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Abstract. The study of magnetic fields produced by steady currents is a full-valued phys-
ical theory which like any other physical theory employs a certain mathematics. This theory
has two limiting cases in which source of the field is confined on a surface or a curve. It
turns out that mathematical methods to be used in these cases are completely different
and differ from from that of the main of the main part of this theory, so, magnetostatics
actually consists of three distinct theories. In this work, these three theories are discussed
with special attention to the case current carried by a curve. In this case the source serves
as a model of thin wire carrying direct current, therefore this theory can be termed mag-
netostatics of thin wires. The only mathematical method used in this theory till now, is
the method of Green’s functions. Critical analysis of this method completed in this work,
shows that application of this method to the equation for vector potential of a given current
density has no foundation and application of this method yields erroneous results

1. Introduction

Magnetostatics is an integral part of classical electrodynamics which describes magnetic
fields produced by steady current densities. Usually, magnetic field is represented by its
strength H⃗ which obeys a shortened version of one of Maxwell equations

(1.1) ∇× H⃗ =
4π

c
J⃗

where J⃗ stands for the current density. This vector is constrained with the electric charge
conservation law, which in stationary case takes the form

(1.2) ∇ · J⃗ = 0.

Besides, magnetic strength obeys another Maxwell equation

∇ · H⃗ = 0

which signifies non-existence of magnetic monopoles. This equation signifies also that there
exists a vector potential A⃗ defined by the equation

(1.3) H⃗ = ∇× A⃗.

Hereafter, magnetic field is presented by the vector field A⃗.
Substituting the equation (1.3)into the shortened Maxwell equation (1.2) turns it into the

field equation for the vector potential

(1.4) ∇×∇× A⃗ =
4π

c
J⃗.
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Since this moment on, one can consider magnetostatics to be a full-valued physical theory
because it possesses a certain physical contents and a certain mathematical structure. The
earlier is the study of stationary magnetic fields produced by steady sources and the latter
is specified by the field equation and some linear functional space of its solutions.

2. The structure of magnetostatics

There exist three kinds of supports of current density which have dimensions ranging from
1 to 3 that actually divides magnetostatics into three distinct theories. Below we discuss all
of them and describe their mathematical structures. Thereby, we show that two of them are
built properly and then pass to the third one. It turns out that mathematical structure of
the third one is based on the notion of Green’s function, that gives one a reason to explore
the problem of existence of Green’s function for the field equation (1.4). Solution of this
problem is presented in the end of this work.

In case of dimension 3 it is convenient to employ orthogonal sets of solutions of the vector
wave equation

(2.1) ∇×∇× u⃗ = λu⃗.

It is evident that solutions of this equation are particular solutions of the field equation
1.4 with current density and vector potential of same form. These vector fields constitute
an orthogonal set in a functional space of magnetic strengths and current densities. An
arbitrary current density can be decomposed over this set that turns the field equation into
an algebraic equation for the decomposition coefficients. This fact provides an approach to
the field equation and specifies mathematical structure of the main part of magnetostatics.
Besides, this theory possesses two limiting cases in which this mathematical structure does
not work. They are discussed below.

Under some physical conditions electric currents flow only on a surface. In this case it
can only be represented as surface current density that completely changes mathematical
structure of this limiting case of the theory. Since a surface has measure zero, magnetic
strength in question is curl-free almost everywhere, hence, there exists a scalar potential Φ
for it so that H⃗ = ∇Φ almost everywhere. Evidently, this potential obeys Laplace equation
which thus underlies magnetostatics of surface currents. Any simple surface either divides
the space into two parts or has an edge. In any case, the most convenient approach is
to obtain the field from solutions of the Laplace equation and match their tangential and
normal derivatives on the surface due to the theory of double layer. Consequently, mathe-
matical structure of magnetostatics of surface currents is given by Cauchy problem for the
Laplace equation rather than a linear space of eigenfunctions of the double curl operator.
This limiting case can be considered as an independent theory because it possesses its own
mathematical structure not shared with the main theory.

There exists another limiting case in which support of current density is a curve. In
this case magnetic strength also possesses a scalar potential, but solutions of the Laplace
equation are useless due to lack of surface on which boundary conditions could be specified.
The case of straight line as the support of the current density will be considered below, but
it must be noted that magnetic field of a straight wire carrying direct current is known from
the Ampere law itself. In any case, mathematical structure of magnetostatics of thin wires



MATHEMATICAL THEORY OF MAGNETIC FIELD 3

differs from those considered above. This mathematical structure will be discussed below,
but before doing it, we need to clarify the problem definition.

Due to the charge conservation law, the value of current at each point of the curve is same,
so, this value can be put equal to unity. Therefore, the only specification of the source of
the field is the shape of the curve. Hence, in fact, the task is to find magnetic field of a
given curve. The only condition the curve must meet, is that it has no endpoints. All we
know about the field is that its strength H⃗ is continuous everywhere but the curve, and its
contour integrals over all simple circuits

(2.2)

∮
H⃗ d⃗l

are equal either to 2π if the circuit surrounds the curve, or to zero otherwise. The only
approach to the problem used till now is based on the method of Green’s functions.

3. Sufficient condition of existence of Green’s function for the shortened
Maxwell equation

The method of Green’s functions is believed to be applicable to any linear non-uniform
equation and was successfully applied to numerous problems of this kind. This method is
demonstrated the best way in electrostatics by applying it to the Poisson equation

△Φ = 4πρ.

Let P and P ′ be two arbitrary points in the space and Ψ(P, P ′) be potential produced by a
unit point-like charge placed in the point P ′, and measured in the point P . Then the entire
potential produced by a charge density ρ and measured in the point P is

(3.1) Φ(P ) =

∫
dP ′ρ(P ′)Ψ(P, P ′),

where dP ′ stands for the measure of volume integration over the space. The kernel of this
integral transformation Ψ(P, P ′) is termed the Green’s function for the Poisson equation.
Note that existence of this integral transformation is deduced from the assumption that
each point of the source of the field contributes independently, consequently, the source can
be divided into arbitrarily small parts so that one can pass to the limit in which the sum of
contributions turns into an integral. In other words, existence of independent contributions
of parts of the entire source constitutes a sufficient condition of existence of the integral
transformation (3.1) and, thereby, of the Green’s function itself. In this section we explore
existence of Green’s function for the field equation (1.4).

The reason to explore existence of Green’s function in this case comes from the additional
condition which the source must meet, namely, the charge conservation law presented in
the form of the equation (1.2). In other words, the question to be answered is, whether
the charge conservation law is compatible with the assumption that the entire current den-
sity can be divided into parts so that each of them contributes the entire vector potential
independently. Therefore, non-existence of Green’s function would signify that in general
the method gives wrong results. This may well happen because of the following. It is evi-
dent enough that if the current density J⃗ does not satisfy the equations (1.2), the equation
(1.4) with this current density as the right-hand side has no solutions. This fact reveals if
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one takes divergence of both sides and obtains a nonsense equation of the form 0 ̸= 0 that
signifies non-existence of vector potential to be produced by such a source. At the same
time, an integral transformation with any two-point Green’s function always exists. The
vector potential of a given current density J⃗(r⃗) obtained by the method of Green function
is presented in the book [1] and has the form

(3.2) A⃗ =
1

c

∫
J⃗(r⃗′)

|r⃗ − r⃗′|
dr⃗′.

In case of circular current loop, the method yields the following expression for the vector
potential in spherical coordinates:

(3.3) Aφ =
I

ca

2π∫
0

cosϕ′ dϕ′

(a2 + r2 − 2ar sin θ cosϕ′)1/2
.

If in this particular case the method gives a correct result it must be confirmed by substituting
the vector potential obtained into the field equation (1.4). So should be done in case of an
arbitrary curve, but the integral is too complicated, so, in general the method cannot be
verified this way. However, since this integral exists also for an arc of the loop which has
endpoints and hence, under no circumstances produces any vector potential, we have to test
foundations of the method.

If division of the current density into parts by dividing the space into pieces breaks the
charge conservation law, the integral transformation of the current density into the vector
potential produced by it, is not justified a priori. Now we show that indeed, such a division
of the source breaks the charge conservation law. For this end we introduce the following
notations. Let B be a piece of the space and ∂B be its boundary which is a simple (sphere-
like) surface in form. We introduce a step function θ as follows:

(3.4) θ(P ) =

{
1, P ∈ B
0, P /∈ B

and its gradient δ⃗ = ∇θ. Evidently, the vector field δ⃗ is singular. It has the δ-function
singularity on the surface ∂B and points inwards B being strictly orthogonal to the surface.

Let now J⃗ be a current density which satisfies the equation (1.2) and hence, produces a
certain magnetic field. The question is, whether so does the part of this source confined inside
the domain B. It does so if the current density restricted this way satisfies the equation (1.2).
That is what we are going to check out. As seen, this part of the source has current density
equal to θJ⃗ , so, it remains to substitute this vector into the equation. Taking divergence of
this vector gives a δ-function singularity on the surface ∂B:

∇ · (θJ⃗) = J⃗ · δ⃗ ̸= 0.

Hence, division of a current density by dividing the space in parts entails a fast breakdown
of the charge conservation law. This fact signifies that division of the current density by
dividing the space into pieces is incompatible with the charge conservation law, consequently,
an assumption of independent contributions of “elements of current” to the entire vector
potential, is erroneous. Hence, sufficient condition of applicability of the method of Green’s
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functions to the field equation (1.4) is broken. In the next section we formulate the necessary
condition of existence of Green’s function for vector potential.

4. Necessary condition

Till now there was no question of applicability of the method of Green’s functions to the
field equation (1.4) because the sufficient condition considered above, was always believed to
be completed. Now, it turns out that this condition is broken, therefore we have to return
to the very beginning and either justify the method or show that it does not work at all. In
fact, failure of one sufficient condition does not mean anything. However, since this moment
on, everything changes. In particular, the equation (3.3) which was believed to be correct
due to that condition, now needs to be tested another way that is very difficult.

The main reason why yet the method might be working consists in the following. Since
the equation (1.4) is linear, there exists a linear map J⃗ → A⃗. Since such a map exists only
for an entire source, it can only be an integral transformation. If the form of such an integral
transformation is given once and forever, the Green’s function exists and the method does
not need any justification. The main reason why the method might be wrong, is that there
is no guarantee that the source enters the integrand of this integral transformation 1.

The method might well work properly, if the following condition is completed: in all
particular cases the integral (3.2) provides a correct result. Evidently, this is the only
necessary condition which can be suggested in the situation encountered. Hence, if no
general proof the the method exists, only particular cases make sense. It must be pointed
out that verification of the method becomes an extremely difficult task, because now it is
not enough to write down an integral like that presented in the equation (3.3), it must be
taken and substituted into the field equation (1.4) and the equation must either turn into
an identity if the result is correct, or not otherwise. Every particular case which confirms
it, confirms only that the method gives a correct result in this particular case, but does not
justify the method in general case. At the same time, a single example in which the result
obtained is wrong, provides a proof that the method does not work at all. In other words, it
suffices to present a single example in which the method gives a wrong result to prove that
the vector potential cannot be represented in the form of integral transformation like (3.2)
that signifies non-existence of Green’s functions for the field equation. This will be done in
the next section.

5. Examples

In this section, we consider few examples of current density for which the integral (3.2)
can be taken analytically. We start with the simplest example of magnetic field of a thin
wire which is a straight line in form. Magnetic field of this source is well-known and the
integral (3.2) for it can be taken in analytical form. The result can be substituted into the
field equation (1.4). To complete the calculation we introduce round cylinder coordinates
{z, ρ, φ} in which the line coincides with the axis ρ = 0. The task is to take the integral
for the current density in question and check out if the vector potential obtained this way

1the author knows that it is not so
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yields the correct expression for the magnetic strength. Note that the vector potential has
only z-component and solution of the field equation is

Az = ± ln
ρ

a

where a is an arbitrary constant of dimension of length. Now, let us calculate the integral
(3.2) for the value of the z-component for a point with coordinates z = 0, an arbitrary value
of φ = 0 and some certain value of ρ which needs no special symbol. The integral has the
form ∫

dz√
z2 + ρ2

= arcsinh
z

ρ

and substituting the limits from z = −∞ to z = +∞ we find, first, that the integral
diverges and second, that arcsinh turns into natural logarithm. The earlier does not mean
that the result is physically erroneous, because the vector potential obtained yields the
correct expression for the strength after the following renormalization procedure is made:

∞∫
−∞

dz√
z2 + ρ2

= lim
b→∞

b∫
−b

dz√
z2 + ρ2

= 2 lim
b→∞

arcsinh bρ =

= 2 lim
b→∞

ln b
ρ = 2 lim

b→∞
(ln b− ln ρ) → ln ρ

where an infinite constant which does not contribute the strength, is subtracted. Besides,
we assume that a unit of length is used so that both a and ρ are dimensionless. The final
result gives the correct expression for Az.

The second and the third examples are presented by impossible current densities which do
not satisfy the equation (1.2) and which, nevertheless, play an important role in our proof
of non-existence of Green’s function for the equation (1.4). Consider a straight wire with
one endpoint, carrying a direct current. Though the charge conservation law is broken in its
endpoint and no vector potential exists for such a source, the integral (3.2) exists and can
be taken analytically. The conductor is presented by the half-line ρ = 0, z ≤ 0 in a round
cylinder coordinate system. Consider the integral for a point with coordinates z and ρ and
arbitrary value of the coordinate φ. The integral can be represented as follows:

Az =

0∫
−∞

dz√
(z − a)2 + ρ2

and it is convenient to divide the domain of integration into the half-line (−∞, a, ) and the
segment [a, 0]. The earlier undergoes renormalization and turns into logarithm as in the
previous case and the latter is found in tables of integrals:

(5.1) Az = ln ρ− arcsinh
a

ρ
.

The vector H⃗ = ∇ × A⃗ has no meaning of magnetic strength, but we introduce it as an
auxiliary object. This vector has only one non-zero component Hφ equal to

(5.2) Hφ = ρ
∂Az

∂ρ
= 1− z√

z2 + ρ2
.
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In the third case the current with magnitude one half flows out from the point z = 0, ρ = 0
in two opposite directions, thus, towards z = ±∞ that is impossible because this point must
be a source of electric charge. Nevertheless, we calculate the integral in question and find
that it is equal to the difference of two integrals of this form taken over the half-lines (−∞, 0)
and (0,∞) that gives

(5.3) Az = 2arcsin
a

ρ
.

Below we need representation of this vector in other coordinate systems. For example, if
in Cartesian coordinates the conductor coincides with the y-axis, one needs to make the
following substitutions:

z → y, ρ →
√
z2 + x2

that gives

Ay = arcsinh
y√

z2 + x2
.

Another coordinate system in which this result will be used is that of round cylinder coor-
dinates {z, ρ, φ} in which the line lies in the plane z = 0. In this system we have

y = ρ sinφ, dy = sinφ dρ+ ρ cosφ dφ, Ay dy = Aρ dρ+ Aφ dφ,

hence, we obtain from it that

Aρ = arcsinh
ρ sinφ√

z2 + ρ2 cos2 φ
, Aφ = arcsinh

ρ2 sinφ cosφ√
z2 + ρ2 cos2 φ

Though Aφ has no meaning of vector potential, we denote its curl H⃗ and evaluate the only
its component Hφ:

(5.4) Hφ = ρ
∂Aρ

∂z
= − 2zρ2 sin2 φ√

z2 + ρ2(z2 + ρ2 cos2 φ)
.

Now we can return to realistic current densities and find out the vector potential produced
by a T -wire. A T -wire consists of one straight line and one half-line orthogonal to it,
connected by its endpoint. Though this combination consists of impossible current densities,
the resulting current density considered below, is realistic. In this construction, a current
flows along the half-line up to the junction point and in two opposite directions on the
straight line outwards from the junction, so that magnitude of current in each branch is
equal to one half. Note that since the half-line and the straight line are orthogonal to each
other, they produce orthogonal components of the vector potential.

6. Non-existence of Green’s function for magnetic field

If the method of Green’s functions works properly, then the sum of expressions (5.2) and
(5.4) is equal to the φ-component of magnetic strength produced by the T -current considered
in the previous section. This allows one to take contour integrals (2.2) over circles of constant
ρ lying in planes z = const. Under z < 0 such a circuit surrounds a non-zero current and if
the expressions obtained are correct, it must be equal exactly to 2π and under z > 0 it must
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be exactly zero. However, none of these results comes out. For example, the integral which
should be equal to zero is equal to∫

H⃗ d⃗l = 2π

(
1− z√

z2 + ρ2

)
−

2π∫
0

2zρ2 sin2 φ dφ√
z2 + ρ2(z2 + ρ2 cos2 φ)

.

The second integral tends to zero under 0 < z → 0 whereas the first one does to 2π. In
general, this expression cannot be equal to zero because, on one hand, none of two terms is
zero and, on the other hand, one of them contains only even powers whereas another does
only odd powers of z. Thus, we have found an example of current for which the integral (3.2)
can be taken analytically and the curl of the vector field obtained has non-zero values of the
integral (2.2) over circles which do not surround any current. This example leaves no hopes
that the method of Green’s functions can give correct solutions of the equation (1.4). Before,
analysis of foundations of the method of Green’s functions showed that it suffices to find out
a single example in which it gives an erroneous result to draw a conclusion that this method
is not applicable. Non-applicability of this method signifies only that Green’s function for the
field equation (1.4) does not exist. As this verification demonstrated an apparent breakdown
of the equation, an example is found and non-existence of Green’s function for the equation
is proved.

7. Conclusions

Physically, electric current is always carried by a physical body which occupies a part
of the space. However, some conductors have specific shapes which allow one to neglect
their thickness so that the conductor can be considered to be a surface or a curve in form.
These idealizations create the corresponding limiting cases of the study of magnetic fields
of steady currents and it turns out that mathematical methods to be used in the original
magnetostatics and in these limiting cases are completely different. As a result, the study
divides into three distinct theories in which dimensions of the field source ranges from 1 to
3, which share common physical foundations, but have different mathematical structures.

Magnetostatics of surface currents has mathematical structure which consists of the the-
ories of potential double layer and of the Cauchy problem for the Laplace equation. This
part of magnetostatics is well-developed because its main equation is scalar. The point is
that standard texts on mathematical physics teach only how to solve scalar equations, one of
which the Laplace equation is. In other words, magnetic field of surface currents can always
be obtained by using mathematical methods created long ago. Two other parts of magneto-
statics have no well-known mathematical background, therefore, they are not developed so
well.

Magnetostatics in its original form has mathematical structure given by a set of particular
solutions of the vector wave equation (2.1), which constitute a basis in a linear functional
space of magnetic fields and current densities. Though this equation is not scalar and
standard texts on mathematical physics tell nothing about it, it can be solved in the most
general form in various coordinate systems. Hence, the main part of magnetostatics can be
developed properly as soon as all results on the theory of this equation are collected and
presented. This work would be completed long ago, but till now no good exposition of theory
of the equation (2.1) is presented in the literature.
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Unlike these two theories, magnetostatics of thin wires has no mathematical structure. For
long time it was believed that magnetic field of a thin wire can be obtained by the method
of Green’s function for the field equation (1.4), but, as was shown in this work, application
of this method has no foundation. Till now, there was no question of applicability of the
method to the equation because the method was believed to be applicable to any linear non-
uniform equation. As was shown above, in case of the vector wave equation it is not so due
to the charge conservation law. This fact, by itself does not mean that the method cannot
be applied and the crucial argument would be demonstration of an apparently erroneous
result which this method gives. Such a results was obtained in case of a T -shaped wire
carrying a bifurcating current. As such a demonstration is presented, no question remain
of inapplicability of the method. The result presented in this work, signifies that vector
potential cannot be expressed in the form (3.2), or, in other words, the equation (2.1) has
no Green’s function. Since no other approaches to the problem of magnetic field of this
source is known, failure of the only known approach deprives this theory of its mathematical
contents. Thus, only one of three theories which constitute the whole body of magnetostatics,
is developed properly whereas two others remain to be developed in the future.
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