to two voltage-frequencies are involved in optimal energy consumption $(f_i < f_j)$
 - Proof: theorem 1, 2

• Observation #3

- $f_i < f_{optimum}^{(k)} < f_j$
- Proof: lemma 1, 2
- Observation #4
 - The associated time for these frequencies (t_i, t_j) is

$$\begin{cases} t_i^{(k)} = \frac{K^{(k)} - T^{(k)} f_i}{f_j - f_i} \\ t_j^{(k)} = \frac{T^{(k)} f_j - K^{(k)}}{f_j - f_i} \end{cases}$$

• Proof: Corollary 1

• Observation #5

• The consumed energy of processor for this task associated with these two voltage-frequencies is

$$E^{(k)} = \frac{T^{(k)}f_j - K^{(k)}}{f_j - f_i} P_d(f_i, v_i) + \frac{K^{(k)} - T^{(k)}f_i}{f_j - f_i} P_d(f_j, v_j)$$

- Proof: Corollary 2
- Observation #6
 - Using less time to execute the task results in more energy consumption
 - Proof: theorem 3

- In a simplified version, $f \propto v$ then $P_d(f,v) = \lambda f^3$
- Observation #7
 - These two frequencies are neighbors. i.e., two immediate frequencies around $f_{optimum}^{(k)}$
 - Proof: theorem 4, 5

MFS-DVFS – New Algorithm

Input: the scheduled tasks on a set of P processors **1.** For k^{th} task $(A^{(k)})$ scheduled on processor P_j

- 2. Calculate $f_{optimum}^{(k)}$
- 3. Select the neighbour frequencies in the processor's frequency set before and after $f_{optimum}^{(k)}$. These frequencies are $f_{RD}^{(k)}$ and $f_{RD-1}^{(k)}$.
- 4. Calculate associated times and energy consumption.
- 5. Select $(f_{RD}^{(k)}, f_{RD-1}^{(k)})$ associated to the lowest energy for this task

6. end for

return (individual frequencies pair for execution of each task)

EXPERIMENTAL RESULTS - Simulator

• Simulation settings

- Scheduler
 - List scheduler
 - List scheduler with Longest Processing Time First (LPT)
 - List scheduler with Shortest Processing Time First (SPT)
- Processor power model *
 - Transmeta Crusoe
 - Intel Xscale
 - Two synthetic processors

EXPERIMENTAL RESULTS - Simulator

- Task graphs (DAG)
 - Random
 - LU-decomposition
 - Gauss-Jordan
 - Assumption: switching time between frequencies can be ignored compare to task execution time
- Experimental parameters

Parameter	Value	
# of tasks	100, 200, 300, 400, 500	
# of processors	2, 4, 8, 16, 32	

EXPERIMENTAL RESULTS – <u>Results (1)</u>

List Scheduling LPT

110

Number of tasks

EXPERIMENTAL RESULTS – Results (2)

EXPERIMENTAL RESULTS – Results (3)

Experiment	Random tasks	Gauss- Jordan	LU- decomposition
RDVFS	13.00%	0.1%	24.8%
MFS-DVFS	14.40%	0.11%	27.0%
Optimum Continuous Frequency	14.84%	0.14%	27.81%

PART 2 – PERFORMANCE ANALYSIS AND PROVISIONING IN MAPREDUCE CLUSTERS

BACKGROUND-MapReduce

- A parametric distributed processing framework for processing large data sets.
- Introduced by Google in 2004.
- Typically used for distributed computing on clusters of computers.
- Widely used in Google, Yahoo, Facebook and LinkedIn.
- Hadoop is famous open source version of MapReduce developed by Apache

MOTIVATION

- Many users have job *completion time goals*
- There is strong correlation between completion time and values of configuration parameters
 - No support from current service providers, e.g. Amazon Elastic MapReduce
 - Sole responsibility of user to set values for these parameters.

• Our research work

- Calculate similarity between MapReduce applications. It is too likely similar applications show similar performance for the same values of configuration parameters.
- Estimate a function to model the dependency between completion time and configuration parameters by using Machine Learning techniques on historical data.

CLASSIFICATION

• Classification

- Two MapReduce applications belong to the same group if they have *similar* CPU utilization pattern for several identical jobs.
- An identical job in two applications means they run with
 the same values for configuration parameters
 the same size of small input data
 - the same size of small input data.
- hypothesis
 - Similar Applications share the same optimal values for the configuration parameters.
 - obtain the optimal values of configuration parameters for one application and use for others in the same group.

CLASSIFICATION - Uncertainty

• Uncertainty in CPU utilization pattern

• Variation in values of each point in CPU utilization pattern for identical jobs of an application

time

CLASSIFICATION – Similarity (1)

• High similarity is equal to low distance

• Current scheme

- Average values of each point in patterns
- Apply Dynamic Time Warping (DTW) on average CPU patterns → patterns become the same length
- Calculate Euclidean distance between two average patterns (i.e., $\varphi_{avr.}$ and $\chi_{avr.}$)

$$\sum_{i=1}^{N} (\varphi_{avr.}[i] - \chi_{avr.}[i])^2 \le r$$

• *r* predefined distance threshold

CLASSIFICATION – Similarity (2)

• Our idea*

- Comes from computational finance background.
- Each point in the pattern has a Gaussian distribution.

* N.B.Rizvandi, et al., "A Study on Using Uncertain Time Series Matching Algorithms in Map-Reduce Applications", Concurrency and Computation: Practice and Experience, 2012

32

CLASSIFICATION – Similarity (3)

• Calculate $r_{boundry}$ as

$$r_{boundry} = \frac{r_{boundry,norm}^2 - \sum_{i=1}^N E(D^2[i])}{\sqrt{\sum_{i=1}^N Var(D^2[i])}}$$
$$r_{boundry,norm} = \sqrt{2} \times \operatorname{erf}^{-1}(2\tau - 1)$$

- If choose $r \leq r_{boundry}$, this guarantees that $P(DST(\varphi_u, \chi_u) \leq r_{boundry}) \geq \tau$
- So, $r_{boundry}$ is the minimum distance between two patterns with probability τ P(DST(φ_u, χ_u) = $r_{boundry}$) = τ

* N.B.Rizvandi, et al., "A Study on Using Uncertain Time Series Matching Algorithms in Map-Reduce Applications", Concurrency and Computation: Practice and Experience, 2012

33

CLASSIFICATION – technique

Set pre-defined Probability threshold ($\tau = 0.95$)

For the same input data size and configuration parameters' values

Run applications φ and χ ten times

Calculate mean and variance of φ and χ at each point in pattern

Endfor

Calculate joint mean and variance of distance between φ and χ from Eqns. 5 and 6*

Calculate r_{boundry} from Eqn.10*

Two applications with lowest $r_{boundry}$ has highest similarity and can be in the same group.

* N.B.Rizvandi, et al., "A Study on Using Uncertain Time Series Matching Algorithms in Map-Reduce Applications", Concurrency and Computation: Practice and Experience, 2012

EXPERIMENTAL RESULTS – Setting

• Hadoop cluster settings

- Five servers, dual-core
- Xen Cloud Platform (XCP)
- Xen-API to measure performance statistics
- 10 Virtual machines
- Application settings
 - Four legacy applications: WordCount, TeraSort, Exim Mainlog parsing, Distributed Grep
 - Input data size
 - 5GB, 10GB, 15GB, 20GB
 - # of map/reduce tasks

• 4, 8, 12, 16, 20, 24, 28, 32

Total number of runs in our experiments
08×8×5×4×10×4 = 51200

EXPERIMENTAL RESULTS – <u>Results</u> (1)

WordCount			Exim MainLog pars	ing	
		<i>S</i> -1	S-2	<i>S</i> -3	<i>S</i> -4
	S-1	24044	117017	94472	228071
	S-2	80648	64063	58351	138222
	<i>S</i> -3	79431	63232	54309	104255
	<i>S</i> -4	147014	83655	81434	70427
			Exim MainLog pars	ing	
Terasort		S-1	<i>S</i> -2	<i>S</i> -3	<i>S</i> -4
	S-1	27400	65102	65606	132799
	<i>S</i> -2	155038	67293	68455	70198
	<i>S</i> -3	123668	76859	56114	76589
	<i>S</i> -4	166234	77829	81751	74693
		WordCount			
Distributed Grep		<i>S</i> -1	S-2	<i>S</i> -3	<i>S</i> -4
	S-1	21529	105309	90012	199451
	<i>S</i> -2	79965	62890	68553	122279
	<i>S</i> -3	77549	62949	51876	101280
	<i>S</i> -4	142703	83089	72987	69927

 $r_{boundry}$ between the applications for $\tau = 0.95$ for 5G of input data on 10 virtual nodes.

EXPERIMENTAL RESULTS – <u>Results (2)</u>

The size of input data vs. $r_{boundry}$ for $\tau = 0.95$ for 5G, 10G, 15G and 20G of input data on 10 virtual nodes.

37

HOW TO USE THIS TECHNIQUE

- For frequent running jobs (e.g., Indexing, Sorting, Searching), run jobs with different values of conf. parameters
- For a new job, try to find most similar application in DB (using this algorithm). Then use its optimal values of parameters for running the new job.

MOTIVATION

- Many users have job *completion time goals*
- There is strong correlation between completion time and values of configuration parameters
 - No support from current service providers, e.g. Amazon Elastic MapReduce
 - Sole responsibility of user to set values for these parameters.

• Our research work

- Calculate similarity between MapReduce applications. It is too likely similar applications show similar performance for the same values of configuration parameters.
- Estimate a function to model the dependency between completion time and configuration parameters by using Machine Learning techniques on historical data.

39

PERFORMANCE MODELLING AND PROVISIONING – Our idea (1)

PERFORMANCE MODELLING AND PROVISIONING – Our idea (2)

PERFORMANCE MODELLING AND PROVISIONING – Our idea (3)

- Prediction accuracy
 - Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{\sum_{i=1}^{M} \frac{\left| t_{exc.}^{(i)} - t_{exc.}^{(i)} \right|}{t_{exc.}^{(i)}}}{M}$$

• R^2 prediction accuracy

$$R^{2} = 1 - \frac{\sum_{i=1}^{M} (t_{exc.}^{(i)} - t_{exc.}^{(i)})^{2}}{\sum_{i=1}^{M} (t_{exc.}^{(i)} - \sum_{r=1}^{M} \frac{t_{exc.}^{(r)}}{M})^{2}}$$

EXPERIMENTAL RESULTS – Setting

• Hadoop cluster settings

- Five servers, dual-core
- SysStat to measure performance statistics
- Hadoop 0.20.0
- Application settings
 - Three applications: WordCount, TeraSort, Exim Mainlog
 - Input data size
 - 3GB, 6GB, 8GB, 10GB
 - # of map/reduce tasks
 - ${\color{blue}\circ}$ 80 number randomly chosen between 4 to 100
 - 56 experiments for model estimation, rest for model testing

EXPERIMENTAL RESULTS- Results (1)

44

EXPERIMENTAL RESULTS– Results (3)

	MAPE	R² prediction accuracy
WordCount	1.51%	0.83
Exim MainLog	3.1%	0.76
parsing		
TeraSort	2.33%	0.79

HOW TO USE THESE TECHNIQUES

- For frequent running jobs (e.g., Indexing, Sorting, Searching), run jobs with different values of conf. parameters
- Fit a model (based on second technique) and calculate the optimal values of parameters which minimizes completion time.
- Put this application + optimal values into DB
- For a new job, try to find most similar application in DB (using first technique). Then use its optimal values of parameters for running the new job.
- Reducing completion time indirectly reduces energy consumption.

References

- 1) Koomey, J.G. ,"Worldwide electricity used in data centres", Environ.Res. Lett., 2008
- 2) Alliance to Save Energy (ASE) and 1E, "Server Energy and Efficiency Report," 2009
- 3) Nikzad Babaii Rizvandi, et.al, "Multiple Frequency Selection in DVFS-Enabled Processors to Minimize Energy Consumption," in *Energy Efficient Distributed Computing*, 2011, John Wiley Publisher
- 4) Nikzad Babaii Rizvandi, et.al, "Some observations on Optimal Frequency Selection in DVFS-based Energy Consumption Minimization in Clusters," *Journal of Parallel and Distributed Computing (JPDC), 2011.*
- 5) Nikzad Babaii Rizvandi, et.al, "Linear Combinations of DVFS-enabled Processor Frequencies to Modify the Energy-Aware Scheduling Algorithms," *CCGrid 2010*
- 6) Nikzad Babaii Rizvandi, et.al, "A Study on Using Uncertain Time Series Matching Algorithms in Map-Reduce Applications", Concurrency and Computation: Practice and Experience, 2012
- 7) Nikzad Babaii Rizvandi, et.al, "Network Load Analysis and Provisioning for MapReduce Applications", *PDCAT-2012*
- 8) "Data-Intensive Workload Consolidation on Hadoop Distributed File System", Grid'12
- 9) Nikzad Babaii Rizvandi, et.al, "On Modelling and Prediction of Total CPU Utilization for MapReduce Applications", *ICA3PP 2012*

47