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Abstract:

The postulate that coordinate and momentum representations are related to each
other by the Fourier transform has been accepted from the beginning of quantum
theory by analogy with classical electrodynamics. As a consequence, an inevitable
effect in standard theory is the wave packet spreading (WPS) of the photon coordinate
wave function in directions perpendicular to the photon momentum. This leads to
several paradoxes. The most striking of them is that coordinate wave functions of
photons emitted by stars have cosmic sizes and strong arguments indicate that this
contradicts observational data. We argue that the above postulate is based neither on
strong theoretical arguments nor on experimental data and propose a new consistent
definition of the position operator. Then WPS in directions perpendicular to the
particle momentum is absent and the paradoxes are resolved. Different components
of the new position operator do not commute with each other and, as a consequence,
there is no wave function in coordinate representation. Implications of the results
for entanglement, quantum locality and the problem of time in quantum theory are
discussed.
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1 Status of the position operator in quantum the-
ory

1.1 Historical reasons for choosing standard form of position
operator

It has been postulated from the beginning of quantum theory that the coordinate and
momentum representations of wave functions are related to each other by the Fourier
transform. One of the historical reasons was that in classical electrodynamics the
coordinate and wave vector k representations are related analogously and we postulate
that p = hk where p is the particle momentum. Then, although the interpretations
of classical fields on one hand and wave functions on the other are fully different,



from mathematical point of view classical electrodynamics and quantum mechanics
have much in common (and such a situation does not seem to be natural).

Similarity of classical electrodynamics and quantum theory is reflected
even in the terminology of the latter. The terms "wave function”, ”particle-wave
duality” and ”"de Broglie wave length” have arisen at the beginning of quantum era
in efforts to explain quantum behavior in terms of classical waves but now it is clear
that no such explanation exists. The notion of wave is purely classical; it has a
physical meaning only as a way of describing systems of many particles by their
mean characteristics. In particular, such notions as frequency and wave length can
be applied only to classical waves, i.e. to systems consisting of many particles. If
a particle state vector contains expli(pr — Et)/h], where F is the energy, then by
analogy with the theory of classical waves one might say that the particle is a wave
with the frequency w = E/h and the (de Broglie) wave length A = 27/|p|. However,
such defined quantities w and A are not real frequencies and wave lengths measured
on macroscopic level. A striking example showing that on quantum level A does not
have the usual meaning is that from the point of view of classical theory an electron
having the size of the order of the Bohr radius cannot emit a wave with A = 21em
(this observation has been pointed out to me by Volodya Netchitailo).

In quantum theory the photon and other particles are characterized by
their energies, momenta and other quantities for which there exist well defined oper-
ators while the notion of coordinates on quantum level is a problem which is inves-
tigated in the present paper. The term ”wave function” might be misleading since
in quantum theory it defines not amplitudes of waves but only amplitudes of proba-
bilities. So, although in our opinion the term ”state vector” is more pertinent than
"wave function” we will use the latter in accordance with the usual terminology, and
the phrase that a photon has a frequency w and the wave length A will be understood
only such that w = E/h and A = 27h/|p].

One of the examples of the above similarity follows. Consider a wave
function of the form v(r,t) = a(r,t)exp[iS(r,t)/h], where S(r,t) is the classical
action as a function of coordinates and time. Then

op(r,t) i 0S(r,t) 1 da(r,t)
or _[ﬁ or +a(r,t) or

J(r,t) (1)

and analogously for 0y (r,t)/0t. In the formal limit 7~ — 0 the second term in
the square brackets can be neglected and, as explained in textbooks on quantum
mechanics (see e.g. Ref. [1]) the Schrédinger equation becomes the Hamilton-Jacoby
equation. This situation is analogous to the approximation of geometrical optics in
classical electrodynamics (see e.g. Ref. [2]) when fields contain a rapidly oscillating
factor explip(r,t)] where the function ¢(r,t) is called eikonal. It satisfies the eikonal
equation which coincides with the relativistic Hamilton-Jacobi equation for a particle
with zero mass. This is reasonable in view of the fact that electromagnetic waves
consist of photons.



Another example follows. In classical electrodynamics a wave packet mov-
ing even in empty space inevitably spreads out and this fact has been known for a
long time. For example, as pointed out by Schrodinger (see pp. 41-44 in Ref. [3]), in
standard quantum mechanics a packet does not spread out if a particle is moving in a
harmonic oscillator potential in contrast to ”a wave packet in classical optics, which
is dissipated in the course of time”. However, as a consequence of the similarity, a
free quantum mechanical wave packet inevitably spreads out too. This effect is called
wave packet spreading (WPS) and it is described in textbooks and many papers (see
e.g. Refs. [4, 5] and references therein). In the present paper this effect is discussed
in detail and we argue that it plays a crucial role in drawing a conclusion on whether
standard position operator is consistently defined.

The requirement that the momentum and position operators are related to
each other by the Fourier transform is equivalent to standard commutation relations
between these operators and to the Heisenberg uncertainty principle (see Sec. 2).

A reason for choosing standard form of the position operator is described,
for example, in the Dirac textbook [4]. Here Dirac argues that the momentum and
position operators should be such that their commutator should be proportional to
the corresponding classical Poisson bracket with the coefficient ¢h. However, this
argument is not convincing because only in very special cases the commutator of two
physical operators is a c-number. One can check, for example, a case of momentum
and position operators squared.

In Ref. [6] Heisenberg argues in favor of his principle by considering
Gedankenexperiment with Heisenberg’s microscope. Since that time the problem has
been investigated in many publications. A discussion of the current status of the
problem can be found e.g. in Ref. [7] and references therein. A general opinion
based on those investigations is that Heisenberg’s arguments are problematic but the
uncertainty principle is valid, although several authors argue whether standard math-
ematical notion of uncertainty (see Sec. 2) is relevant for describing a real process of
measurement. However, a common assumption in those investigations is that one can
consider uncertainty relations for all the components of the position and momentum
operators independently. Below we argue that this assumption is not based on solid
physical arguments.

1.2 Problem of consistency of standard position operator

Usual arguments in favor of choosing standard position and momentum operators are
that these operators have correct properties in semiclassical approximation (see e.g.
Ref. [1]). However, this requirement does not define the operator unambiguously.
Indeed, if the operator B becomes zero in semiclassical limit then the operators A
and A + B have the same semiclassical limit.

One of the principles of physics is the correspondence one according to
which any new theory should reproduce results of the old well tested theory at some



conditions. As noted above, in the main approximation in 1/A the Schrédinger equa-
tion becomes the Hamilton-Jacoby equation if the coordinate wave function ¢ (r,t)
contains a factor exp[iS(r,t)/h]. In textbooks this is usually treated as the corre-
spondence principle between quantum and classical theories. However, the following
question arises.

As follows from Eq. (1), the Hamilton-Jacoby equation is a good approxi-
mation for the Schrédinger equation if the index of the exponent changes much faster
than the amplitude a(r,t). Is this correct to define semiclassical approximation by
this condition? Quantum theory fully reproduces the results of classical one when not
only this condition is satisfied but, in addition, the amplitude has a sharp maximum
along the classical trajectory. If the latter is true at some moment of time then, in
view of the WPS effect, one cannot gurantee that this will be true always.

At the beginning of quantum theory the WPS effect has been investigated
by de Broglie, Darwin and Schrodinger. The fact that WPS is inevitable has been
treated by several authors as unacceptable and as an indication that standard quan-
tum theory should be modified. For example, de Broglie has proposed to describe
a free particle not by the Schrodinger equation but by a wavelet which satisfies a
nonlinear equation and does not spread out (a detailed description of de Broglie’s
wavelets can be found e.g. in Ref. [8]). Sapogin writes (see Ref. [9] and references
therein) that ”Darwin showed that such packet quickly and steadily dissipates and
disappears” and proposes an alternative to standard theory which he calls unitary
unified quantum field theory.

At the same time, it has not been explicitly shown that numerical results
on WPS are incompatible with experimental data. For example, it is known (see Sec.
3) that for macroscopic bodies the effect of WPS is extremely small. Probably it is
also believed that in experiments on the Earth with atoms and elementary particles
spreading does not have enough time to manifest itself although we have not found an
explicit statement on this problem in the literature. According to our observations,
different physicists have different opinions on the role of WPS in different phenomena
but in any case the absolute majority of physicists do not treat WPS as a drawback
of the theory.

A natural problem arises what happens to photons which can travel from
distant objects to Earth even for billions of years. As shown in Sec. 10, standard
theory predicts that, as a consequence of WPS, wave functions of such photons will
have the size of the order of millions or billions kilometers or even more. Does this
contradict observations? We argue that it does and the reason of the paradox is
that standard position operator is not consistently defined. Hence the inconsistent
definition of the position operator is not only an academic problem but leads to the
above paradox.

In view of the fact that the coordinate and momentum representations
are related to each other by the Fourier transform, one might think that the position
and momentum operators are on equal footing. However, this is not the case for the



following reasons. In quantum theory each elementary particle is described by an
irreducible representation (IR) of the symmetry algebra. For example, in Poincare
invariant theory the set of momentum operators represents three of ten linearly inde-
pendent representation operators of the Poincare algebra and hence those operators
are consistently defined. On the other hand, among the representation operators there
is no position operator. So the assumption that the position operator in momentum
representation is ih0/0p should be substantiated.

Consider first a one-dimensional case. As argued in textbooks (see e.g.
Ref. [1]), if the mean value of the # component of the momentum p, is rather large,
the definition of the coordinate operator ihd/dp, can be justified but this definition
does not have a physical meaning in situations when p, is small. This is clear even
from the fact that if p, is small then exp(ip,x/h) is not a rapidly oscillating function
of x.

Consider now the three-dimensional case. If all the components p; (j =
1,2,3) are rather large then all the operators ih0/dp; can have a physical meaning.
A semiclassical wave function y(p) in momentum space should describe a narrow
distribution around the mean value pg. Suppose now that coordinate axes are chosen
such pg is directed along the z axis. Then the mean values of the x and y components
of the momentum operator equal zero and the operators ihd/0p,; cannot be physical
for j = 1,2, i.e. in directions perpendicular to the particle momentum. The situation
when a definition of an operator is physical or not depending on the choice of coor-
dinate axes is not acceptable. Hence standard definition of the position operator is
not physical.

1.3 When do we need position operator in quantum theory?

The position operator is used in many standard problems of quantum theory. For
example, one of the arguments in favor of its validity is that the nonrelativistic
Schrodinger equation correctly describes the hydrogen energy levels, the Dirac equa-
tion correctly describes fine structure corrections to these levels etc. Historically these
equations have been first written in coordinate space and in textbooks they are still
discussed in this form. However, from the point of view of the present knowledge
those equations should be treated as follows.

A fundamental theory describing electromagnetic interactions on quan-
tum level is quantum electrodynamics (QED). This theory proceeds from quantizing
classical Lagrangian which is only an auxiliary tool for constructing S-matrix. The
argument x in the Lagrangian density L(t,x) cannot be treated as a position operator
because L(t,x) is constructed from field functions which do not have a probabilistic
interpretation. When quantization is accomplished, the results of QED are formu-
lated exclusively in momentum space and the theory does not contain space-time at
all.

In particular, as follows from Feynman diagrams for the one-photon ex-



change, in the approximation (v/c)? the electron in the hydrogen atom can be de-
scribed in the potential formalism where the potential acts on the wave function in
momentum space. So for calculating energy levels one should solve the eigenvalue
problem for the Hamiltonian with this potential. This is an integral equation which
can be solved by different methods. One of the convenient methods is to apply the
Fourier transform and get standard Schrodinger or Dirac equation in coordinate rep-
resentation with the Coulomb potential. Hence the fact that the results for energy
levels are in good agreement with experiment shows only that QED defines the po-
tential correctly and standard coordinate Schrodinger and Dirac equations are only
convenient mathematical ways of solving the eigenvalue problem. For this problem the
physical meaning of the position operator is not important at all. One can consider
other transformations of the original integral equation and define other position op-
erators. The fact that for non-standard choices one might obtain something different
from the Coulomb potential is not important on quantum level. On classical level
the interaction between two charges can be described by the Coulomb potential but
this does not imply that on quantum level the potential in coordinate representation
should be necessarily Coulomb.

Let us also note the following. In the literature the statement that the
Coulomb law works with a high accuracy is often substantiated from the point of view
that predictions of QED have been experimentally confirmed with a high accuracy.
However, as follows from the above remarks, the meaning of distance on quantum level
is not clear and in QED the law 1/r? can be tested only if we assume additionally
that the coordinate and momentum representations are related to each other by the
Fourier transform. So a conclusion about the validity of the law can be made only
on the basis of macroscopic experiments. A conclusion made from the results of
classical Cavendish and Maxwell experiments is that if the exponent in Coulomb’s
law is not 2 but 2 4+ ¢ then ¢ < 1/21600. The accuracy of those experiments have
been considerably improved in the experiment [10] the result of which is ¢ < 2-107°.
However, the Cavendish-Maxwell experiments and the experiment [10] do not involve
pointlike electric charges. Cavendish and Maxwell used a spherical air condenser
consisting of two insulated spherical shells while the authors of Ref. [10] developed a
technique where the difficulties due to spontaneous ionization and contact potentials
were avoided. Therefore the conclusion that ¢ < 2-10~? for pointlike electric charges
requires additional assumptions.

Another example follows. It is said that the spatial distribution of the
electric charge inside a system can be extracted from measurements of form-factors
in the electron scattering on this system. However, the information about the ex-
periment is again given only in terms of momenta and conclusions about the spatial
distribution can be drawn only if we assume additionally how the position operator is
expressed in terms of momentum variables. On quantum level the physical meaning
of such a spatial distribution is not fundamental.

In view of the above discussion, since the results of existing fundamental



quantum theories describing interactions on quantum level (QED, electroweak the-
ory and QCD) are formulated exclusively in terms of the S-matrix in momentum
space without any mentioning of space-time, for investigating such stationary quan-
tum problems as calculating energy levels, form-factors etc., the notion of the position
operator 1s not needed.

However, the choice of the position operator is important in nonstationary
problems when evolution is described by the time dependent Schrodinger equation
(with the nonrelativistic or relativistic Hamiltonian). As follows from the correspon-
dence principle, quantum theory should reproduce the motion of a particle along the
classical trajectory defined by classical equations of motion. Hence the position op-
erator is needed only in semiclassical approximation and it should be defined from
additional considerations.

In standard approaches to quantum theory the existence of space-time
background is assumed from the beginning. Then the position operator for a parti-
cle in this background is the operator of multiplication by the particle radius-vector
r. As explained in textbooks on quantum mechanics (see e.g. Ref. [1]), the re-
sult —ihd/0r for the momentum operator can be justified from the requirement that
quantum theory should correctly reproduce classical results in semiclassical approx-
imation. However, as noted above, this requirement does not define the operator
unambiguously.

A standard approach to Poincare symmetry on quantum level follows.
Since Poincare group is the group of motions of Minkowski space, quantum states
should be described by representations of the Poincare group. In turn, this implies
that the representation generators should commute according to the commutation
relations of the Poincare group Lie algebra:

(P! P] =0 [P*, M) = —i(5"* P* — 1" P)
le, MP°| = —i(nHP MYC + VO NP _ phO N VP _ P |\ [HO 2
n n n n

where P* are the operators of the four-momentum, M* are the operators of Lorentz
angular momenta, the diagonal metric tensor n** has the nonzero components n%° =
—nlt = —p?2 = —¥ =1 and p,v = 0,1,2,3. It is usually said that the above
relations are written in the system of units ¢ = i = 1. However, as we argue in Ref.
[11], quantum theory should not contain ¢ and & at all; those quantities arise only
because we wish to measure velocities in m /s and angular momenta in kg x m?/s.

The above approach is in the spirit of Klein’s Erlangen program in math-
ematics. However, as we argue in Refs. [11, 12|, quantum theory should not be based
on classical space-time background. The notion of space-time background contradicts
the basic principle of physics that a definition of a physical quantity is a description
of how this quantity should be measured. Indeed one cannot measure coordinates of
a manifold which exists only in our imagination.

As we argue in Refs. [11, 12] and other publications, the approach should
be the opposite. Each system is described by a set of independent operators. By
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definition, the rules how these operators commute with each other define the symme-
try algebra. In particular, by definition, Poincare symmetry on quantum level means
that the operators commute according to Eq. (2). This definition does not involve
Minkowski space at all. Such a definition of symmetry on quantum level is in the
spirit of Dirac’s paper [13].

The fact that an elementary particle in quantum theory is described by an
IR of the symmetry algebra can be treated as a definition of the elementary particle.
In Poincare invariant theory the IRs can be implemented in a space of functions x(p)
such that [|x(p)[*d®p < oo (see Sec. 5). In this representation the momentum
operator P is defined unambiguously and is simply the operator of multiplication
by p. A standard assumption is that the position operator in this representation is
ih0/0p. However, as argued above, this assumption is not consistent.

In the present paper we propose a consistent definition of the position
operator. As a consequence, in our approach WPS in directions perpendicular to
the particle momentum is absent regardless of whether the particle is nonrelativistic
or relativistic. Moreover, for an ultrarelativistic particle the effect of WPS is absent
at all. In our approach different components of the position operator do not com-
mute with each other and, as a consequence, there is no wave function in coordinate
representation.

Our presentation is self-contained and for reproducing the results of the
calculations no special knowledge is needed. The paper is organized as follows. In
Secs. 2 and 5 we discuss the approach to the position operator in standard nonrel-
ativistic and relativistic quantum theory, respectively. An inevitable consequence of
this approach is the effect of WPS of the coordinate wave function which is discussed
in Secs. 3 and 6 for the nonrelativistic and relativistic cases, respectively. In Sec.
8 we discuss a relation between the WPS effects for a classical wave packet and for
photons comprising this packet. In Sec. 9 the problem of WPS in coherent states is
discussed. In Sec. 10 we show that the WPS effect leads to several paradoxes and, as
discussed in Sec. 11, in standard theory it is not possible to avoid those paradoxes.
Our approach to a consistent definition of the position operator and its application
to WPS are discussed in Secs. 12-14. Finally, in Sec. 15 we discuss implications of
the results for entanglement, quantum locality and the problem of time in quantum
theory.

2 Position operator in nonrelativistic quantum
mechanics

In quantum theory, states of a system are represented by elements of a
projective Hilbert space. The fact that a Hilbert space H is projective means that
if v € H is a state then const - 1 is the same state. The matter is that not the
probability itself but only relative probabilities of different measurement outcomes



have a physical meaning. In this paper we will work with states 1) normalized to one,
i.e. such that |[¢)|| = 1 where ||...|| is a norm. It is defined such that if (...;...) is a
scalar product in H then [[¢|| = (v, ¢)Y2.

In quantum theory every physical quantity is described by a selfadjoint
operator. Each selfadjoint operator is Hermitian i.e. satisfies the property (19, A1) =
(Atpg, 1) for any states belonging to the domain of A. If A is an operator of some
quantity then the mean value of the quantity and its uncertainty in state i) are given
by A = (¢, Av) and AA = ||(A — A)1||, respectively. The condition that a quantity
corresponding to the operator A is semiclassical in state i) can be defined such that
AA < |A|. This implies that the quantity can be semiclassical only if |A| is rather
large. In particular, if A = 0 then the quantity cannot be semiclassical.

Let B be an operator corresponding to another physical quantity and B
and AB be the mean value and the uncertainty of this quantity, respectively. We
can write AB = {A, B}/2 + [A, B]/2 where the commutator [A, B] = AB — BA
is anti-Hermitian and the anticommutator {A, B} = AB + BA is Hermitian. Let
[A, B] = —iC and C be the mean value of the operator C.

A question arises whether two physical quantities corresponding to the
operators A and B can be simultaneously semiclassical in state 1. Since |11 |||]1)2]]| >
|(11,12)|, we have that

MAAB > |, ({A~ A, B~ B} +[4, B))| 3)
Since (v, {A — A, B — B}) is real and (¢, [A, BJt) is imaginary, we get
AAAB > ;]C_’\ (4)

This condition is known as a general uncertainty relation between two quantities. A
well-known special case is that if P is the x component of the momentum operator
and X is the operator of multiplication by x then [P, X] = —ih and ApAxz > h/2.
The states where ApAxz = h/2 are called coherent ones. They are treated such that
the momentum and the coordinate are simultaneously semiclassical in a maximal
possible extent. A well-known example is that if
1 ' 1
V(@) =~ erplpor — o (@ — a0’

then X =z, P = po, Az = a/v/2 and Ap = h/(aV/2).

Consider first a one dimensional motion. In standard textbooks on quan-
tum mechanics, the presentation starts with a wave function ¢(x) in coordinate space
since it is implicitly assumed that the meaning of space coordinates is known. Then
a question arises why P = —ihd/dx should be treated as the momentum operator.
The explanation follows.



Consider wave functions having the form i (x) = exp(ipox/h)a(x) where
the amplitude a(z) has a sharp maximum near x = xy € [z, xs] such that a(z) is
not small only when x € [21,x5]. Then Az is of the order x5 — x; and the condition
that the coordinate is semiclassical is Az < |zg|. Since —ihdy(x)/dx = poyp(x) —
ihexp(ipox/h)da(x)/dx, we see that 1(x) will be approximately the eigenfunction of
—ihd/dx with the eigenvalue pg if |poa(x)| > h|da(z)/dz|. Since |da(x)/dx]| is of the
order of |a(z)/Az|, we have a condition |pgAz| > h. Therefore if the momentum
operator is —ihd/dz, the uncertainty of momentum Ap is of the order of i/Ax,
|po| > Ap and this implies that the momentum is also semiclassical. At the same
time, |ppAz|/2wh is approximately the number of oscillations which the exponent
makes on the segment [z, z5]. Therefore the number of oscillations should be much
greater than unity. In particular, semiclassical approximation cannot be valid if Ax
is very small, but on the other hand, Ax cannot be very large since it should be
much less than zy. Another justification of the fact that —ihd/dx is the momentum
operator is that in the formal limit 7 — 0 the Schrédinger equation becomes the
Hamilton-Jacobi equation.

We conclude that the choice of —ihd/dz as the momentum operator is jus-
tified from the requirement that in semiclassical approximation this operator becomes
the classical momentum. However, it is obvious that this requirement does not define
the operator uniquely: any operator P such that P — P disappears in semiclassical
limit, also can be called the momentum operator.

One might say that the choice P = —ihd/dx can also be justified from the
following considerations. In nonrelativistic quantum mechanics we assume that the
theory should be invariant under the action of the Galilei group, which is a group of
transformations of Galilei space-time. The x component of the momentum operator
should be the generator corresponding to spatial translations along the z axis and
—ihd/dx is precisely the required operator. In this consideration one assumes that the
space-time background has a physical meaning while, as discussed in Refs. [11, 12]
and references therein, this is not the case.

As noted in Refs. [11, 12] and references therein, one should start not
from space-time but from a symmetry algebra. Therefore in nonrelativistic quantum
mechanics we should start from the Galilei algebra and consider its IRs. For simplic-
ity we again consider a one dimensional case. Let P, = P be one of representation
operators in an IR of the Galilei algebra. We can implement this IR in a Hilbert space
of functions x(p) such that [*°_|x(p)|*dp < oo and P is the operator of multiplication
by p,i.e. Px(p) = px(p). Then a question arises how the operator of the « coordinate
should be defined. In contrast to the momentum operator, the coordinate one is not
defined by the representation and so it should be defined from additional assump-
tions. Probably a future quantum theory of measurements will make it possible to
construct operators of physical quantities from the rules how these quantities should
be measured. However, at present we can construct necessary operators only from
rather intuitive considerations.
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By analogy with the above discussion, one can say that semiclassical wave
functions should be of the form x(p) = exp(—izop/h)a(p) where the amplitude a(p)
has a sharp maximum near p = py € [p1, p2] such that a(p) is not small only when
p € [p1,p2]. Then Ap is of the order of po—p; and the condition that the momentum is
semiclassical is Ap < |po|. Since ifidx(p)/dp = xox(p) +ihexp(—ixop/h)da(p)/dp, we
see that x(p) will be approximately the eigenfunction of iid/dp with the eigenvalue
xo if |zoa(p)| > h|da(p)/dp|. Since |da(p)/dp| is of the order of |a(p)/Ap|, we have
a condition |xoAp| > h. Therefore if the coordinate operator is X = ihd/dp, the
uncertainty of coordinate Az is of the order of h/Ap, |xo| > Az and this implies
that the coordinate defined in such a way is also semiclassical. We can also note that
|zoAp|/27h is approximately the number of oscillations which the exponent makes on
the segment [pq, p2| and therefore the number of oscillations should be much greater
than unity. It is also clear that semiclassical approximation cannot be valid if Ap
is very small, but on the other hand, Ap cannot be very large since it should be
much less than py. By analogy with the above discussion, the requirement that the
operator ihd/dp becomes the coordinate in classical limit does not define the operator
uniquely. In nonrelativistic quantum mechanics it is assumed that the coordinate is
a well defined physical quantity even on quantum level and that iid/dp is the most
pertinent choice.

The above results can be formally generalized to the three-dimensional
case. For example, if the coordinate wave function is chosen in the form

1 (r—ro)? i
Y(r) = W%P[—T + ﬁpgr] (5)

then the momentum wave function is

i d’r a’/?
X(p) - /exp(—ﬁpr)w(r) (27Th)3/2 - 7T3/4h3/26xp[_

(P — po)’a’ e

D - po)mi] (6)

It is easy to verify that
ol = [lem)Pde =1, 2= [ @)Pdp =1, (7)

the uncertainty of each component of the coordinate operator is a/v/2 and the uncer-
tainty of each component of the momentum operator is i/(av/2). Hence one might
think that Eqgs. (5) and (6) describe a state which is semiclassical in a maximal
possible extent.

Let us make the following remark about semiclassical vector quantities.
We defined a quantity as semiclassical if its uncertainty is much less than its mean
value. In particular, as noted above, a quantity cannot be semiclassical if its mean
value is small. In the case of vector quantities we have sets of three physical quantities.
Some of them can be small and for them it is meaningless to discuss whether they
are semiclassical or not. We say that a vector quantity is semiclassical if all its
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components which are not small are semiclassical and there should be at least one
semiclassical component.

For example, if the mean value of the momentum py is directed along the
z axes then the zy components of the momentum are not semiclassical but the three-
dimensional vector quantity p can be semiclassical if py is rather large. However,
in that case the definitions of the z and y components of the position operator as
x = 1h0d/0p, and y = ihd/0p, become inconsistent. The situation when the validity of
an operator depends on the choice of directions of the coordinate axes is not acceptable
and hence the above definition of the position operator is at least problematic.

Let us note that semiclassical states can be constructed not only in momen-
tum or coordinate representations. For example, instead of momentum wave functions
X(p) one can work in the representation where the quantum numbers (p, [, ) in wave
functions x(p,[, x) mean the magnitude of the momentum p, the orbital quantum
number [ (such that a state is the eigenstate of the orbital momentum squared L2
with the eigenvalue [(I + 1)) and the magnetic quantum number p (such that a state
is the eigenvector or L, with the eigenvalue p). A state described by a x(p,l, 1) will
be semiclassical with respect to those quantum numbers if x(p, [, 1) has a sharp max-
imum at p = pg, [ = ly, 4t = pp and the widths of the maxima in p, [ and p are much
less than pg, Iy and g, respectively. However, by analogy with the above discussion,
those widths cannot be arbitrarily small if one wishes to have other semiclassical
variables (e.g. the coordinates). Examples of such situations will be discussed in Sec.
13.

3 Wave packet spreading in nonrelativistic quan-
tum mechanics

As noted by Pauli (see p. 63 of Ref. [14]), at early stages of quantum theory some
authors treated time ¢ as the operator commuting with the Hamiltonian as [H,t] = ih
but such a treatment is not correct. For example, one cannot construct the eigenstate
of the time operator with the eigenvalue 5000 BC or 3000 AD. Hence the quantity ¢
can be only a classical parameter (see also Ref. [15]). We see that the principle of
quantum theory that every physical quantity is defined by an operator does not apply
to time. The problem of time in quantum theory is discussed in a wide literature and
remarks on this problem are made in Sec. 15. However, for now we assume that
standard treatment of time is valid, i.e. that time is a classical parameter such that
the dependence of the wave function on time is defined by the Hamiltonian according
to the Schrodinger equation.

In nonrelativistic quantum mechanics the Hamiltonian of a free particle
with the mass m is H = p?/2m and hence, as follows from Eq. (6), in the model
discussed above the dependence of the momentum wave function on  is

a®? (p—po)ia® i ipt
x(p;t) = W%p[—T - ﬁ(P — Po)To — 2mh] (8)
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It is easy to verify that for this state the mean value of the operator p and the
uncertainty of each momentum component are the same as for the state x(p), i.e.
those quantities do not change with time.

Consider now the dependence of the coordinate wave function on ¢. This
dependence can be calculated by using Eq. (8) and the fact that

vlr.t) = [ eap(bprx(p.t) P )
= [ exp(= —
The result of a direct calculation is
1 iht (r — Ty — vot)? iht | i ipat
t) = 1 32e1p[— 1— —por — —2] (10
¥(r,?) 773/4a3/2( +ma2) cpl 2a%(1 + 722224) ( ma2)+hp0r th] (10)

where vy = pg/m is the classical velocity. This result shows that the semiclassical
wave packet is moving along the classical trajectory r(t) = ro + vot. At the same
time, it is now obvious that the uncertainty of each coordinate depends on time as

Az;(t) = Az;(0)(1 + h*2 /m2a)V?, (1 =1,2,3) (11)

where Az;(0) = a/v/2, i.e. the width of the wave packet in coordinate representation
is increasing. This fact, known as the wave-packet spreading (WPS), is described in
many textbooks and papers (see e.g. the textbooks [4, 5] and references therein).
It shows that if a state was semiclassical in the maximal extent at ¢t = 0, it will
not have this property at ¢ > 0 and the accuracy of semiclassical approximation will
decrease with the increase of t. The characteristic time of spreading can be defined
as t, = ma®/h. For macroscopic bodies this is an extremely large quantity and hence
in macroscopic physics the WPS effect can be neglected. In the formal limit 7 — 0,
t, becomes infinite, i.e. spreading does not take place. This shows that WPS is a
pure quantum phenomenon. For the first time the result (10) has been obtained by
Darwin in Ref. [16].
One might pose a problem whether the WPS effect is specific only for
Gaussian wave functions. One might expect that this effect will take place in general
situations since each component of the standard position operator ihd/Jdp does not
commute with the Hamiltonian and so the distribution of the corresponding physical
quantity will be time dependent. A good example showing inevitability of WPS
follows. If at ¢ = 0 the coordinate wave function is 1y(r) then, as follows from Egs.
(6) and (9), , o
. o
viet) = [ emnlGlplr =) = () Gy (12)

As follows from this expression, if ¥y(r) # 0 only if r belongs to a finite vicinity of

some vector rg then at any ¢t > 0 the support of ¥(r,t) belongs to the whole three-
dimensional space, i.e. the wave function spreads out with an infinite speed. One
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might think that in nonrelativistic theory this is not unacceptable since this theory
can be treated as a formal limit ¢ — oo of relativistic theory. In the next sections we
will discuss an analogous situation in relativistic theory.

As shown in Ref. [17] titled ”Nonspreading wave packets”, for a one-
dimensional wave function in the form of an Airy function, spreading does not take
place and the maximum of the quantity | (x)|* propagates with constant acceleration
even in the absence of external forces. Those properties of Airy packets have been
observed in optical experiments [18]. However, since such a wave function is not
normalizable, the term ”"wave packet” in the given situation might be misleading
since the mean values and uncertainties of the coordinate and momentum cannot
be calculated in a standard way. Such a wave function can be constructed only in
a limited region of space. As explained in Ref. [17], this wave function describes
not a particle but rather families of particle orbits. As shown in Ref. [17], one can
construct a normalized state which is a superposition of Airy functions with Gaussian
coefficients and ”eventually the spreading due to the Gaussian cutoff takes over”.
This is an additional argument that the effect of WPS is an inevitable consequence
of standard quantum theory.

Since quantum theory is invariant under time reversal, one might ask the
following question: is it possible that the width of the wave packet in coordinate
representation is decreasing with time? From the formal point of view, the answer is
7yes”. Indeed, the solution given by Eq. (10) is valid not only when ¢ > 0 but when
t < 0 as well. Then, as follows from Eq. (11), the uncertainty of each coordinate
is decreasing when ¢ changes from some negative value to zero. However, eventually
the value of ¢ will become positive and the quantities Ax;(¢) will grow to infinity.
In the present paper we consider situations when a photon is created on atomic
level and hence one might expect that its initial coordinate uncertainties are not
large. However, when the photon travels a long distance to Earth, those uncertainties
become much greater, i.e. the term WPS reflects the physics adequately.

4 Mott-Heisenberg problem and its generalization

In 1929 Mott and Heisenberg considered the following problem. Let an alpha-particle
be emitted by a nucleus in a radioactive decay. Suppose, for simplicity, that the
particle has been emitted in a state with zero angular momentum. Then the mo-
mentum wave function is spherically symmetric and all directions of the momentum
have equal probabilities. However, when the particle is detected in Wilson’s cloud
chamber, the registered trajectory is always linear as if the particle moved along a
classical trajectory. The explanation of the paradox has been given in Ref. [19]. In
this section we consider a general case when it is not assumed that the partical wave
function is spherically symmetric.

Consider the state (12) after a long period of time such that D > a where
D = ht/(ma). As follows from Eq. (12), at this condition the width of the coordinate
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wave function is of the order D. Suppose that the particle is emitted at the origin
such that ry = 0. Suppose that a measuring device is at the point r; and the size of
the device is of the order of d. Although the device is macroscopic, we assume that
D is already so large that D > d. A problem arises at which momentum range the
particle will be detected.

For solving this problem we first project the coordinate wave function onto
the region of space belonging to the device. Assume that the projected wave function

is
(r — r1)2

QZ(I', t) = ea?p[— ]QZJ(I‘, t) (13)
A direct calculation shows that the norm of this state is

112 = (5 yPeap(— 1ol (1)

This result is obvious because the wave function of the packet is not negligible only
in the region having the volume of the order of D? and so if r; is inside this region
then the probability to detect the particle is of the order of (d/D)3.

If the particle is detected by the device then the measured momentum
range is defined by the Fourier transform of ¢ (r,t). A direct calculation gives

1 —1 ~ N
Y(p,t) = W/ewp(hpr)@b(h t)d’r =
d*D?*a?(p — mrl/t)Q] (15)
2h*(D%a? + d*)

f(p,t)exp[—

where f(p,t) contains the dependence on p only in the exponent with the imaginary
index. Therefore the probabilities of different momenta are defined by the last ex-
ponent which shows that the distribution of momenta has a sharp peak around the
vector mry /t pointing to the device. While the width of the momentum distribution
in the initial packet is of order of i/a (see Eq. (8)), the width given by Eq. (15) is
much narrower. If for example D?a? > d* then the width is of the of the order of
h/d and in the opposite case the width is of the of the order of hd/(Da).

As discussed in Sec. 2, in semiclassical approximation the value of the
momentum can be found by applying the operation —ihd/0r to the rapidly oscillating
exponent. In general the momentum distribution can be rather wide. However, if the
particle is detected in a vicinity of the point r then, as follows from Eq. (15), it will be
detected with the momentum close to mr/t. This result has the following qualitative
explanation. The operation —ihd/dr applied to the imaginary index of the exponent
in Eq. (10) gives exactly mr/t.

The above results gives the solution of the Mott-Heisenberg problem when
the particle is in the state (10). However, in this case the wave function can be
spherically symmetric only if pg = 0. This case is of no interest because typically a
particle created in the spherically symmetric state has a nonzero kinetic energy. We
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now consider a model where, instead of Eq. (6), the initial particle momentum wave

function is Fo/n) .
P/p
x(p) = 0 expl— s a’

where p = |p| and the quantaties py and a are positive. We assume that ppa > h.
Then, with a good accuracy, integrals over p from 0 to co containing the exponent can
be replaced by integrals from —oo to co. By analogy with the calculation in Sec. 2,
one can easily show that § ~ py and Ap ~ h/(a+/2) and therefore the p-distribution
is semiclassical. The dependence of the momentum wave function on ¢ is the same as
in Eq. (8).

The coordinate wave function is again given by Eq. (9). For calculating
this function in the case when the initial momentum wave function is given by Eq.
(16) we need the following auxiliary results:

(P = po)’] (16)

[ ot graelo = ) + Syl 2y eyl LTIy
where r = |r| and
exp(pr) = 4x 3 ilpr /)i (b/0)Yis(x/7) (15)

lp

The last expression is the well-known decomposition of the flat wave. Here Y, is
the spherical function corresponding to the orbital angular momentum [ and its z-
projection i and j; is the spherical Bessel function. Its asymptotic expression when
the argument is large is j;(z) ~ sin(z — wl/2)/x.

Let f(p/p) = X1, cimYiu(p/p) be the decomposition of the function f in
Eq. (16) over spherical functions. Then it follows from the orthogonality of spherical
functions, Eqgs. (16-18) and the above remarks that if (pr/h) > 1 then

7 h 1/9 pgt
Y(r,t) = —a(m) / exp(—th)lZ/;cl“Y}H(r/r)
feapl— LMy (g Tt/ M)y (19)

2a2(1 +iD/a) 2a%(1+iD/a)

At large distances and times the second term in the figure brackets is negligible and
the final result is

g e 20 e ryeapl- T PEEC ZIRI (o)

) = 2mh

Therefore for the initial momentum wave function (16) the coordinate wave
function at large distances and times has the same angular dependence as the momen-
tum wave function and the radial wave functions spreads out by analogy with Eq. (10).
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The result (20) gives an obvious solution of the Mott-Heisenberg problem
in the case when the angular dependence of the wave function is arbitrary. Indeed,
suppose that a particle is created at the origin and a measuring device is seen from
the origin in the narrow angular range defined by the function f(r/r). Suppose that
the support of f(r/r) is within the range defined by f(r/r). Then the projection of
the wave function (20) onto the device is given by the same expression where f(r/r)
is replaced by f(r/r). Since the angular wave functions in coordinate and momentum
representations are the same, the momenta measured by the device will be in the
angular range defined by the function f(p/p).

5 Position operator in relativistic quantum me-
chanics

The problem of the position operator in relativistic quantum theory has been dis-
cussed in a wide literature and different authors have different opinions on this prob-
lem. In particular, some authors state that in relativistic quantum theory no position
operator exists. As already noted, the results of fundamental quantum theories are
formulated only in terms of the S-matrix in momentum space without any mention-
ing of space-time. This is in the spirit of the Heisenberg S-matrix program that in
relativistic quantum theory it is possible to describe only transitions of states from
the infinite past when t — —oo to the distant future when ¢ — +o00. On the other
hand, since quantum theory is treated as a theory more general than classical one,
it is not possible to fully avoid space and time in quantum theory. For example,
quantum theory should explain how photons from distant objects travel to Earth and
even how macroscopic bodies are moving along classical trajectories. Hence we can
conclude that: a) in quantum theory (nonrelativistic and relativistic) we must have
a position operator and b) this operator has a physical meaning only in semiclassical
approximation.

Let us first consider the definition of elementary particle. Although theory
of elementary particles exists for a rather long period of time, there is no commonly
accepted definition of elementary particle in this theory. In Refs. [11, 12] and refer-
ences therein we argue that, in the spirit of Wigner’s approach to Poincare symmetry
[20], a general definition, not depending on the choice of the classical background and
on whether we consider a local or nonlocal theory, is that a particle is elementary if
the set of its wave functions is the space of an IR of the symmetry algebra in the
given theory.

There exists a wide literature describing how IRs of the Poincare algebra
can be constructed. In particular, an IR for a spinless particle can be implemented
in a space of functions £(p) satisfying the condition

3
[ €I Fdot) < oo, dotp) = (21)

17



where €(p) = (m? + p?)'/? is the energy of the particle with the mass m. The
convenience of the above requirement is that the volume element dp(p) is Lorentz
invariant. In that case it can be easily shown by direct calculations (see e.g. Ref.
[21]) that the representation operators have the form

0 0
L=—mpx—, N=—ie(p)=—, P=p, FE=c¢ 22
P 5 (p) o p (p) (22)
where L is the orbital angular momentum operator, N is the Lorentz boost operator,
P is the momentum operator, E is the energy operator and these operators are
expressed in terms of the operators in Eq. (2) as

L= <M23,M31,M12), N = (]\4107]\4'207]\430)7 P= (Pl,Pz,PS), E = PO

For particles with spin these results are modified as follows. For a massive
particle with spin s the functions £(p) also depend on spin projections which can
take 2s + 1 values —s, —s + 1,...s. If s is the spin operator then the total angular
momentum has an additional term s and the Lorentz boost operator has an additional
term (s x p)/(e(p)+m) (see e.g. Eq. (2.5) in Ref. [21]). Hence corrections of the spin
terms to the quantum numbers describing the angular momentum and the Lorentz
boost do not exceed s. We assume as usual that in semiclassical approximation the
quantum numbers characterizing the angular momentum and the Lorentz boost are
much greater than unity and hence in this approximation spin effects can be neglected.
For a massless particle with the spin s the spin projections can take only values —s
and s and those quantum numbers have the meaning of helicity. In this case the
results for the representation operators can be obtained by taking the limit m — 0 if
the operators are written in the light front variables (see e.g. Eq. (25) in Ref. [11]).
As a consequence, in semiclassical approximation the spin corrections in the massless
case can be neglected as well. Hence for investigating the position operator we will
neglect spin effects and will not explicitly write the dependence of wave functions on
spin projections.

In the above IRs the representation operators are Hermitian as it should be
for operators corresponding to physical quantities. In standard theory (over complex
numbers) such IRs of the Lie algebra can be extended to unitary IRs of the Poincare
group. In particular, in the spinless case the unitary operator U(A) corresponding to
the Lorentz transformation A acts in H as (see e.g. Ref. [21])

U(N)e(p) = (A 'p) (23)

In the literature elementary particles are described not only by such IRs
but also by nonunitary representations induced from the Lorentz group [22]. Since
the factor space of the Poincare group over the Lorentz group is Minkowski space,
the elements of such representations are fields W(x) depending on four-vectors z
in Minkowski space and possibly on spin variables. Since those functions describe

18



nonunitary representations, their probabilistic interpretation is problematic. The
Pauli theorem [23] states that for fields with an integer spin it is impossible to define
a positive definite charge density and for fields with a half-integer spin it is impossible
to define a positive definite energy density.

Hence a problem arises whether such fields have a physical meaning. The
answer is that in QFT after quantizing they become quantum fields defining the
stress-energy and angular momentum tensors. Then the Hermitian operators P* and
M*™ are defined by integrals of those tensors over a space-like hyperplane. So the
quantity x in local fields is only an integration parameter and a problem of whether
there are quantum operators corresponding to x does not arise. This is clear also
from the fact that quantized fields are operators in Fock spaces describing systems
with an infinite number of particles and hence x does not refer to any specific particle.
Therefore local quantum fields (in this situation even the term ”local” is not clear)
are only auxiliary tools for constructing physical operators in QFT.

Let us note that although QFT has achieved very impressive successes
in explaining many experimental data, a problem of its mathematical substantiation
has not been solved yet. The main mathematical inconsistency of QFT is that since
interacting local quantum fields can be treated only as operatorial distributions, their
products at the same space-time points are not well defined (see e.g. Ref. [24]). One
of ideas of the string theory is that if products of fields at the same points (zero-
dimensional objects) are replaced by products where arguments belong to strings
(one-dimensional objects) then there is hope that infinities will be less singular. In
view of such controversial properties of local quantum fields, many authors posed a
question whether local fields will survive in the future quantum theory. Nevertheless,
in the literature the problem of position operator is mainly discussed in the approach
when elementary particles are described by local fields rather than unitary IRs. Below
we discuss the both approaches but first we consider the case of unitary IRs.

As follows from Eq. (2), the operator I, = E? —P? is the Casimir operator
of the second order, i.e. it is a bilinear combination of representation operators
commuting with all the operators of the algebra. As follows from the well-known
Schur lemma, all states belonging to an IR are the eigenvectors of Iy with the same
eigenvalue m?. Note that Eq. (22) contains only m? but not m. The choice of the
energy sign is only a matter of convention but not a matter of principle. Indeed, the
energy can be measured only if the momentum p is measured and then it is only
a matter of convention what sign of the square root should be chosen. However,
it is important that the sign should be the same for all particles. For example, if
we consider a system of two particles with the same values of m? and the opposite
momenta p; and py such that p; + p2 = 0, we cannot define the energies of the
particles as €(p1) and —e(ps2), respectively, since in that case the total four-momentum
of the two-particle system will be zero what contradicts experiment.

The notation Iy, = m? is justified by the fact that for all known particles
I, > 0. Then the mass m is defined as the square root of m? and the sign of m is
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only a matter of convention. The usual convention is that m > 0. However, from
mathematical point of view, IRs with I, < 0 are not prohibited. If the velocity
operator v is defined as v .= P/FE then for known particles |[v| < 1, i.e. |v| < ¢
in standard units. However, for IRs with I, < 0, |v| > ¢ and, at least from the
point of view of mathematical construction of IRs, this case is not prohibited. The
hypothetical particles with such properties are called tachyons and their possible
existence is widely discussed in the literature. If the tachyon mass m is also defined
as the square root of m? then this quantity will be imaginary. However, this does
not mean than the corresponding IRs are unphysical since all the operators of the
Poincare group Lie algebra depend only on m?.

As follows from Eqs. (21) and (22), in the nonrelativistic approximation
dp(p) = d®p/m and N = —imd/0p. Therefore in this approximation N is propor-
tional to standard position operator and one can say that the position operator is in
fact present in the description of the IR.

The following remarks are in order. The choice of the volume element
in the Lorentz invariant form dp(p) (see Eq. (21)) might be convenient from the
point of view that then the Hilbert space can be treated as a space of functions £(p)
depending on four-vectors p such that p® = €(p) and the norm can be written in
the covariant form (i.e. in the form depending only on Lorentz invariant quantities):
€N = [|€(p)|26(p* — m*)O(p®)d*p. However, the requirement of covariance does not
have a fundamental physical meaning. In relativistic theory a necessary requirement
is that symmetry is defined by operators satisfying the commutation relations (2) and
this requirement can be implemented in different forms, not necessarily in covariant
ones.

As an illustration, consider the following problem. Suppose that we wish
to construct a single-particle coordinate wave function. Such a wave function cannot
be defined on the whole Minkowski space. This is clear even from the fact that there
is no time operator. The wave function can be defined only on a space-like hyperplane
of the Minkowski space. For example, on the hyperplane ¢t = const the wave function
depends only on x. Hence for defining the wave function one has to choose the form
of the position operator. By analogy with the nonrelativistic case, one might try to
define the position operator as i0/Jp. However, if the Hilbert space is implemented
as in Eq. (21) then this operator is not selfadjoint since dp(p) is not proportional to
d®p. Onme can perform a unitary transformation &(p) — x(p) = £(p)/e(p)'/? such
that the Hilbert space becomes the space of functions y(p) satisfying the condition
[Ix(P)]?d®p < oo. It is easy to verify that in this implementation of the IR the
operators (L, P, ) will have the same form as in Eq. (22) but the expression for N
will be 9

N = —ic(p)'/* 7 e(p)'/* (24)
In this case one can define ihd/0p as a position operator but now we do not have
a situation when the position operator is present among the other representation
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operators.

A problem of the definition of the position operator in relativistic quantum
theory has been discussed since the beginning of the 1930s and it has been noted
that when quantum theory is combined with relativity the existence of the position
operator with correct physical properties becomes a problem. The above definition
has been proposed by Newton and Wigner in Ref. [25]. They worked in the approach
when elementary particles are described by local fields ¥ (z) defined on the whole
Minkowski space rather than unitary IRs. As noted above, such fields cannot be
treated as single-particle wave functions. The spacial Fourier transform of such fields
at t = const describes states where the energy can be positive and negative and this
is interpreted such that local quantum fields describe a particle and its antiparticle
simultaneously. Newton and Wigner first discuss the spinless case and consider only
states on the upper Lorentz hyperboloid where the energy is positive. For such states
the representation operators act in the same way as in the case of spinless unitary
[Rs. With this definition the coordinate wave function v (r) can be again defined by
Eq. (5) and a question arises whether such a position operator has all the required
properties.

For example, in the introductory section of the textbook [26] the following
arguments are given in favor of the statement that in relativistic quantum theory
it is not possible to define a physical position operator. Suppose that we measure
coordinates of an electron with the mass m. When the uncertainty of coordinates is of
the order of i /me, the uncertainty of momenta is of the order of me, the uncertainty of
energy is of the order of mc? and hence creation of electron-positron pairs is allowed.
As a consequence, it is not possible to localize the electron with the accuracy better
than its Compton wave length 7/mc. Hence, for a particle with a nonzero mass exact
measurement is possible only either in the nonrelativistic limit (when ¢ — o00) or
classical limit (when i — 0). In the case of the photon, as noted by Pauli (see p. 191
of Ref. [14]), the coordinate cannot be measured with the accuracy better than h/p
where p is the magnitude of the photon momentum. The quantity A = 27/ /p is called
the photon wave length although, as noted in Sec. 1, the meaning of this quantity
in quantum case might be fully different than in classical one. Since A — 0 in the
formal limit A~ — 0, Pauli concludes that ”Only within the confines of the classical
ray concept does the position of the photon have a physical significance”.

Another argument that the Newton-Wigner position operator does not
have all the required properties follows. Since the energy operator acts on the function
X(p) as Ex(p) = e(p)x(p) (see Eq. (22)) and the energy is an operator corresponding
to infinitesimal time translations, the dependence of the wave function x(p) on ¢ is
given by .

i

X(p.) = cxp(— 3 Bi)x(p) = cxp(— +(p)Ix(p) (25)
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Then a relativistic analog of Eq. (12) is

d3r/d3p

(27h)3 (26)

v(r,t) = [ eap{s[plr =) — (P} Fo(r)
As a consequence, the Newton-Wigner position operator has the ”tail property”: if
tho(r) # 0 only if r belongs to a finite vicinity of some vector ry then at any ¢ > 0 the
function ¥(r,t) has a tail belonging to the whole three-dimensional space, i.e. the
wave function spreads out with an infinite speed. Hence at any ¢t > 0 the particle can
be detected at any point of the space and this contradicts the requirement that no
information should be transmitted with the speed greater than c.

The tail property of the Newton-Wigner position operator has been known
for a long time (see e.g. Ref. [27] and references therein). It is characterized as non-
locality leading to the action at a distance. Hegerfeldt argues [27] that this property
is rather general because it can be proved assuming that energy is positive and with-
out assuming a specific choice of the position operator. The Hegerfeldt theorem [27]
is based on the assumption that there exists an operator N(V') whose expectation
defines the probability to find a particle inside the volume V. However, the meaning
of time on quantum level is not clear and for the position operator proposed in the
present paper such a probability does not exist because there is no wave function in
coordinate representation (see Sec. 12 and the discussion in Sec. 15).

One might say that the requirement that no signal can be transmitted
with the speed greater than c has been obtained in Special Relativity which is a clas-
sical (i.e. nonquantum) theory operating only with classical space-time coordinates.
For example, in classical theory the velocity of a particle is defined as v = dr/dt but,
as noted above, the velocity should be defined as v = p/E (i.e. without mentioning
space-time) and then on classical level it can be shown that v = dr/dt. In QFT local
quantum fields separated by space-like intervals commute or anticommute (depending
on whether the spin is integer or half-integer) and this is treated as a requirement
of causality and that no signal can be transmitted with the speed greater than c.
However, as noted above, the physical meaning of space-time coordinates on quan-
tum level is not clear. Hence from the point of view of quantum theory the existence
of tachyons is not prohibited. Note also that when two electrically charged particles
exchange by a virtual photon, a typical situation is that the four-momentum of the
photon is space-like, i.e. the photon is the tachyon. We conclude that although in
relativistic theory such a behavior might seem undesirable, there is no proof that it
must be excluded. Also, as argued by Griffiths (see Ref. [28] and references therein),
with a consistent interpretation of quantum theory there are no nonlocality and su-
perluminal interactions. In Sec. 15 we argue that the position operator proposed in
the present paper sheds a new light on this problem.

Another striking example is a photon emitted in the famous 21cm transi-
tion line between the hyperfine energy levels of the hydrogen atom. The phrase that
the lifetime of this transition is of the order of 7 = 107 years implies that the width
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of the level is of the order of i/7, i.e. experimentally the uncertainty of the photon
energy is h/7. Hence the uncertainty of the photon momentum is i/(¢7) and with
the above definition of the coordinate operators the uncertainty of the longitudinal
coordinate is c7, i.e. of the order of 107 light years. Then there is a nonzero proba-
bility that immediately after its creation at point A the photon can be detected at
point B such that the distance between A and B is 107 light years.

A problem arises how this phenomenon should be interpreted. On one
hand, one might say that in view of the above discussion it is not clear whether
or not the requirement that no information should be transmitted with the speed
greater than ¢ should be a must in relativistic quantum theory. On the other hand
(as pointed out to me by Alik Makarov), we can know about the photon creation
only if the photon is detected and when it was detected at point B at the moment of
time ¢ = tq, this does not mean that the photon travelled from A to B with the speed
greater than c since the time of creation has an uncertainty of the order of 107 years.
Note also that in this situation a description of the system (atom + electric field) by
the wave function (e.g. in the Fock space) depending on a continuous parameter ¢ has
no physical meaning (since roughly speaking the quantum of time in this process is of
the order of 107 years). If we accept this explanation then we should acknowledge that
in some situations a description of evolution by a continuous classical parameter ¢ is
not physical and this is in the spirit of the Heisenberg S-matrix program. However,
this example describes a pure quantum phenomenon while, as noted above, a position
operator is needed only in semiclassical approximation.

For particles with nonzero spin, the number of states in local fields is
typically by a factor of two greater than in the case of unitary IRs (since local fields
describe a particle and its antiparticle simultaneously) but those components are not
independent since local fields satisfy a covariant equation (Klein-Gordon, Dirac etc.).
In Ref. [25] Newton and Wigner construct a position operator in the massive case but
say that in the massless one they have succeeded in constructing such an operator
only for Klein-Gordon and Dirac particles while in the case of the photon the position
operator does not exist. On the other hand, as noted above, in the case of unitary IRs
different spin components are independent and in semiclassical approximation spin
effects are not important. So in this approach one might adopt the Newton-Wigner
position operator for particles with any spin and any mass.

We now consider the following problem. Since the Newton-Wigner position
operator formally has the same form as in nonrelativistic quantum mechanics, the
coordinate and momentum wave functions also are related to each other by the same
Fourier transform as in nonrelativistic quantum mechanics (see Eq. (9)). One might
think that this relation is not Lorentz covariant and pose a question whether in
relativistic theory this is acceptable. As noted above, for constructing the momentum
wave function covariance does not have a fundamental physical meaning and is not
necessary. A question arises whether the same is true for constructing the coordinate
wave function.
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Let us note first that if the four-vector z is such that x = (¢,x) then the
wave function ¢ (x) = ¢(x,t) can have a physical meaning only if we accept that (at
least in some approximations) a position operator is well defined. Then the function
(x,t) describes amplitudes of probabilities for different values of x at a fixed value
of t. This function cannot describe amplitudes of probabilities for different values of
t because there is no time operator.

For discussing Lorentz covariance of the coordinate wave function it is im-
portant to note that, in view of the above remarks, this function can be defined not in
the whole Minkowski space but only on space-like hyperplanes of that space (by anal-
ogy with the fact that in QFT the operators (P*, M*") are defined by integrals over
such hyperplanes). They are defined by a time-like unit vector n and the evolution
parameter 7 such that the corresponding hyperplane is a set of points with the coor-
dinates x satisfying the condition nz = 7. Wave functions v (z) on this hyperplane
satisfy the requirement [ |¢(x)|*d(nz — 7)d*z < oo. In a special case when n® = 1,
n = 0 the hyperplane is a set of points (¢ = 7,x) and the wave functions satisfy the
usual requirement [ [1(x,)|?d®>x < co. In the literature coordinate wave functions
are usually considered without discussions of the position operator and without men-
tioning the fact that those functions are defined on space-like hyperplanes (see e.g.
Refs. [29, 30]).

By analogy with the construction of the coordinate wave function in Refs.
29, 31], it can be defined as follows. Let %y be a four-vector and p and py be four-
vectors (e(p),p) and (€(po), Po), respectively. We will see below that momentum
wave functions describing wave packets can be chosen in the form

&(p, po, To) = f(p,po)ea?p(%pi"o) (27)

where f(p, po) as a function of p has a sharp maximum in the vicinity of p = po, Z¢9 =
xg — (nxo)n and the four-vector o has the coordinates (¢,ry). Then the coordinate
wave function can be defined as

Y(x, po, To) = (27_{_7]7:)3/2 /5(2771707fo)exp(—;px)dmp) (28)

Suppose that f(p,po) is a covariant function of its arguments, i.e. it can depend
only on p?, p? and ppy. Then, as follows from Eq. (23), the function v (x, py, To) is
covariant because its Lorentz transformation is ¢ (z, po, Zo) — (A~ z, po, To).

The choice of f(p,po) in the covariant form might encounter the following
problem. For example, the authors of Ref. [31] propose to consider f(p,po) in the
form
(p - pO)Z]

402
The exponent in this expression has the maximum at p = py and in the vicinity of
the maximum

f(p,po) = const exp| (29)

(Po.P — Po)

(p—p0)>=—(P—po)’ +|
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If po is directed along the z axis and the subscript L is used to denote the projection
of the vector onto the xy plane then
m

€(po)

It follows from this expression that if the particle is ultrarelativistic then the width
of the momentum distribution in the longitudinal direction is much greater that in
transverse ones and for massless particles the former becomes infinite. We conclude
that for massless particles the covariant parametrization of f(p,po) is problematic.

As noted above, the only fundamental requirement on quantum level is
that the representation operators should satisfy the commutation relations (2) while
covariance is not fundamental. Nevertheless, the above discussion shows that covari-
ance of coordinate wave functions can be preserved if one takes into account the fact
that they are defined on space-like hyperplanes. In particular, covariance of functions
f can be preserved if one assumes that they depend not only on p and pg but also on
n. In what follows we consider only the case when the vector n is such that n® = 1 and
n = 0. Let us replace f(p,po) by f(p, o) where p = p — (pn)n and py = py — (pon)n.
Then the four-vectors p and py have only nonzero spatial components equal p and
Po, respectively. As a consequence, any rotationally invariant combination of p and
po can be treated as a Lorentz covariant combination of p and py.

We conclude that with the above choice of the vector n one can work
with momentum and coordinate wave functions in full analogy with nonrelativistic
quantum mechanics and in that case Lorentz covariance is satisfied. In particular in
that case Eq. (28) can be written in the form of Eq. (9).

We now consider the photon case in greater details. The coordinate pho-
ton wave function has been discussed by many authors. A question arises in what
situations this function is needed. As already noted, since the fundamental theory of
electromagnetic interactions is QED, and this theory does not contain space-time at
all, for solving quantum problems in the framework of QED the coordinate photon
wave function is not needed. However, this function is used in some special problems,
for example for describing single-photon interference and diffraction by analogy with
classical theory.

In the present paper we consider only the case of free photons. If we
consider a motion of a free particle, it is not important in what interactions this
particle participates and, as explained above, if the particle is described by its IR in
semiclassical approximation then the particle spin is not important. Hence the effect
of WPS for an ultrarelativistic particle does not depend on the nature of the particle,
i.e. on whether the particle is the photon, the proton, the electron etc. For this
reason we are interested in papers on the photon coordinate wave function mainly
from the point of view how the position operator for the free ultrarelativistic particle
is defined.

Note that in classical theory the notion of field, as well as that of wave,
is used for describing systems of many particles by their mean characteristics. For

(p—1p0)* = —(PL — PoL)’ — [ (p: — po:)* + o(|p — pPo|?) (31)
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example, the electromagnetic field consists of many photons. In classical theory
each photon is not described individually but the field as a whole is described by
the field strengths E(r,¢) and B(r,t) which can be measured (in principle) by using
macroscopic test bodies such that the quantities r and t refer to positions of such
bodies at time ¢. In quantum theory one can formally define corresponding quantized
field operators but the meaning of (r,t) for elementary particles is not clear. In
addition, in view of the above remarks, the physical meaning of electric and magnetic
fields of a free photon is problematic.

For the first time the coordinate photon wave function has been discussed
by Landau and Peierls in Ref. [32]. However, in the literature it has been stated (see
e.g. Refs. [33] and [29]) that in QED there is no way to define a coordinate photon
wave function. A section in the textbook [33] is titled ”Impossibility of introducing
the photon wave function in coordinate representation”. The arguments follow. The
electric and magnetic fields of the photon in coordinate representation are propor-
tional to the Fourier transforms of |p|'/?x(p), rather than y(p). As a consequence,
the quantities E(r) and B(r) are defined not by #(r) but by integrals of ¢)(r) over a
region of the order of the wave length. However, this argument also does not exclude
the possibility that ¢ (r) can have a physical meaning in semiclassical approximation
since, as noted above, the notions of the electric and magnetic fields of a single pho-
ton are problematic. In addition, since A — 0 in the formal limit 7 — 0, one should
not expect that any position operator in semiclassical approximation can describe
coordinates with the accuracy better than the wave length. Another arguments in
favor of the existence of the coordinate photon wave function have been given by
Bialynicki-Birula [34].

A detailed discussion of the photon position operator can be found in
papers by Margaret Hawton and references therein (see e.g. Ref. [35]). In this
approach the photon is described by a local field and the momentum and coordinate
representations are related to each other by standard Fourier transform. The author
of Ref. [35] discusses generalizations of the photon position operator proposed by
Pryce [36]. However, the Pryce operator and its generalizations discussed in Refs.
(34, 35] differ from the Newton-Wigner operator only by terms of the order of the
wave length. Hence in semiclassical approximation all those operators are equivalent.

The above discussion shows that on quantum level the physical meaning
of the coordinate is a difficult problem but in view of a) and b) (see the beginning
of this section) one can conclude that in semiclassical approximation all the existing
proposals for the position operator are equivalent to the Newton-Wigner operator
ih0/0p. An additional argument in favor of this operator is that the relativistic
nature of the photon might be somehow manifested in the longitudinal direction
while in transverse directions the behavior of the wave function should be similar to
that in standard nonrelativistic quantum mechanics. Another argument is that the
photon wave function in coordinate representation constructed by using this operator
satisfies the wave equation in agreement with classical electrodynamics (see Sec. 7).
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For all the reasons described above, in the next section we consider what
happens if the space-time evolution of relativistic wave packets is described by using
the Newton-Wigner position operator.

6 Wave packet spreading in relativistic quantum
mechanics

Consider first a construction of the wave packet for a particle with nonzero mass.
A possible way of the construction follows. We first consider the particle in its rest
system, i.e. in the reference frame where the mean value of the particle momentum
is zero. The wave function y,(p) in this case can be taken as in Eq. (6) with po = 0.
As noted in Sec. 2, such a state cannot be semiclassical. However, it is possible
to obtain a semiclassical state by applying a Lorentz transformation to yo(p). As a
consequence of Eq. (23) and the relation between the functions ¢ and y

U(A)vo(p) = [i((‘;';]%(pv (32)

where p’ is the momentum obtained from p by the Lorentz transformation A=, If A
is the Lorentz boost along the z axis with the velocity v then

pz - UE(p)
Pl =P, p,,z = m (33)

As follows from this expression, exp(—p2a®/2h?) as a function of p has
the maximum at p; = 0, p, = p.o = v[(m? +p?)/(1 —v?)]"/? and near the maximum

’
aQ 2

1

exp(=—z) ~ eap{ =z a’pl +V(p: — p-0)°]}

where b = a(1 — v?)'/? what represents the effect of the Lorentz contraction. If
mv > h/a (in units where ¢ = 1) then m > |p,| and p.o = mv/(1 — v*)V/2 In
this case the transformed state is semiclassical and the mean value of the momentum
is exactly the classical (i.e. nonquantum) value of the momentum of a particle with
mass m moving along the z axis with the velocity v. However, in the opposite case
when m < h/a the transformed state is not semiclassical since the uncertainty of p,
is of the same order as the mean value of p,.

If the photon mass is exactly zero then the photon cannot have the rest
state. However, even if the photon mass is not exactly zero, it is so small that
the condition m < h/a is certainly satisfied for any realistic value of a. Hence a
semiclassical state for the photon or a particle with a very small mass cannot be
obtained by applying the Lorentz transformation to xo(p) and considering the case

when v is very close to unity. An analogous problem with the covariant description
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of the massless wave function has been discussed in the preceding section (see Eq.
(31)).

The above discussion shows that in the relativistic case the momentum
distribution in transverse directions is the same as in the nonrelativistic case (see
also Eq. (31)) and the difference arises only for the momentum distribution in the
longitudinal direction. Let us consider the ultrarelativistic case when |po| = po >
m and suppose that pg is directed along the z axis. As noted in the preceding
section, the formal requirement of Lorentz covariance will be satisfied if one works
with rotationally invariant combinations of p and pg. The quantities p? and (p.—pg)?
satisfy this condition because

pp 1
Pl = p—pePPUR (p, —p)? = L[(ppo) — 522
Po Do

We will describe an ultrarelativistic semiclassical state by a wave function
which is a generalization of the function (6) (see also Eq. (27)):

ab'/? pia®  (p.—po)?* i i
x(p,0) = —3/ap32 exp|— - - ﬁpﬂ“m - ﬁ(pz — Po) o] (34)

2h? 2%

In the general case the parameters a and b defining the momentum distributions
in the transverse and longitudinal directions, respectively, can be different. In that
case the uncertainty of each transverse component of momentum is 7/(av/2) while
the uncertainty of the z component of momentum is //(bv/2). In view of the above
discussion one might think that, as a consequence of the Lorentz contraction, the
parameter b should be very small. However, the notion of the Lorentz contraction
has a physical meaning only if m > h/a while for the photon the opposite relation
takes place. We will see below that in typical situations the quantity b is large and
much greater than a.

In relativistic quantum theory the situation with time is analogous to that
in the nonrelativistic case (see Sec. 3) and time can be treated only as a good ap-
proximate parameter describing the evolution according to the Schrodinger equation
with the relativistic Hamiltonian. Then, as a consequence of Eq. (25), we have that
in the ultrarelativistic case (i.e. when p = |p| > m)

x(p,t) = ewp(—;pct)x(p, 0) (35)

Since at different moments of time the wave functions in momentum space differ each
other only by a phase factor, the mean value and uncertainty of each momentum com-
ponent do not depend on time. In other words, there is no WPS for the wave function
in momentum space. As noted in Sec. 3, the same is true in the nonrelativistic case.

As noted in the preceding section, in the relativistic case the function
¥ (r,t) can be again defined by Eq. (9) where now x(p,t) is defined by Eq. (35).
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If the variable p, in the integrand is replaced by py + p. then as follows from Egs.
(9,34,35)

ab'Pexp(ipor/h) pia®  pib? i
w(rvt) - 7T3/4h3/2(27'('h)3/2 /GIL‘ {_ 2h2 - 2h2 + ﬁp(r - I'())
ict
== [(p- +p)* + p1]"}d’p (36)

In contrast to the nonrelativistic case where the energy is the quadratic
function of momenta and the integration in Eq. (10) can be performed analytically,
here the analytical integration is a problem in view of the presence of square root in
Eq. (36). We will perform the integration by analogy with the Fresnel approximation
in optics and with Ref. [37] where a similar approximation has been used for discussing
the WPS effect in classical electrodynamics. The Fresnel approximation describes
some important features of the relativistic WPS effect but, as will be noted below, in
this approximation some important features of this effect are lost.

The approximation is based on the fact that in semiclassical approximation
the quantity py should be much greater than uncertainties of the momentum in the
longitudinal and transversal directions, i.e. py > p, and py > |p.|. Hence with a
good accuracy one can expand the square root in the integrand in powers of |p|/po.
Taking into account the linear and quadratic terms in the square root we get

[(p> + po)? + P22 = po + p. + P2 /2p0 (37)

This is analogous to the approximation (m? + p?)'/? ~ m + p?/2m in nonrelativistic

case. Then the integral over d®p can be calculated as a product of integrals over
d’p, and dp, and the calculation is analogous to that in Eq. (10). The result of the
calculation is

thet i
(e, t) = [ 1ab (1 + W)] 165329[%(1)01“ — poct)]
capl T T8 (- —a), (38)
P 202(1 + 52) 202
Oa

This result shows that the wave packet describing an ultrarelativistic par-
ticle (including a photon) is moving along the classical trajectory z(t) = zy+ct, in the
longitudinal direction there is no spreading while in transverse directions spreading
is characterized by the function

K222

2 4
bpa

a(t) = a(l + )1/ (39)

The characteristic time of spreading can be defined as t, = poa®/fic. The fact that
t. — oo in the formal limit & — 0 shows that in relativistic case WPS also is a
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pure quantum phenomenon (see the end of Sec. 3). From the formal point of view
the result for t, is the same as in nonrelativistic theory but m should be replaced
by E/c* where E is the energy of the ultrarelativistic particle. This fact could be
expected since, as noted above, it is reasonable to think that spreading in directions
perpendicular to the particle momentum is similar to that in standard nonrelativistic
quantum mechanics. However, in the ultrarelativistic case spreading takes place only
in these directions. If £ > ¢, the transverse width of the packet is a(t) = hct/(poa).

Hence the speed of spreading in perpendicular directions is v, = he/poa.
In the nonrelativistic case different points of the packet are moving with different
velocities and this is not a problem but in the case of the photon one expects that
each point is moving with the speed c. However, the Fresnel approximation creates a
problem because different points are moving with different velocities such that their
magnitudes are in the range [c, (¢? + v?)'/?].

We now consider a model where

x() = f(p/p)F(p)/p (40)

and assume that f(p/p) = >, cuYi.(P/p) is the decomposition of the function f
over spherical functions. The dependence of the momentum wave function on t is
now defined by Eq. (35). In full analogy with the derivation of Eq. (19) we now get
that

@/J(I’, t) =

(27?%)2‘1/27“ %: C1pYip(x/r)[Glct — 1) — (=1)'G(ct +1)] (41)

where ,
G(&) = /0 CF (p)exp(%lé‘p)dp (42)

For reasonable choices of F'(p) we will have that at large distances and
times G(ct —r) > G(ct +r). Indeed if, for example, the quantities py and b are such
that pob > h then possible (F, G) choices are:

_M) G(&) = exp(—ipo&/h)

F(p) = exp( . R
— po|b)? h ' 2
Po) = ep(~ LI i) = (om0 £y g
As follows from Eq. (41), in those cases
V0 = iy /1)Glet = 1) (44)

Therefore at each moment of time ¢ the coordinate wave function is not negligible
only inside a narrow sphere with the radius ¢t and the width of the order of b.
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The conclusion is that, in contrast to the nonrelativistic case, in the ultra-
relativistic one there is no WPS in the radial direction (by analogy with the Fresnel
approximation) and, by analogy with the result (20), at large distances and times
the angular distributions in momentum and coordinate wave functions are the same.
Therefore, in full analogy with the Mott-Heisenberg problem (see Sec. 4), the mo-
menta of particles detected by a measuring device will be in the angular range defined
not by the function f(r/r) but by the function f(r/r) characterizing the angles at
which the device is seen from the origin. In addition, the angular distribution of
momenta characterized by the function f does not depend on time, as well as in the
nonrelativistic case.

If the function f is essentially different from zero only in the range where
angles between momenta and the z-axis are small then the model (40) gives the
same qualitative predictions as the Fresnel approximation. Indeed, suppose that this
function is essentially different from zero for angles which are of the order of « or less,
and o < 1. Then the parameter b in Eq. (43) is similar to the parameter b in Eq. (34).
The characteristic magnitude of the transverse momentum is of the order of p; = apy.
Let a be defined such that p, = h/a. When the time is greater than a characteristic
time for which the transition from Eq. (41) to Eq. (44) is legitimate (this time
can differ from ¢, for the Fresnel model) then, since the angular distributions in the
momentum and coordinate wave functions are the same, the transversal width of the
packet is of the order of awet & cth/(ppa) in agreement with the Fresnel approximation.
Therefore if t is greater than some characteristic time then the width a(t) of the packet
is inversely proportional to the initial width a(0) = a. It is also possible to define v,
by the same expression as in the Fresnel approximation. If v, < ¢ the only difference
between the two models is that in the Fresnel approximation different points of the
packet are moving with different speeds while in the model (40) they are moving
with the same speed c. In fact the Fresnel approximation is such that a small arc
representing the front of the wave function in the model (40) is replaced by a segment.

7 Geometrical optics

The relation between quantum and classical electrodynamics is well-known and is
described in textbooks (see e.g. Ref. [4, 33]). As already noted, classical electro-
magnetic field consists of many photons and in classical electrodynamics the photons
are not described individually. Instead, classical electromagnetic field is described by
field strengths which represent mean characteristics of a large set of photons. For con-
structing the field strengths one can use the photon wave functions x(p,t) or ¥ (r, )
where F is replaced by Aiw and p is replaced by hk. In this connection it is interesting
to note that since w is a classical quantity used for describing a classical electromag-
netic field, the photon is a pure quantum particle since its energy disappears in the
formal limit &~ — 0. Even this fact shows that the photon cannot be treated as a
classical particle and the effect of WPS for the photon cannot be neglected.
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With the above replacements the functions x and v do not contain any
dependence on % (note that the normalization factor H32 in x(k, t) will disappear
since the normalization integral for y(k,t) is now over d’k, not d*p). The quantities
w and k are now treated, respectively, as the frequency and the wave vector of the
classical electromagnetic field, and the functions x(k, t) and ¢ (r, t) are interpreted not
such that they describe probabilities for a single photon but such that they describe
classical electromagnetic field E(r,t) and B(r,¢) which be constructed from these
functions as described in textbooks on QED (see e.g. Ref. [33]).

An additional argument in favor of the choice of #(r,t) as the coordi-
nate photon wave function is that in classical electrodynamics the quantities E(r,t)
and B(r,t) for the free field should satisfy the wave equation 9?°E/c?0t? = AE and
analogously for B(r,t). Hence if E(r,t) and B(r,t) are constructed from ¢ (r,t) as
described in textbooks (see e.g. Ref. [33]), they will satisfy the wave equation since,
as follows from Eqs. (9,34,35), ¢(r,t) also satisfies this equation.

The geometrical optics approximation implies that if kg and ry are the
mean values of the wave vector and the spatial radius vector for a wave packet de-
scribing the electromagnetic wave then the uncertainties Ak and Ar, which are the
mean values of |k — kg| and |r — rg|, respectively, should satisfy the requirements
Ak < |ko| and Ar < |rg|. In full analogy with the derivation of Eq. (4), one can
show that for each j = 1,2,3 the uncertainties of the corresponding projections of
the vectors k and r satisfy the requirement Ak;Ar; > 1/2 (see e.g. Ref. [2]). In
particular, an electromagnetic wave satisfies the approximation of geometrical optics
in the greatest possible extent if AkAr is of the order of unity.

The above discussion confirms what has been mentioned in Sec. 1 that
the effect of WPS in transverse directions takes place not only in quantum theory
but even in classical electrodynamics. Indeed, since the function ¢ (r,t) satisfies the
classical wave equation, the above consideration can be also treated as an example
showing that even for a free wave packet in classical electrodynamics the WPS effect
1s inevitable. In the language of classical waves the parameters of spreading can be
characterized by the function a(t) (see Eq. (39)) and the quantities ¢, and v, such
that in terms of the wave length A = 27c/wy

A2 t?
424

B 2ra’ pYe

1/2 - =
)7t e U o2ma

a(t) =a(l+

(45)

The last expression can be treated such that if A < a then the momentum has the
angular uncertainty of the order of & = A/(2wa). This result is natural from the
following consideration. Let the mean value of the momentum be directed along
the z-axis and the uncertainty of the transverse component of the momentum be
Ap,. Then Ap, is of the order of h/a, A = 2wh/py and hence « is of the order of
Ap, /po = A/(2ma). This is analogous to the well-known result in classical optics that
the best angular resolution of a telescope with the dimension d is of the order of \/d.
Another well-known result of classical optics is that if a wave encounters an obstacle
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having the dimension d then the direction of the wave diverges by the angle of the
order of \/d.

The inevitability of WPS for a free wave packet in classical electrodynamics
is obvious from the following consideration. Suppose that a classical wave packet does
not have a definite value of the momentum. Then if a is the initial width of the packet
in directions perpendicular to the mean momentum, one might expect that the width
will grow as a(t) = a + act and for large values of ¢, a(t) ~ act. As follows from
Eq. (45), if t > t, then indeed a(t) =~ act. In standard quantum theory we have
the same result because the coordinate and momentum wave functions are related to
each other by the same Fourier transform as the coordinate and k distributions in
classical electrodynamics.

The quantity N = b/ shows how many oscillations the oscillating expo-
nent in Eq. (38) makes in the region where the wave function or the amplitude of the
classical wave is significantly different from zero. As noted in Sec. 2, for the validity
of semiclassical approximation this quantity should be very large. In nonrelativistic
quantum mechanics a and b are of the same order and hence the same can be said
about the quantity N, = a/\. As noted above, in the case of the photon we do not
know the relation between a and b. In terms of the quantity N, we can rewrite the
expressions for ¢, and v, in Eq. (45) as

C

- 27TpJL

te=2nNIT, w, (46)
where T is the period of the classical wave. Hence the accuracy of semiclassical
approximation (or the geometrical optics approximation in classical electrodynamics)
increases with the increase of N .

In Ref. [37] the problem of WPS for classical electromagnetic waves has
been discussed in the Fresnel approximation for a two-dimensional wave packet. Equa-
tion (25) of Ref. [37] is a special case of Eq. (37) and the author of Ref. [37] shows
that, in his model the wave packet spreads out in the direction perpendicular to the
group velocity of the packet. As noted in the preceding section, in the ultrarelativistic
case the function a(t) is given by the same expression as in the nonrelativistic case but
m is replaced by E/c?. Hence if the results of the preceding section are reformulated
in terms of classical waves then m should be replaced by hwy/c®> and this fact has
been pointed out in Ref. [37].

8 Wave packet width paradox

We now consider the following important question. We assume that a classical wave
packet is a collection of photons. Let a, be the quantity a for the classical packet
and a,), be a typical value of a for the photons. What is the relation between a.; and

aph?

33



My observation is that physicists answer this question in different ways.
Quantum physicists usually say that in typical situations a,, < aq because ay is
of macroscopic size while in semiclassical approximation the quantity a,, for each
photon can be treated as the size of the region where the photon has been created.
On the other hand, classical physicists usually say that a,, > a, and the motivation
follows.

Consider a decomposition of some component of classical electromagnetic
field into the Fourier series:

Alx) =Y / [a(p, o)u(p, o)exp(—ipz) + a(p, o) u(p, o) exp(ipz)]d’p (47)

where o is the polarization, x and p are the four-vectors such that x = (ct,x) and
p = (|p|c, p), the functions a(p, o) are the same for all the components, the functions
u(p, o) depend on the component and * is used to denote the complex conjugation.
Then photons arise as a result of quantization when a(p, o) and a(p,o)* are under-
stood not as usual function but as operators of annihilation and creation of the photon
with the quantum numbers (p, o) and * is now understood as Hermitian conjugation.
Hence the photon is described by a plane wave which has the same magnitude in all
points of the space. In other words, a,, is infinitely large and a finite width of the
classical wave packet arises as a result of interference of different plane waves.

The above definition of the photon has at least the following inconsistency.
If the photon is treated as a particle then its wave function should be normalizable
while the plane wave is not normalizable. In textbooks this problem is often circum-
vented by saying that we consider our system in a finite box. Then the spectrum of
momenta becomes finite and instead of Eq. (47) one can write

Alw) = > > _la(pj, 0)ul(p;, o)ewp(—ip;z) + a(p;, o) u(p;, o) exp(ip;z)]  (48)

where j enumerates the points of the momentum spectrum.

One can now describe quantum electromagnetic field by states in the Fock
space where the vacuum vector @ satisfies the condition a(p;,o)®g = 0, ||$o|| =1
and the operators commute as

[a(pi, %), a(py, 01)] = [a(ps, o%)", a(pj, 00)*] =0, [a(pi, on), a(pj, 01)"] = 6ij0n
(49)
Then any state can be written as

U — 2‘; Z Z X(P1,01, ---Pn,0n)a(p1,01)" -+ - a(Pn, 0n) " Po (50)
n=001...0n P1,..-Pn

(Classical states are understood such that although the number of photons
is large, it is much less than the number of possible momenta and in Eq. (50) all
the photons have different momenta (this is analogous to the situation in classical
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statistics where mean occupation numbers are much less than unity). Then it is
not important whether the operators (a,a*) commute or anticommute. However, ac-
cording to the Pauli theorem on spin-statistics connection [23], they should commute
and this allows the existence of coherent states where many photons have the same
quantum numbers. Such states can be created in lasers and they are not described
by classical electrodynamics. In the next section we consider position operator for
coherent states while in this section we consider only quantum description of states
close to classical.

Note that even in some textbooks on quantum optics (see e.g. Ref. [38])
classical and quantum states are characterized in the opposite way: it is stated that
classical states are characterized by large occupation numbers while quantum states -
by small ones. The question what states should be called classical or quantum is not
a matter of convention since in quantum theory there are rigorous criteria for that
purpose. In particular, as explained in textbooks on quantum theory, the exchange
interaction is a pure quantum phenomenon which does not have classical analogs.
That’s why the Boltzmann statistics (which works when mean occupation numbers are
much less than unity and the exchange interaction is negligible) is classical while the
Fermi-Dirac and Bose-Einstein statistics (which work when mean occupation numbers
are of the order of unity or greater and the exchange interaction is important) are
quantum.

The next problem is that one should take into account that in standard
theory the photon momentum spectrum is continuous. Then the above construction
can be generalized as follows. The vacuum state ®( satisfies the same conditions
||Po|| = 1 and a(p, 0)Py = 0 while the operators (a, a*) satisfy the following commu-
tation relations

[a(p, o), a(p’,0")] = [a(p,0)",a(p’,0')*] = 0, [a(p,0),a(p’,0")"] = % (p — P')dsor
(51)
Then a general quantum state can be written as

=3 3 [ [xPron - puc)a(ron) - alpon) dpr - dpado (52)
n=001...0n
In the approximation when a classical wave packet is understood as a
collection of independent photons (see the discussion in Sec. 11), the state of this
packet has the form

¥ =3 e TES [ otesas)atpso) ) (53)

where x; is the wave function of the jth photon and intersections of supports of
wave functions of different photons can be neglected. This is an analog of the above
situation with the discrete case where it is assumed that different photons in a classical
wave packet have different momenta. In other words, while the wave function of each
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photon can be treated as an interference of plane waves, different photons can interfere
only in coherent states but not in classical wave packets.

We now describe a well-known generalization of the results on IRs of the
Poincare algebra to the description in the Fock space (see e.g. Ref. [39] for details).
If A is an operator in the space of the photon IR then a generalization of this operator
to the case of the Fock space can be constructed as follows. Any operator in the space
of IR can be represented as an integral operator acting on the wave function as

Ax(p,0) = Z/A(pnf, p’, o' )x(p’,0")d’p’ (54)
For example, if Ax(p,o) = 9dx(p,o)/0p then A is the integral operator with the
kernel @
00 -p
A(pa g, p/7 OJ) = (appp)50'0'/

We now require that if the action of the operator A in the space of IR is defined by
Eq. (54) then in the case of the Fock space this action is defined as

A=Y [ A(p.o.p'.o)alp, o) alp',o')d’pd’p’ (55)

oo’

Then it is easy to verify that if A, B and C' are operators in the space of IR satisfying
the commutation relation [A, B] = C' then the generalizations of these operators in
the Fock space satisfy the same commutation relation. It is also easy to verify that
the operators generalized to the action in the Fock space in such a way are additive,
i.e. for a system of n photons they are sums of the corresponding single-particle
operators. In particular, the energy of the n-photon system is a sum of the energies
of the photons in the system and analogously for the other representation operators
of the Poincare algebra - momenta, angular momenta and Lorentz boosts.

We are interested in calculating mean values of different combinations of
the momentum operator. Since this operator does not act over spin variables, we will
drop such variables in the (a, a*) operators and in the functions y;. Then the explicit
form of the momentum operator is P = [ pa(p)*a(p)d®p. Since this operator does
not change the number of photons, the mean values can be independently calculated
in each subspace where the number of photons is V.

Suppose that the momentum of each photon is approximately directed
along the z-axis and the quantity py for each photon approximately equals 27k /.
If Ap, is a typical uncertainty of the transversal component of the momentum for
the photons then a typical value of the angular uncertainty for the photons is a,, =
Ap, /po = A/ (2ma,). The total momentum of the classical wave packet consisting of
N photons is a sum of the photon momenta: P = % | p®. Suppose that the mean
value of P is directed along the z-axis and its magnitude Fy is such that Py ~ Npy.
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The uncertainty of the x component of P is AP, = ?:31/ ? where

PR=% 2+ > pipt!
i=1 i giii=1

Then in the approximation of independent photons (see the remarks after Eq. (53))

_ N - N —— 7~ N —— —2 N .
2= )24+ S PP =S )2 -l ] = S (Apd))?
i=1 it jiig=1 i=1 i=1

where we have taken into account that P, = 3%, pg) =0.

As a consequence, if typical values of Apf) have the the same order of
magnitude equal to Ap, then AP, ~ NY2Ap, and the angular divergence of the
classical vave packet is

acl:APJ—/POQAPL/(poNl/Q):&ph/Nl/Q (56)

Since the classical wave packet is described by the same wave equation as the photon
wave function, its angular divergence can be expressed in terms of the parameters
A and aq such that ay = \/(2may). Hence ay ~ N'2a,, and we conclude that
Qpp, < ag.

Note that in this derivation no position operator has been used. Although
the quantities A and a,, have the dimension of length, they are defined only from
considering the photon in momentum space because, as noted in Sec. 5, for indi-
vidual photons A is understood only as 27h/py, a,, defines the width of the photon
momentum wave function (see Eq. (34)) and is of the order of h/Ap,. As noted in
Secs. 3 and 6, the momentum distribution does not depend on time and hence the
result a,, < aq does not depend on time too. If photons in a classical wave packet
could be treated as (almost) pointlike particles then photons do not experience WPS
while the WPS effect for a classical wave packet is a consequence of the fact that
different photons in the packet have different momenta.

However, in standard quantum theory this scenario does not take place for
the following reason. Let a.(t) be the quantity a(t) for the classical wave packet and
apn(t) be a typical value of the quantity a(t) for individual photons. With standard
position operator the quantity a,;(t) is interpreted as the spatial width of the photon
coordinate wave function in directions perpendicular to the photon momentum and
this quantity is time dependent. As shown in Secs. 6 and 7, a(0) = a but if ¢ > ¢, then
a(t) is inversely proportional to a and the coefficient of proportionality is the same for
the classical wave packet and individual photons (see Eq. (45)). Hence in standard
quantum theory we have a paradox that after some period of time ap(t) > aq(t) i.e.
individual photons in a classical wave packet spread out in a much greater extent than
the wave packet as a whole. We call this situation the wave packet width (WPW)
paradox (as noted above, different photons in a classical wave packet do not interfere
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with each other). The reason of the paradox is obvious: if the law that the angular
divergence of a wave packet is of the order of A/a is applied to both, a classical wave
packet and photons comprising it then the paradox follows from the fact that the
quantities a for the photons are much less than the quantity a for the classical wave
packet. Note that in classical case the quantity a, does not have the meaning of
h/AP, and A is not equal to 27h/P,.

9 Wave packet spreading in coherent states

In textbooks on quantum optics the laser emission is described by the following model
(see e.g. Refs. [38, 40]). Consider a set of photons having the same momentum p
and polarization ¢ and, by analogy with the discussion in the preceding section, sup-
pose that the momentum spectrum is discrete. Consider a quantum superposition
U = 3> cula(p,0)*]"®y where the coefficients ¢, satisfy the condition that ¥ is
an eigenstate of the annihilation operator a(p,o). Then the product of the coor-
dinate and momentum uncertainties has the minimum possible value /2 and, as
noted in Sec. 2, such a state is called coherent. However, the term coherent is some-
times used meaning that the state is a quantum superposition of many-photon states
a(p.0)")"@p.

In the above model it is not taken into account that (in standard theory)
photons emitted by a laser can have only a continuous spectrum of momenta. Mean-
while for the WPS effect the width of the momentum distribution is important. In
this section we consider a generalization of the above model where the fact that pho-
tons have a continuous spectrum of momenta is taken into account. This will make
it possible to consider the WPS effect in coherent states.

In the above formalism coherent states can be defined as follows. We
assume that all the photons in the state Eq. (52) have the same polarization. Hence
for describing such states we can drop the quantum number ¢ in wave functions
and a-operators. We also assume that all photons in coherent states have the same
momentum distribution. These conditions can be satisfied by requiring that coherent
states have the form

v = i[ [ xp)atp)a'pl'a, (57)

where ¢, are some coefficients. Finally, by analogy with the description of coher-
ent states in standard textbooks on quantum optics one can require that they are
eigenstates of the operator [ a(p)d>p.

The dependence of the state U in Eq. (57) on t is ¥(t) = exp(—iEt/h)¥
where, as follows from Eqs. (22) and (55), the action of the energy operator in the
Fock space is £ = [ pca(p)*a(p)d®p. Since exp(iEt/h)®y = @y, it readily follows
from Eq. (51) that

W)= 3= o[ x(p. ) b0, (58)
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where the relation between x(p,t) and x(p) = x(p,0) is given by Eq. (35).

A problem arises how to define the position operator in the Fock space. If
this operator is defined by analogy with the above construction then we get an un-
physical result that each coordinate of the n-photon system as a whole is a sum of the
corresponding coordinates of the photons in the system. This is an additional argu-
ment that the position operator is less fundamental than the representation operators
of the Poincare algebra and its action should be defined from additional considera-
tions. In textbooks on quantum optics the position operator for coherent states is
usually defined by analogy with the position operator in nonrelativistic quantum me-
chanics for the harmonic oscillator problem. The motivation follows. If the energy
levels hw(n+1/2) of the harmonic oscillator are treated as states of n quanta with the
energies Aiw then the harmonic oscillator problem can be described by the operators a
and a* which are expressed in terms of the one-dimensional position and momentum
operators ¢ and p as a = (wq+1ip)/(2hw)/? and a* = (wq—ip)/(2hw)'/?, respectively.
However, as noted above, the model description of coherent states in those textbooks
is one-dimensional because the continuous nature of the momentum spectrum is not
taken into account. In addition, the above results on WPS give indications that the
position operator in standard theory is not consistently defined. For all these rea-
sons a problem arises whether the requirement that the state ¥ in Eq. (57) is an
eigenvector of the operator [a(p)d®p has a physical meaning. In what follows this
requirement is not used.

In nonrelativistic classical mechanics the radius vector of a system of n
particles as a whole (the radius vector of the center of mass) is defined as R =
(mary + ... + mury,)/(my + ... + my,) and in works on relativistic classical mechanics
it is usually defined as R = (e1(p1)r1 + ... + €n(Pn)rn)/(e1(P1) + ... + €,(Pn)) Where
€i(pi) = (m? + p2)'/2. Hence if all the particles have the same masses and momenta,
R=(ri+..+1r,)/n

These remarks make it reasonable to define the position operator for co-
herent states as follows. Let x; be the jth component of the position operator in the
space of IR and A;(p,p’) be the kernel of this operator. Then in view of Eq. (55)
the action of the operator X, on the state U(¢) in Eq. (57) can be defined as

X;0(t) = in [ [ A7 p)ao”) o) d*p" &' [ x(p, Dalp) '@y (59)

If 7;(t) and 93?(15) are the mean values of the operators x; and 7, respec-
tively then as follows from the definition of the kernel of the operator z;

T;(t) = / / X(p, )" A;(p, P')x(p',t)d’pd’p’
20 = [ [ [ X7 4,0.57) A, (p. PN D)d’pd'p d'D (60)

and in the case of IR the uncertainty of the quantity z; is Az;(t) = [22(t) —z;(t)*]"/%

At the same time, if X;(¢) and Yf(t) are the mean values of the operators X; and
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X2, respectively then
Xi(t) = (U(t), X;9(1),  XF(t) = (W(t), X;0(t)) (61)

and the uncertainty of the quantity X; is AX;(t) = [X2(t) — X;(t)*]¥%. Our goal is
to express AX;(t) in terms of T;(t), 3(t) and Ax;(t).
If the function x(p,t) is normalized to one (see Eq. (7)) then, as follows

from Eq. (51), || (¢)|| =1 if
Zn!]cn|2 =1 (62)

n=0
A direct calculation using Egs. (51), (59), (60) and (61) gives

o0

X0) = 75(t) 3 nlen
X2t) = i (n— D)leaP[22(0) + (n — D)z (1)?) (63)

It now follows from Eq. (62) and the definitions of the quantities Az;(t) and AX;(t)
that o
AX(02 = (1= leoPeoP T30 + 30 = 1)l P A 1) (64)
n=1

Equation (64) is the key result of this section. It has been derived without
using a specific choice of the single photon position operator. The consequence of
this result follows. If the main contribution to the state W(¢) in Eq. (58) is given
by very large values of n then |cg| is very small and the first term in this expression
can be neglected. Suppose that the main contribution is given by terms where n is
of the order of . Then, as follows from Eqs. (62) and (64), AX,(¢) is of the order
of Az;(t)/n'/?. This means that for coherent states where the main contribution is
given by very large numbers of photons the effect of WPS is pronounced in a much
less extent than for single photons.

It is interesting to note that the relation between AX;(t) and Az;(t) is
analogous to (56) although those relations describe fully difference situations. In
both of them relative uncertainties for a system of many particles are much less than
for a single particle. Since the WPS effect for photons in laser beams is very small,
divergence of the laser beam is only a consequence of the fact that different photons
have different momenta.

10 Experimental consequences of WPS in stan-
dard theory

The problem of explaining the redshift phenomenon has a long history. Different
competing approaches can be divided into two big sets which we call Theory A and
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Theory B. In Theory A the redshift has been originally explained as a manifestation
of the Doppler effect but in recent years the cosmological and gravitational redshifts
have been added to the consideration. In this theory the interaction of photons with
the interstellar medium is treated as practically not important. On the contrary, in
Theory B, which is often called the tired-light theory, the interaction of photons with
the interstellar medium is treated as the main reason for the redshift. At present the
majority of physicists believe that Theory A explains the astronomical data better
than Theory B. Even some physicists working on Theory B acknowledged that any
sort of scattering of light would predict more blurring than is seen (see e.g. the article
”Tired Light” in Wikipedia).

As follows from these remarks, in Theory A it is assumed that with a good
accuracy we can treat photons as propagating in empty space. It is also reasonable to
expect (see the discussion in the next section) that photons from distant stars practi-
cally do not interact with each other. Hence the effect of WPS can be considered for
each photon independently and the results of the preceding sections make it possible
to understand what experimental consequences of WPS are.

A question arises what can be said about characteristics of photons coming
to Earth from distance objects. Since wave lengths of such photons are typically much
less than all characteristic dimensions in question one might think that the radiation
of stars can be described in the geometrical optics approximation. As discussed
in Sec. 7, this approximation is similar to semiclassical approximation in quantum
theory. This poses a question whether this radiation can be approximately treated as
a collection of photons moving along classical trajectories. However, as noted below,
not all photons in the radiation can be treated in such a way.

Consider, for example, the Lyman transition 2P — 1S in the hydrogen
atom, which plays an important role in the star radiation. We first consider the case
when the atom is at rest. Then the mean energy of the photon is Ey = 10.2¢eV/, its
wave length is A = 121.6nm and the lifetime is 7 = 1.6 - 107%s. The phrase that
the lifetime is 7 is interpreted such that the uncertainty of the energy is i/7. This
implies that the uncertainty of the momentum magnitude is 7 /c7 and b is of the order
of c7 ~ 0.48m. In this case the photon has a very narrow energy distribution since
the mean value of the momentum py = Ey/c satisfies the condition pyb > h. At the
same time, since the orbital angular momentum of the photon is a small quantity,
the function f(0) = f(p/p) in Eq. (43) has the same order of magnitude at all angles
and the direction of the photon momentum cannot be semiclassical. If the atom is
not at rest those conclusions remain valid because typically the speed of the atom is
much less than c.

As pointed out in Sec. 6, it follows from Eq. (44) that even if the function
f(0) describes a broad angular distribution, the star will be visible only in the angular
range of the order of R/L where R is the radius of the star and L is the distance
to the star. The experimental verification of this prediction is problematic since the
quantities R/L are very small and at present star radii cannot be measured directly.
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Conclusions about them are made from the data on luminosity and temperature
assuming that the major part of the radiation from stars comes not from transitions
between atomic levels but from processes which can be approximately described as a
blackbody radiation.

A theoretical model describing blackbody radiation (see e.g. Ref. [41]) is
such that photons are treated as an ideal Bose gas weakly interacting with matter
and such that typical photon energies are not close to energies of absorption lines
for that matter (hence the energy spectrum of photons is almost continuous). It
is also assumed that the photons are distributed over states with definite values of
momenta. With these assumptions one can derive the famous Planck formula for the
spectral distribution of the blackbody radiation (this formula is treated as marking
the beginning of quantum theory). As explained in Ref. [41], when the photons
leave the black body, their distribution in the phase space can be described by the
Liouville theorem; in particular it implies that the photons leaving stars are moving
along classical trajectories.

If we accept those arguments then the main part of photons emitted by
stars can be described in the formalism considered in Sec. 6. In that case we cannot
estimate the quantity b as above and it is not clear what criteria can be used for
estimating the quantity a. The estimation a ~ b ~ 0.48m seems to be extremely
favorable since one might expect that the value of a is of atomic size, i.e. much less
than 0.48m. With this estimation for yellow light (with A = 580nm) N, = a/\ =~
8 -10°. So the value of N is rather large and in view of Eq. (46) one might think
that the effect of spreading is not important.

However, this is not the case because, as follows from Eq. (46), ¢, ~ 0.008s.
Even in the case of the Sun the distance to the Earth is approximately ¢ = 8 light
minutes, and this time is much greater than t¢,. Then the value of a(t) (which can
be called the half-width of the wave packet) when the packet arrives to the Earth
is v,t ~ 28km. In this case standard geometrical interpretation does not apply.
In addition, if we assume that the initial value of a is of the order of several wave
lengths then the value of N, is much less and the width of the wave packet coming
to the Earth even from the Sun is much greater. An analogous estimation shows
that even in the favorable scenario the half-width of the wave packet coming to the
Earth from Sirius will be approximately equal to 15 - 10°%m but in less favorable
situations the half-width will be much greater. Hence we come to the conclusion that
even in favorable scenarios the assumption that photons are moving along classical
trajectories does not apply and a problem arises whether or not this situation is in
agreement with experiment.

As already noted, even if the function f(6) describes a broad angular
distribution, a star will be visible only in the angular range of the order of R/L.
Hence one might think that the absence of classical trajectories does not contradict
observations. We now consider this problem in greater details. For simplicity we first
assume that the photon wave function is spherically symmetric, i.e. f(r/r) = const.
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As follows from Eqgs. (43) and (44), the wave function of the photon coming
to Earth from a distant star is not negligible only within a narrow sphere with the
radius ct and the width of the order of b. On its way to Earth the sphere passes all
stars, planets and other objects the distance from which to the star is less than L (in
particular, even those objects which are from the star in directions opposite to the
direction to Earth). A problem arises how to explain the fact that the photon was
detected on Earth and escaped detection by those stars, planets etc.

One might think that the event when the photon was detected on Earth is
purely probabilistic. The fact that the photon was not detected by the objects on its
way to Earth can be explained such that since the photon wave function has a huge
size (of the order of light years or more) the probability of detection even by stars is
extremely small and so it was only a favorable accident that the photon was detected
on Earth.

If we accept this explanation then a new problem arises. If the photon
passed stars, planets and other objects on its way to Earth then with approximately
the same probability it can pass Earth and can be detected on the opposite side of
the Earth. In that case we could see stars even through the Earth.

Moreover, consider the following experiment. Suppose that we first look
at a star and then place a small screen between the eye and the star. Then the experi-
ment shows that the star will not be visible. However, since the photon wave function
passed many big objects without interacting with them then with approximately the
same probability it can pass the screen. In that case we could see the star through
the screen.

Another possibility is to try to avoid the above paradoxes by using an
analogy with classical diffraction theory. Here the general problem statement requires
solutions of Maxwell’s equations with boundary conditions depending on the shape of
the body and its material. In practice this problem is tackled assuming that deviation
from geometrical optics is small (see e.g. Ref. [2]). When a classical wave encounters
a macroscopic object it is also assumed that in optical phenomena the wave cannot
penetrate inside the object. Then we get a picture that the wave far from the object
does not change, right after the object the wave has a hole but when the length is
much greater than the Rayleigh one the hole disappears and the wave function is
practically the same as without diffration. Those results are natural from the point
of view that classical waves consist of many almost pointlike photons.

Let us now consider a single-photon experiment on the Earth such the
photon encounters a classical object and the transversal width of the photon coor-
dinate wave function is much greater than the size of the object. One might think
that the classical diffraction theory can be used even in this case. The justification
involves arguments similar to those in Dirac’s textbook [4] and in Sec. 7 that in
some cases the classical and quantum theories involve the same formulas but they
have different interpretations. Then the behavior of the photon wave function after
passing the object will be similar to the behavior of the wave in classical diffraction

43



theory.

However, any change of the photon transverse wave function implies that
the photon somehow interacted with the object. For example, when the photon is
absorbed by an atom and then reemitted, the size of its wave function is defined
by the atom; so the photon will not have a broad wave function anymore or in
other words the photon wave function will collapse. Another example is that in the
Compton scattering the photon is first absorbed by a charge particle, in the virtual
intermediate state there is no photon and it is reemitted. So again the wave function
will not have a large transverse size and the collapse will occur. In general, any
Feynman diagram containing photons consists only of vertices with one photon. So
in any interaction the photon will be first absorbed and hence the reemitted photon
will not have the wave function with a large transverse size. In summary, since the
phenomenon of wave function collapse exists only in quantum theory, in the single-
photon experiment discussed above the behavior of the photon wave after passing the
object cannot be similar to the behavior of the wave in classical diffraction theory.

Let us now return to the case when a photon with a wave function having
a cosmic size encounters an object. In addition to the above arguments one can notice
the following. The assumption that the photon wave function cannot penetrate inside
the macroscopic object is reasonable in experiments on the Earth but in the given
case it is highly problematic.

For example, our understanding of neutrino physics implies that neutrinos
not only can pass the Earth practically without problems but even neutrinos created
in the center of the Sun can easily reach the Earth. The major neutrino detectors are
under the Earth surface and, for example, in the OPERA and ICARUS experiments
neutrinos created at CERN reached Gran Sasso (Italy) after traveling 730km under
the Earth surface. The explanation is that the probability of the neutrino interaction
with the particle comprising the Sun and the Earth is very small.

At small energies the electromagnetic interaction is much stronger than the
weak one but, as follows from the discussion in Secs. 4 and 6, the probability of inter-
action for photons having cosmic sizes contains the factor | f/f|2 = (d/D)?. Therefore
it is reasonable to expect that for such photons the probability of interaction with
particles comprising an object is even much less than in the above experiments with
neutrinos. Hence the requirement that the photon wave function cannot penetrate
a classical object is not justified. In addition, by analogy with the above consider-
ation, after every interaction of the photon with particles comprising the object the
photon wave function will collapse and will not have a cosmic size anymore. Such a
photon can reach Earth only if its momentum considerably differs from the original
one but this contradicts Theory A. So the assumption that the above paradoxes can
be explained by analogy with classical diffraction theory is not justified.

If f(r/r) # const then, as follows from Eqs. (43) and (44), the radial part
of the wave function is the same as in the spherically symmetric case and, as follows
from the above discussion, the photon coordinate wave function still has a cosmic
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size. Therefore on its way to Earth the photon wave function will also pass stars,
planets and other objects (even if they are far from the line connecting the star and
Earth) and the same inconsistencies arise.

In summary, since according to standard theory photons emitted by stars
have coordinate wave functions with cosmic sizes, we treat the above arguments as a
strong indication that the theory contradicts observational data.

In the infrared and radio astronomy wave lengths are much greater than
in the optical region but typical values of a,, are expected to be much greater. As
a consequence, here standard quantum theory encounters the same problems that in
the optical region.

In the case of gamma-ray bursts (GRBs) wave lengths are much less than
in the optical region but this is outweighed by the facts that, according to the present
understanding of the GRB phenomenon (see e.g. Ref. [42]), gamma quanta created
in GRBs typically travel to Earth for billions of years and typical values of a,, are
expected to be much less than in the optical region. The location of sources of GBRs
are determined with a good accuracy and the data can be explained only assuming
that the gamma quanta are focused into narrow jets which are observable when Earth
lies along the path of those jets. However, in view of the above discussion, the results
on WPS predicted by standard quantum theory are incompatible with the data on
GRBs because, as a consequence of WPS, the probability to detect photons from
GRBs would be negligible.

Consider now WPS effects for radio wave photons. In radiolocation it is
important that a beam from a directional antenna has a narrow angular distribution
and a narrow distribution of wave lengths. This makes it possible to communicate
even with very distant space probes. For this purpose a set of radio telescopes can
be used but for simplicity we consider a model where signals from a space probe are
received by one radio telescope having the diameter D of the dish.

The Cassini spacecraft can transmit to Earth at three radio wavelengths:
14cm, 4em and lem [43]. A radio telescope on Earth can determine the position of
Cassini with a good accuracy if it detects photons having momenta in the angular
range of the order of D/L where L is the distance to Cassini. The main idea of using
a system of radio telescopes is to increase the effective value of D. As a consequence
of the fact that the radio signal sent from Cassini has an angular divergence which is
much greater than D /L, only a small part of photons in the signal can be detected.
We consider a case when Cassini was TAU away from the Earth.

Consider first the problem on classical level. For the quantity a = a4 we
take the value of 1m which is of the order of the radius of the Cassini antenna. If
a = A\/(2ra) and L(t) is the length of the classical path then, as follows from Eq.
(45), aq(t) = L(t)a. As a result, even for A\ = lem we have aq(t) ~ 1.6 - 105km.
Hence one might expect that only a [D/ay(t)]* part of the photons can be detected.

Consider now the problem on quantum level. The condition ¢ > t, is
satisfied for both, the classical and quantum problems. Then, as follows from Eq.
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(45), apn(t) = aa(t)ac/apn, i-e. the quantity a,,(t) is typically greater than ay(t) and
in Sec. 8 this effect is called the WPW paradox. The fact that only photons in the
angular range D/L can be detected can be described by projecting the states y =
X(p,t) (see Egs. (34), and (35)) onto the states xy; = Px where x1(p,t) = p(p)x(p, 1)
and the form factor p(p) is significant only if p is in the needed angular range. We
choose p(p) = exp(—p? a?/2h*) where a; is of the order of AL/(pyD). Since a; >> ayn,
it follows from Eqs. (34), and (35) that ||Px||? = (apn/a1)?. Then, as follows from Eq.
(45), (apn/a1)? is of the order of [D/a,,(t)]* as expected and this quantity is typically
much less than [D/ay(t)]>. Hence the WPW paradox would make communications
with space probes much more difficult.

We now consider the following problem. The parameter v in General
Relativity (GR) is extracted from experiments on deflection of light from distant stars
by the Sun and from the effect called Shapiro time delay. The meaning of the effect
follows. An antenna on Earth sends a signal to Mercury, Venus or an interplanetary
space probe and receives the reflected signal. If the path of the signal nearly grazes
the Sun then the gravitational influence of the Sun deflects the path from a straight
line. As a result, the path becomes longer by S & 75km and the signals arrive with
a delay S/c ~ 250us. This effect is treated as the fourth test of GR.

The consideration of the both effects in GR is based on the assumption
that the photon is a pointlike classical particle moving along classical trajectory.
In the first case the photon wave function has a cosmic size. In the second case
the available experimental data are treated such that the best test of v has been
performed in measuring the Shapiro delay when signals from the DSS-25 antenna [44]
were sent to the Cassini spacecraft when it was TAU away from the Earth. As noted
above, in that case case, even in the most favorable scenario ay(t) =~ 1.6 - 10°%km
and the quantity a,,(t) is expected to be much greater. Therefore a problem arises
whether the classical consideration in GR is compatible with the fact that the photon
coordinate wave functions have very large sizes.

One might think that the compatibility is not a problem because when
we detect a photon with the momentum pointing to the area near the Sun we know
that this photon moved to us on the trajectory bending near the Sun. The results
of Sec. 6 indeed show that even if the photon momentum wave function has a broad
distribution, the photon detected by a measuring device can be detected only at the
moment of time close to L/c and momentum of the detected photon will point to
the star which emitted this photon. However, quantum formalism does not contain
any information about the photon trajectory from the moment of emission to the
moment of detection. One might guess that the required trajectory will give the
main contribution in the Feynman path integral formulation but the proof of this
guess is rather complicated.

In summary, by analogy with the consideration in Subsec. 1.3, one can
conclude that quantum theory does not contain any information about trajectories.
The notion of trajectories in quantum theory is a reasonable approximation only in
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semiclassical approximation when a choice of the position operator has been made.
However, in the case of packets with broad coordinate distributions the notion of
trajectories does not have a physical meaning and one cannot avoid quantum consid-
eration of the problem. In particular, the results of GR on the deflection of light and
on the Shapiro delay are meaningful only if there is no considerable WPS in quantum
theory. In addition, in view of the WPW paradox, the probability to detect reflected
photons in the Shapiro delay experiments can be very small.

One might think that the WPS effect is important only if a particle travels
a rather long distance. Hence one might expect that in experiments on the Earth
this effect is negligible. Indeed, one might expect that in typical experiments on the
Earth the time ¢ is so small that a(t) is much less than the size of any macroscopic
source of light. However, a conclusion that the effect of WPS is negligible for any
experiment on the Earth might be premature.

As an example, consider the case of protons in the LHC accelerator. Ac-
cording to Ref. [45], protons in the LHC ring injected at the energy F = 450GeV
should be accelerated to the energy F = 7TeV within one minute during which the
protons will turn around the 27km ring approximately 674729 times. Hence the length
of the proton path is of the order of 18-10°km. The protons cannot be treated as free
particles since they are accelerated by strong magnets. A problem of how the width
of the proton wave function behaves in the presence of strong electromagnetic field
is very complicated and the solution of the problem is not known yet. It is always
assumed that the WPS effect for the protons can be neglected.

We first consider a model problem of the WPS for a free proton which
moves for t; = Imin with the energy in the range [0.45,7] TeV. In nuclear physics
the size of the proton is usually assumed to be a quantity of the order of 10~ 3cm.
Therefore for estimations we take a = 10~ ¥c¢m. Then the quantity ¢, defined after
Eq. (39) is not greater than 107s, i.e. ¢, < t;. Hence, as follows from Eq. (39), the
quantity a(t;) is of the order of 500km if E = 7TeV and by a factor of 7/0.45 ~ 15.6
greater if ' = 450 GeV .

This fully unrealistic result cannot be treated as a paradox since, as noted
above, the protons in the LHC ring are not free. In the real situation the protons
interact with many real and virtual photons emitted by magnets. For example, this
might lead to the collaps of the proton wave function each time when the proton
interacts with the real or virtual photon. This phenomenon is not well studied yet
and so a problem of what standard theory predicts on the width of proton wave
functions in the LHC ring is far from being obvious.

The last example follows. The astronomical objects called pulsars are
treated such that they are neutron stars with radii much less than radii of ordinary
stars. Therefore if mechanisms of pulsar electromagnetic radiation were the same as
for ordinary stars then the pulsars would not be visible. The fact that pulsars are
visible is explained as a consequence of the fact that they emit beams of light which
can only be seen when the light is pointed in the direction of the observer with some
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periods which are treated as periods of rotation of the neutron stars. In popular
literature this is compared with the light of a lighthouse. However, by analogy with
the case of a signal sent from Cassini, only a small part of photons in the beam can
reach the Earth. At present the pulsars have been observed in different regions of the
electromagnetic spectrum but the first pulsar called PSR B19194-21 was discovered
in 1967 as a radio wave radiation with A ~ 3.7m [46]. This pulsar is treated as the
neutron star with the radius R = 0.97km and the distance from the pulsar to the
Earth is 2283 light years. If for estimating a.(t) we assume that ay = R then we
get @ ~ 6-107* and ay(t) ~ 1.3ly ~ 12 - 10"?km. Such an extremely large value of
spreading poses a problem whether even predictions of classical electrodynamics are
compatible with the fact that pulsars are observable. However, in view of the WPW
paradox, the value of a,,(t) will be even much greater and no observation of pulsars
would be possible.

Our conclusion is that we have several fundamental paradoxes indicating
that predictions of standard quantum theory for the WPS effect contradict experi-
mental data.

11 Discussion: is it possible to avoid the WPS
paradoxes in standard theory?

As shown in the preceding section, if one assumes that photons coming to Earth do
not interact with the interstellar or interplanetary medium and with each other then
a standard treatment of the WPS effect leads to several paradoxes. Hence a question
arises whether this assumption is legitimate.

As shown in textbooks on quantum optics (see e.g. Refs. [38, 40]), quan-
tum states describing the laser emission are strongly coherent and the approximation
of independent photons is not legitimate. As shown in Sec. 9, the WPS effect in
coherent states is pronounced in a much less extent than for individual photons.
However, laser emission can be created only at very special conditions when energy
levels are inverted, the emission is amplified in the laser cavity etc. At the same
time, the main part of the radiation emitted by stars is understood such that it can
be approximately described as the blackbody radiation and in addition a part of the
radiation consists of photons emitted from different atomic energy levels. In that
case the emission of photons is spontaneous rather than induced and one might think
that the photons can be treated independently. Several authors (see e.g. Ref. [47]
and references therein) discussed a possibility that at some conditions the inverted
population and amplification of radiation in stellar atmospheres might occur and so
a part of the radiation can be induced. This problem is now under investigation.
Hence we adopt a standard assumption that a main part of the radiation from stars
is spontaneous. In addition, there is no reason to think that radiation of GRBs, radio
antennas, space probes or pulsars is laser like.
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The next question is whether the interaction of photons in the above phe-
nomena is important or not. As explained in standard textbooks on QED (see e.g.
Ref. [33]), the photon-photon interaction can go only via intermediate creation of
virtual electron-positron or quark-antiquark pairs. If w is the photon frequency, m
is the mass of the charged particle in the intermediate state and e is the electric
charge of this particle then in the case when hiw < mc? the total cross section of the
photon-photon interaction is [33]
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)(—3)° (65)
For photons of visible light the quantities fiw/(mc?) and o are very small and for radio
waves they are even smaller by several orders of magnitude. At present the effect of
the direct photon-photon interaction has not been detected, and experiments with
strong laser fields were only able to determine the upper limit of the cross section
48].

The problem of WPS in the ultrarelativistic case has been discussed in a
wide literature. As already noted, in Ref. [37] the effect of WPS has been discussed in
the Fresnel approximation for a two-dimensional model and the author shows that in
the direction perpendicular to the group velocity of the wave spreading is important.
He considers WPS in the framework of classical electrodynamics. We believe that
considering this effect from quantum point of view is even simpler since the photon
wave function satisfies the relativistic Schrodinger equation which is linear in 9/0t.
As noted in Sec. 7, this function also satisfies the wave equation but it is simpler
to consider an equation linear in 0/0t than that quadratic in 0/0t. However, in
classical theory there is no such an object as the photon wave function and hence
one has to solve either a system of Maxwell equations or the wave equation. There
is also a number of works where the authors consider WPS in view of propagation of
classical waves in a medium such that dissipation is important (see e.g. Ref. [49]).
In Ref. [50] the effect of WPS has been discussed in view of a possible existence of
superluminal neutrinos. The authors consider only the dynamics of the wave packet
in the longitudinal direction in the framework of the Dirac equation. They conclude
that wave packets describing ultrarelativistic fermions do not experience WPS in this
direction. However, the authors do not consider WPS in perpendicular directions.

In view of the above discussion, standard treatment of WPS leads to sev-
eral fundamental paradoxes. To the best of our knowledge, those paradoxes have
never been discussed in the literature. For resolving the paradoxes one could discuss
several possibilities. One of them might be such that the interaction of light with the
interstellar or interplanetary medium cannot be neglected. On quantum level a pro-
cess of propagation of photons in the medium is rather complicated because several
mechanisms of propagation should be taken into account. For example, a possible
process is such that a photon can be absorbed by an atom and reemitted. This process
makes it clear why the speed of light in the medium is less than ¢: because the atom
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which absorbed the photon is in an excited state for some time before reemitting the
photon. However, this process is also important from the following point of view:
even if the coordinate photon wave function had a large width before absorption, as
a consequence of the collapse of the wave function, the wave function of the emitted
photon will have in general much smaller dimensions since after detection the width
is defined only by parameters of the corresponding detector. If the photon encoun-
ters many atoms on its way, this process does not allow the photon wave function
to spread out significantly. Analogous remarks can be made about other processes,
for example about rescattering of photons on large groups of atoms, rescattering on
elementary particles if they are present in the medium etc. However, such processes
have been discussed in Theory B and, as noted in Sec. 10, they probably result in
more blurring than is seen.

The interaction of photons with the interstellar or interplanetary medium
might also be important in view of hypotheses that the density of the medium is
much greater than usually believed. Among the most popular scenarios are dark
energy, dark matter etc. As shown in our papers (see e.g. Refs. [11, 12, 51] and
references therein), the phenomenon of the cosmological acceleration can be easily
and naturally explained from first principles of quantum theory without involving
dark energy, empty space-background and other artificial notions. However, the other
scenarios seem to be more realistic and one might expect that they will be intensively
investigated. A rather hypothetical possibility is that the propagation of photons
in the medium has something in common with the induced emission when a photon
induces emission of other photons in practically the same direction. In other words,
the interstellar medium amplifies the emission as a laser. This possibility seems to
be not realistic since it is not clear why the energy levels in the medium might be
inverted.

We conclude that at present in standard theory there are no realistic sce-
narios which can explain the WPS paradoxes. In the remaining part of the paper
we propose a solution of the problem proceeding from a consistent definition of the
position operator.

12 Consistent construction of position operator

The above results give grounds to think that the reason of the paradoxes which
follow from the behavior of the coordinate photon wave function in perpendicular
directions is that standard definition of the position operator in those directions does
not correspond to realistic measurements of coordinates. Before discussing a consis-
tent construction, let us make the following remark. On elementary level students
treat the mass m and the velocity v as primary quantities such that the momentum
is mv and the kinetic energy is mv?/2. However, from the point of view of Special
Relativity, the primary quantities are the momentum p and the total energy E and
then the mass and velocity are defined as m?c* = E? — p?c® and v = pc?/E, re-
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spectively. This example has the following analogy. In standard quantum theory the
primary operators are the position and momentum operators and the orbital angular
momentum operator is defined as their cross product. However, the operators P and
L are consistently defined as representation operators of the Poincare algebra while
the definition of the position operator is a problem. Hence a question arises whether
the position operator can be defined in terms of P and L.

One might seek the position operator such that on classical level the re-
lation r x p = L will take place. Note that on quantum level this relation is not
necessary. Indeed, the very fact that some elementary particles have a half-integer
spin shows that the total angular momentum for those particles does not have the or-
bital nature but on classical level the angular momentum can be always represented
as a cross product of the radius-vector and standard momentum. However, if the
values of p and L are known and p # 0 then the requirement that r x p = L does
not define r uniquely. One can define parallel and perpendicular components of r as
r = 7 p/p + r. where p = |p|. Then the relation r x p = L defines uniquely only
r,. Namely, as follows from this relation, r; = (p x L)/p?. In view of the fact that
on quantum level the operators p and L do not commute, on this level r, should be
replaced by a selfadjoint operator R = (p x L — L x p)/(2p?). Therefore

h h ih
Rij =€ L+ Lipy) = —ejuprli — =Dp;j
1j 22 ejri(prla + Lip) 7 €jkIPk L pr]
0 h o b
=ih— —i—=DiPk=— — —Dj 66
ap] pr]pk 8pk prj ( )

where eji; is the absolutely antisymmetric tensor, ejp3 = 1, a sum over repeated
indices is assumed and we assume that if L is given by Eq. (22) then the orbital
momentum is hL.

We define the operators F and G such that R, = hF/p and G is the
operator of multiplication by the unit vector n = p/p. A direct calculation shows
that these operators satisfy the following relations:

[Lj, Fk] == iejklﬂ, [Lj, Gk] == iejlel, G2 = 1, F2 = L2 + 1
G;,Gr) =0, [F}, Fi] = —iejuly  eju{fy, Gi} =2L;
LG=GL=LF=FL=0, FG=_GF =i (67)

The first two relations show that F and G are the vector operators as expected. The
result for the anticommutator shows that on classical level F x G = L and the last
two relations show that on classical level the operators in the triplet (F,G,L) are
mutually orthogonal.

Note that if the momentum distribution is narrow and such that the mean
value of the momentum is directed along the z axis then it does not mean that on
the operator level the z component of the operator R should be zero. The matter
is that the direction of the momentum does not have a definite value. One might
expect that only the mean value of the operator R, will be zero or very small.
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In addition, an immediate consequence of the definition (66) follows: Since
the momentum and angular momentum operators commute with the Hamiltonian, the
distribution of all the components of v does not depend on time. In particular, there
1s no WPS in directions defined by R . This is also clear from the fact that R, =
LF /p where the operator F acts only over angular variables and the Hamiltonian
depends only on p. On classical level the conservation of R, is obvious since it is
defined by the conserving quantities p and L. It is also obvious that since a free
particle is moving along a straight line, a vector from the origin perpendicular to this
line does not change with time.

The above definition of the perpendicular component of the position op-
erator is well substantiated since on classical level the relation r X p = L has been
verified in numerous experiments. However, this relation does not make it possible
to define the parallel component of the position operator and a problem arises what
physical arguments should be used for that purpose.

A direct calculation shows that if 9/0p is written in terms of p and angular
variables then

0
h— =GR+ R 68
1 ap |+ KL (68)
where the operator R, acts only over the variable p:
o 1
Ry =ih(— + — 69
= th( o p) (69)

The correction 1/p is related to the fact that the operator R is Hermitian since in
variables (p,n) the scalar product is given by

(1) = [ xalp,m) (b, m)pPdpdo (70)

where do is the element of the solid angle.
While the components of standard position operator commute with each
other, the operators R and R, satisfy the following commutation relations:
. )
Ry, Ri] = —Z;RL [Rij Ruk] = —Z;LQ%MLZ (71)
An immediate consequence of these relations follows: Since the operator R and differ-
ent components of R, do not commute with each other, the corresponding quantities
cannot be simultaneously measured and hence there is no wave function (r,ry) in
coordinate representation.

In standard theory —h%(0/0p)? is the operator of the quantity r’. As
follows from Eq. (67), the two terms in Eq. (68) are not strictly orthogonal and on
the operator level —h*(9/0p)® # R + R7. A direct calculation using Eqs. (67) and
(68) gives

? 9 20 L? , 02 h?

=t ——, W= =RI+R: - — 72
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in agreement with the expression for the Laplacian in spherical coordinates. In semi-
classical approximation, (h*/p?) < R? since the eigenvalues of L? are (I + 1), in
semiclassical states [ > 1 and, as follows from Eq. (67), R? = [R*(I> + 1+ 1)/p?].

As follows from Eq. (71), [R,p] = —ih, i.e. in the longitudinal direction
the commutation relation between the coordinate and momentum is the same as in
standard theory. One can also calculate the commutators between the different com-
ponents of R, and p. Those commutators are not given by such simple expressions
as in standard theory but it is easy to see that all of them are of the order of h as it
should be.

Equation (68) can be treated as an implementation of the relation r =
rp/|p| + ri on quantum level. As argued in Secs. 1 and 2, standard position
operator thd/0dp; in the direction j is not consistently defined if p; is not sufficiently
large. One might think however that since the operator R contains ihd/0p, it is
defined consistently if the magnitude of the momentum is sufficiently large.

In summary, we propose to define the position operator not by the set
(ih0/Opy,ihd/Opy,ih0/0p.) but by the operators R and R,. Those operators are
defined from different considerations. As noted above, the definition of R is based
on solid physical facts while the definition of R, is expected to be more consistent
than the definition of standard position operator. However, this does not guarantee
that the operator R is consistently defined in all situations. As argued in Ref. [52],
in a quantum theory over a Galois field an analogous definition is not consistent for
macroscopic bodies (even if p is large) since in that case semiclassical approximation is
not valid. In the remaining part of the paper we assume that for elementary particles
the above definition of R is consistent in situations when semiclassical approximation
applies.

One might pose the following question. What is the reason to work with
the parallel and perpendicular components of the position operator separately if,
according to Eq. (68), their sum is the standard position operator? The explanation
follows.

In quantum theory every physical quantity corresponds to a selfadjoint
operator but the theory does not define explicitly how a quantity corresponding to a
specific operator should be measured. There is no guaranty that for each selfadjoint
operator there exists a physical quantity which can be measured in real experiments.

Suppose that there are three physical quantities corresponding to the self-
adjoint operators A, B and C such that A + B = C. Then in each state the mean
values of the operators are related as A+ B = C but in situations when the operators
A and B do not commute with each other there is no direct relation between the dis-
tributions of the physical quantities corresponding to the operators A, B and C. For
example, in situations when the physical quantities corresponding to the operators
A and B are semiclassical and can be measured with a good accuracy, there is no
guaranty that the physical quantity corresponding to the operator C' can be measured
in real measurements. As an example, the physical meaning of the quantity corre-
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sponding to the operator L, + L, is problematic. Another example is the situation
with WPS in directions perpendicular to the particle momentum. Indeed, as noted
above, the physical quantity corresponding to the operator R, does not experience
WPS and, as shown in Sec. 14, in the case of ultrarelativistic particles there is no
WPS in the parallel direction as well. However, standard position operator is a sum of
noncommuting operators corresponding to well defined physical quantities and, as a
consequence, there are situations when standard position operator defines a quantity
which cannot be measured in real experiments.

13 New position operator and semiclassical states

As noted in Sec. 2, in standard theory states are treated as semiclassical in greatest
possible extent if Ar;Ap; = h/2 for each j and such states are called coherent.
The existence of coherent states in standard theory is a consequence of commutation
relations [p;,7x] = —ihd;x. Since in our approach there are no such relations, a
problem arises how to construct states in which all physical quantities p, r||, n and
r, are semiclassical.

One can calculate the mean values and uncertainties of the operator R
and all the components of the operator R, in the state defined by Eq. (34). The
calculation is not simple since it involves three-dimensional integrals with Gaussian
functions divided by p?. The result is that these operators are semiclassical in the
state (34) if po > h/b, py > h/a and r(. has the same order of magnitude as ro, and
Toy-

However, a more natural approach follows. Since R, = hF /p, the operator
F acts only over the angular variable n and R acts only over the variable p, it is
convenient to work in the representation where the Hilbert space is the space of
functions x(p,, 1) such that the scalar product is

(X2, x1) =D /OOO x2(p, 1 1) xa(p, 1, p)dp (73)

and [ and p are the orbital and magnetic quantum numbers, respectively, i.e.

L°x(p. L, ) = UL+ D)x(p, L, p),  Lox(p, L) = px(p, 1, p) (74)

The operator L in this space does not act over the variable p and the
action of the remaining components is given by

Lox(lp) = [(I4+m) (1= Px (1 p=1),  Lox(l, ) = [(1=p) (I+14)] X (1, p+1)

(75
where the + components of vectors are defined such that L, = Ly + L_, L, =
—i(Ly — L_).
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A direct calculation shows that, as a consequence of Eq. (66)
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The operator G acts on such states as follows
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and now the operator R has a familiar form R = ihd/0p.

Therefore by analogy with Secs. 2 and 3 one can construct states which
are coherent with respect to (r,p), i.e. such that ArjAp = h/2. Indeed (see Eq.
(6)), the wave function

B2 (p—pPB
x(p) = W%p[_T - ﬁ(p — Po)ro] (78)
describes a state where the mean values of p and 7| are py and ry, respectively and
their uncertainties are i1/(byv/2) and b/+/2, respectively. Strictly speaking, the analogy
between the given case and that discussed in Secs. 2 and 3 is not full since in the
given case the quantity p can be in the range [0, 00), not in (—oo, c0) as momentum
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variables used in those sections. However, if pob/h > 1 then the formal expression
for x(p) at p < 0 is extremely small and so the normalization integral for x(p) can be
formally taken from —oo to oo.

In such an approximation one can define wave functions 1 (r) in the 7
representation. By analogy with the consideration in Secs. 2 and 3 we define

6(r) = [ e (79)

where the integral is formally taken from —oo to co. Then

1 r—ro)® i
0r) = —geanl- 0 4 L (50)
Note that here the quantities r and ry have the meaning of coordinates in the direction
parallel to the particle momentum, i.e. they can be positive or negative.

Consider now states where the quantities F and G are semiclassical. One
might expect that in semiclassical states the quantities [ and p are very large. In this
approximation, as follows from Eqs. (76) and (77), the action of the operators F and
G can be written as

Fox(lp) = —z(l +u)x(l—1,p—1) - E'(l —mwx(+1,p—1)

4 4
; i
Fox(tp) = 2= pxU =1 p+ 1)+ 2 (L p)x(U+ 1 p+ 1)
i
Fox(lp) = = (1 - (41, ) 4+ x (= 1, )]
[+ p [ —
Gax(lp) = —4 -1 u-1- oy N (RS WY
L+ pu
1
G.x(l, p) = —5(12 (41, 1) 4+ x(U =1, )] (81)

In view of the remark in Sec. 2 about semiclassical vector quantities,
consider a state (I, ) such that x(I,) # 0 only if I € [Iy,l5], u € [u1, po] where
Ly, > 0,01 = lo+1—=11, 00 = po+1—pq, 01 K Iy, 0o K puq o < Iy and pqg > (11—,u1).
This is the state where the quantity u is close to its maximum value [. As follows from
Eqs. (74) and (75), in this state the quantity L, is much greater than L, and L, and,
as follows from Eq. (81), the quantities F, and GG, are small. So on classical level this
state describes a motion of the particle in the zy plane. The quantity L, in this state
is obviously semiclassical since x (I, u) is the eigenvector of the operator L, with the
eigenvalue u. As follows from Eq. (81), the action of the operators (Fy, F_,G,,G_)
on this state can be described by the following approximate formulas:

il il
Fix(lp) = —fx(l —Lp—1), Fx(lp = fx(l +1Lp+1)

1
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where [y is a value from the interval [y, l5].
Consider a simple model when (1, 1) = expli(la—p3)]/(6162)Y2, 1 € [l1, Is]
and p € [u1, pio]. Then a simple direct calculation using Eq. (82) gives

= —siny F, = —lysiny Fy = —lycosy
1 1 1 1
AG, = AG, = (5*1 + (g)lm, AF, = AF, = 10(5*1 + 5*2)1/2 (83)

G, = cosy, G,

where v = o — . Hence the vector quantities F and G are semiclassical since either
|cos7y| or |siny| or both are much greater than (§; + d2)/(912).

14 New position operator and wave packet spread-
ing

If the space of states is implemented according to the scalar product (73) then the
dependence of the wave function on t is

7
h
As noted in Secs. 3 and 6, there is no WPS in momentum space and this is natural

in view of momentum conservation. Then, as already noted, the distribution of the
quantity r; does not depend on time and this is natural from the considerations
described in Sec. 12.

At the same time, the dependence of the r|| distribution on time can be
calculated in full analogy with Sec. 3. Indeed, consider, for example a function
X(p, L, 1, t = 0) having the form

X(p, b pst = 0) = x(p,t = 0)x(l, 1) (85)
Then, as follows from Eqs. (79) and (84),

X0, k, p,t) = exp[——(m*c* + p*)2ct]x(p, k, p,t = 0) (84)

dp

_ L, 99 o912 v _
Y(r,t) = /exp[_ﬁ(m  +p?) 2t + ﬁpr}x(p,t = O)W

(86)

Suppose that the function x(p,t = 0) is given by Eq. (78). Then in full
analogy with the calculations in Sec. 3 we get that in the nonrelativistic case the 7|
distribution is defined by the wave function

1 ity (r —ro — vot)? iht i ipit
Y(r,t) = T1/4p1/2 (1+ mbz) exp[— 2W2(1+ 2221‘:4) (1- ﬁ) + ﬁp()?“ - 2mh] (87)

where vy = pg/m is the classical speed of the particle in the direction of the particle
momentum. Hence the WPS effect in this direction is similar to that given by Eq.
(10) in standard theory.
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In the opposite case when the particle is ultrarelativistic, Eq. (86) can be
written as

1 dp
o(r,0) = [[enlp(r = etlx(p.t =0) s (88)
Hence, as follows from Eq. (80):
1 (r—mrg—ct)? i
P(r,t) = Wexp[—T + ﬁpo(r — ct)] (89)

In particular, for an ultrarelativistic particle there is no WPS in the direction of
particle momentum and this is in agreement with the results of Sec. 6.

We conclude that in our approach an ultrarelativistic particle (e.g. the
photon) experiences WPS neither in the direction of its momentum nor in perpen-
dicular directions, i.e. the WPS effect for an ultrarelativistic particle is absent at
all.

Let us note that the absence of WPS in perpendicular directions is simply
a consequence of the fact that a consistently defined operator R commutes with the
Hamiltonian. In quantum theory a physical quantity is called conserved if its operator
commutes with the Hamiltonian. Therefore r, is a conserved physical quantity. In
contrast to classical theory, this does not mean that r, should necessarily have only
one value but means that the r; distribution does not depend on time. On the
other hand, the longitudinal coordinate is not a conserved physical quantity since a
particle is moving along the direction of its momentum. However, in a special case of
ultrarelativistic particle the absence of WPS is simply a consequence of the fact that
the wave function given by Eq. (88) depends on r and ¢ only via a combination of
T — ct.

15 Discussion and conclusion

In the present paper we consider a problem of constructing position operator in quan-
tum theory. As noted in Sec. 1, this operator is needed in situations where semiclas-
sical approximation works with a high accuracy.

A standard choice of the position operator in momentum space is ih9/0p.
A motivation for this choice is discussed in Sec. 2. We note that this choice is not
consistent since ¢h0/0p; cannot be a physical position operator in directions where the
momentum is small. Physicists did not pay attention to the inconsistency probably for
the following reason: as explained in textbooks, transition from quantum to classical
theory can be performed such that if the coordinate wave function contains a rapidly
oscillating exponent exp(iS/h) where S is the classical action then in the formal limit
h — 0 the Schrodinger equation becomes the Hamilton-Jacobi equation.

However, an inevitable consequence of standard quantum theory is the
effect of wave packet spreading (WPS). This fact has not been considered as a draw-
back of the theory. Probably the reasons are that for macroscopic bodies this effect
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is extremely small while in experiments on the Earth with atoms and elementary
particles spreading probably does not have enough time to manifest itself. However,
for photons traveling to the Earth from distant objects this effect is considerable, and
it seems that this fact has been overlooked by physicists.

As shown in Sec. 10, if the WPS effect for photons traveling to Earth from
distant objects is as given by standard theory then we have several fundamental para-
doxes. The most striking of them is that standard theory contradicts our experience
on observations of stars.

We propose a new definition of the position operator which we treat as
consistent for the following reasons. Our position operator is defined by two compo-
nents - in the direction along the momentum and in perpendicular directions. The
first part has a familiar form ih0/0p and is treated as the operator of the longitudinal
coordinate if the magnitude of p is rather large. At the same condition the position
operator in the perpendicular directions is defined as a quantum generalization of the
relation r | x p = L. So in contrast to the standard definition of the position operator,
the new operator is expected to be physical only if the magnitude of the momentum
is rather large.

As a consequence of our construction, WPS in directions perpendicular to
the particle momentum is absent regardless of whether the particle is nonrelativistic
or relativistic. Moreover, for an ultrarelativistic particle the effect of WPS is absent
at all.

Different components of the new position operator commute with each
other only in the formal limit 7~ — 0. As a consequence, there is no wave function in
coordinate representation. In particular, there is no quantum analog of the coordinate
Coulomb potential (see the discussion in Sec. 1). A possibility that coordinates can
be noncommutative has been first discussed by Snyder [53] and it is implemented in
several modern theories. In those theories the measure of noncommutativity is defined
by a parameter [ called the fundamental length (the role of which can be played e.g.
by the Planck length or the Schwarzschild radius). In the formal limit [ — 0 the
coordinates become standard ones related to momenta by a Fourier transform. As
shown in the present paper, this is unacceptable in view of the WPS paradoxes. One
of ideas of those theories is that with a nonzero [ it might be possible to resolve
difficulties of standard theory where [ = 0 (see e.g. Ref. [54] and references therein).
At the same time, in our approach there can be no notion of fundamental length since
commutativity of coordinates takes place only in the formal limit 7 — 0.

The absence of the coordinate wave function is not unusual. For example,
there is no wave function in the angular momentum representation because different
components of the angular momentum operator commute only in the formal limit
h — 0. However, on classical level all the commutators can be neglected and different
components of the position vector and angular momentum can be treated indepen-
dently.

In our approach the uncertainties of each component of the photon mo-
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mentum and each component of the photon coordinate do not change with time. If
in some problem those quantities can be treated as small then the photon can be
treated as a pointlike particle moving along classical trajectory. So in our approach
the coordinate photon wave function never has a cosmic size and there can be no
paradoxes discussed in Sec. 10.

In view of the absence of the coordinate wave function, such quantum
problems as diffraction and interference of single photon should be considered only
in momentum representation. In particular, if boundary conditions are needed they
should be formulated in that representation. When a problem is solved and char-
acteristic spatial dimensions in the problem are greater than uncertainties of all the
coordinates one can discuss spatial features of the process.

As noted in Sec. 8, in standard quantum theory photons comprising a
classical electromagnetic wave packet cannot be (approximately) treated as point-
like particles in view of the WPW paradox. However, in our approach, in view of
the absence of WPS for massless particles, the usual intuition is restored and photons
comprising a divergent classical wave packet can be (approximately) treated as point-
like particles. Moreover, the phenomenon of divergence of a classical wave packet can
now be naturally explained simply as a consequence of the fact that different photons
in the packet have different momenta.

Our consideration also poses a problem whether the results of classical
electrodynamics can be applied for wave packets moving for a long period of time.
For example, as noted in Sec. 10, even classical theory predicts that when a wave
packet emitted in a gamma-ray burst or by a pulsar reaches the Earth, the width of
the packet is extremely large (while the value predicted by standard quantum theory
is even much greater) and this poses a problem whether such a packet can be detected.
A natural explanation of why classical theory does not apply in this case follows. As
noted in Sec. 5, classical electromagnetic fields should be understood as a result of
taking mean characteristics for many photons. Then the fields will be (approximately)
continuous if the density of the photons is high. However, for a divergent beam of
photons their density decreases with time. Hence after a long period of time the
mean characteristics of the photons in the beam cannot represent continuous fields.
In other words, in this situation the set of photons cannot be effectively described by
classical electromagnetic fields.

The new position operator might also have applications in the problem
of neutrino oscillations. As pointed out by several authors (see e.g. Refs. [55, 56,
31]) this problem should be considered from the point of view that for describing
observable neutrinos one should treat them as quantum superpositions of wave packets
with different neutrino flavors. Then the choice of the position operator might play
an important role.

The position operator proposed in the present paper is also important in
view of the following. There exists a wide literature discussing the Einstein-Podolsky-
Rosen paradox, locality in quantum theory, quantum entanglement, Bell’s theorem

60



and similar problems (see e.g. Ref. [28] and references therein). Consider, for ex-
ample, the following problem in standard theory. Let at ¢ = 0 particles 1 and 2 be
localized inside finite volumes V; and V5, respectively, such that the volumes are very
far from each other. Hence the particles don’t interact with each other. However, as
follows from Eq. (26), their wave functions will overlap at any ¢ > 0 and hence the
interaction can be transmitted even with an infinite speed. This is often characterized
as quantum nonlocality, entanglement and/or action at a distance.

Consider now this problem in the framework of our approach. Since in
this approach there is no wave function in coordinate representation, there is no
notion of a particle localized inside a finite volume. Hence a problem arises whether
on quantum level the notions of locality or nonlocality have a physical meaning. In
addition, spreading does not take place in directions perpendicular to the particle
momenta and for ultrarelativistic particles spreading does not occur at all. Hence, at
least in the case of ultrarelativistic particles, this kind of interaction does not occur
in agreement with classical intuition that no interaction can be transmitted with the
speed greater than c. This example poses a problem whether the position operator
should be modified not only in directions perpendicular to particle momenta but also
in longitudinal directions such that the effect of WPS should be excluded at all.

A problem discussed in a wide literature is whether evolution of a quantum
system can be always described by the time dependent Schrodinger equation. We will
discuss this problem in view of the statements (see e.g. Refs. [57, 58]) that ¢ cannot
be treated as a fundamental physical quantity. The reason is that all fundamental
physical laws do not require time and the quantity ¢ is obsolete on fundamental
level. A hypothesis that time is an independently flowing fundamental continuous
quantity has been first proposed by Newton. However, a problem arises whether this
hypothesis is compatible with the principle that the definition of a physical quantity
is a description of how this quantity can be measured.

Consider first the problem of time in classical mechanics. A standard
treatment of this theory is that its goal is to solve equations of motion and get clas-
sical trajectories where coordinates and momenta are functions of ¢. In Hamiltonian
mechanics the action can be written as S = Sy — [ Hdt where Sy does not depend on ¢
and is called the abbreviated action. Then, as explained in textbooks, the dependence
of the coordinates and momenta on ¢ can be obtained from a variational principle with
the action S. Suppose now that one wishes to consider a problem which is usually
treated as less general: to find not the dependence of the coordinates and momenta on
t but only possible forms of trajectories in the phase space without mentioning time
at all. If the energy is a conserved physical quantity then, as described in textbooks,
this problem can be solved by using the Maupertuis principle involving only Sj.

However, the latter problem is not less general than the former one. For
illustration we first consider the one-body case. Here the phase space can be de-
scribed by the quantities (r),r.,G,p) discussed in Sec. 12. Suppose that by us-
ing the Maupertuis principle one has solved the problem with some initial values
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of coordinates and momenta. One can choose || such that it is zero at the initial

point and increases along the trajectory. Then 7| = s where s is the length along
the spacial trajectory and a natural parametrization for the trajectory in the phase
space is such that (r,,G,p) are functions of 7| = s. This is an additional indica-

tion that our choice of the position operator is more natural than standard one. At
this stage the problem does not contain ¢ yet. We can note that in standard case
ds/dt = |v(s)] = |p(s)|/E(s). Hence in the problem under consideration one can
define t such that dt = E(s)ds/|p(s)| and hence the value of ¢ at any point of the
trajectory can be obtained by integration. In the case of many bodies one can define
t by using the spatial trajectory of any body and the result does not depend on the
choice of the body. Hence the general problem of classical mechanics can be formu-
lated without mentioning ¢ while if one wishes to work with ¢ then, by definition, this
value can flow only in positive direction.

Consider now the problem of time in quantum theory. In the case of one
strongly quantum system (i.e. the system which cannot be described in classical
theory) a problem arises whether there exists a quantum analog of the Maupertuis
principle and whether time can be defined by using this analog. This is a difficult
unsolved problem. A possible approach for solving this problem has been proposed
in Ref. [57]. However, one can consider a situation when a quantum system under
consideration is a small subsystem of a big system where the other subsystem - the
environment, is strongly classical. Then one can define ¢ for the environment as
described above. The author of Ref. [58] considers a scenario when the system as a
whole is described by the stationary Schrodinger equation HV = EW but the small
quantum subsystem is described by the time dependent Schrodinger equation where
t is defined for the environment as t = 05y /0F.

One might think that this scenario gives a natural solution of the problem
of time in quantum theory. Indeed, in this scenario it is clear why a quantum system
is described by the Schrédinger equation depending on the classical parameter ¢ which
is not an operator: because t is the physical quantity characterizing not the quantum
system but the environment. This scenario seems also natural because it is in the spirit
of the Copenhagen interpretation of quantum theory: the evolution of a quantum
system can be characterized only in terms of measurements which in the Copenhagen
interpretation are treated as interactions with classical objects. However, this scenario
encounters the following problems. As noted in Ref. [58], it does not solve the
problem of quantum jumps. For example, as noted in Sec. 5, the 21cm transition
in the hydrogen atom cannot be described by the evolution operator depending on
the continuous parameter t. Another problem is that the environment can be a
classical object only in some approximation and hence ¢ can be only an approximately
continuous parameter. Finally, the Copenhagen interpretation cannot be universal in
all situations. For example, if the Big Bang hypothesis is correct then at the early
stage of the Universe there were no classical objects but nevertheless physics should
somehow describe evolution even in this situation.
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Our result for ultrarelativistic particles can be treated as ideal: quantum
theory reproduces the motion along a classical trajectory without any spreading.
However, this is only a special case of one free elementary particle. If quantum
theory is treated as more general than the classical one then it should describe not
only elementary particles and atoms but even the motion of macroscopic bodies in
the Solar System and in the Universe. We believe that the assumption that the
evolution of macroscopic bodies can be described by the Schrodinger equation is
unphysical. For example, if the motion of the Earth is described by the evolution
operator exp[—iH (ty — t1)/h] where H is the Hamiltonian of the Earth then the
quantity H(ts — t1)/h becomes of the order of unity when t; — ¢; is a quantity of
the order of 107%s if the Hamiltonian is written in nonrelativistic form and 10~7%s
if it is written in relativistic form. Such time intervals seem to be unphysical and so
in the given case the approximation when ¢ is a continuous parameter seems to be
unphysical too. In modern theories (e.g. in the Big Bang hypothesis) it is often stated
that the Planck time tp ~ 107*3s is a physical minimum time interval. However, at
present there are no experiments confirming that time intervals of the order of 107435
can be measured.

The time dependent Schrodinger equation has not been experimentally
verified and the major theoretical arguments in favor of this equation are as follows:
a) the Hamiltonian is the generator of the time translation in the Minkowski space; b)
this equation becomes the Hamilton-Jacobi one in the formal limit 7~ — 0. However,
as noted in Sec. 1, quantum theory should not be based on the space-time background
and the conclusion b) is made without taking into account the WPS effect. Hence
the problem of describing evolution in quantum theory remains open.

Let us now return to the problem of the position operator. As noted
above, in directions perpendicular to the particle momentum the choice of the position
operator is based only on the requirement that semiclassical approximation should
reproduce the standard relation r; x p = L. This requirement seems to be beyond
any doubts since on classical level this relation is confirmed in numerous experiments.
At the same time, the choice ih0/0p of the coordinate operator in the longitudinal
direction is analogous to that in standard theory and hence one might expect that
this operator is physical if the magnitude of p is rather large (see, however, the above
remark about the entanglement caused by WPS).

It will be shown in a separate publication that the construction of the
position operator described in this paper for the case of Poincare invariant theory
can be generalized to the case of de Sitter (dS) invariant theory. In this case the
interpretation of the position operator is even more important than in Poincare in-
variant theory. The reason is that even the free two-body mass operator in the dS
theory depends not only on the relative two-body momentum but also on the distance
between the particles.

As argued in Ref. [52], in dS theory over a Galois field the assumption that
the dS analog of the operator ihd/Jp is the operator of the longitudinal coordinate
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is not valid for macroscopic bodies (even if p is large) since in that case semiclassical
approximation is not valid. We have proposed a modification of the position operator
such that quantum theory reproduces for the two-body mass operator the mean value
compatible with the Newton law of gravity. Then a problem arises how quantum
theory can reproduce classical evolution for macroscopic bodies.

The above examples show that at macroscopic level a consistent definition
of the transition from quantum to classical theory is the fundamental open problem.

Acknowledgements

I am very grateful to Anatoly Kamchatnov for pointing out that the con-
clusion about the momentum distribution of the photon emitted by a star and de-
tected on the Earth was erroneous. As a consequence, statements about some para-
doxes were erroneous too. His critics of my approach as a whole was also very stim-
ulating. I am also grateful to Steven Carlip, Philip Gibbs, Mikhail Ivanov, Gregory
Keaton, Volodya Netchitailo, Carlo Rovelli and the anonymous referee for important
remarks.

References

[1] L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Oxford:Butterworth-
Heinemann (2005); L.E. Ballentine, Quantum Mechanics. A Modern Develop-
ment. Singapore:World Scientific (2003).

2] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields.
Oxford:Butterworth-Heinemann (2000).

[3] E. Schrodinger, Collected Papers on Wave Mechanics. Translated from the sec-
ond German edition of the author’s book ” Abhandlungen zur Wellenmechanik”.
Providence, Rhode Island:AMS Chelsea Publishing (1982).

[4] P.A.M. Dirac, The Principles of Quantum Mechanics. Oxford:Oxford University
Press (1982).

[5] L.I. Schiff, Quantum Mechanics. London:McGraw-Hill (1968).

[6] W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretischen Kine-
matik und Mechanik. Zeitschr. Phys. 43, 172-198 (1927).

[7] L.A. Rozema, D.H. Mahler, A. Hayat, and A.M. Steinberg, A Note on Differ-
ent Definitions of Momentum Disturbance. arXiv:1307.3604 (2013); M. Ozawa,
Disproving Heisenberg’s error-disturbance relation. arXiv:1308.3540 (2013); P.
Busch, P. Lahti and R.F. Werner, Measurement uncertainty relations. J. Math.
Phys. 55, 042111 (2014); P. Busch, P. Lahti and R.F. Werner, Measurement
Uncertainty: Reply to Critics. arXiv:1402.3102 (2014).

64



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A.O. Barut, Quantum Theory of Single Fvents: Localized de Broglie Wauvelets,
Schrodinger Waves and Classical Trajectories. Foundations of Physics 20, 1223-
1240 (1990).

L.G. Sapogin, An Unitary Unified Quantum Field Theory. Global Journal of
Science Frontier Research 11, 47-74 (2011).

S.J. Plimpton and W.E. Lawton, A Very Accurate Test of Coulomb’s Law of
Force Between Charges. Phys. Rev. 50, 1066-1072 (1936).

F. Lev, Positive Cosmological Constant and Quantum Theory. Symmetry 2,
1401-1436 (2010).

F. Lev, de Sitter Symmetry and Quantum Theory. Phys. Rev. D85, 065003
(2012).

P.A.M. Dirac, Forms of Relativistic Dynamics. Rev. Mod. Phys. 21, 392-399
(1949).

W. Pauli, General Principles of Quantum Mechanics. The original Ger-
man edition: Prinzipien der Quantentheorie. Handbuch der Physik, Vol. 5.
Berlin:Springer-Verlag. (1980).

Y. Aharonov and D. Bohm, Time in the Quantum Theory and the Uncertainty
Relation for Time and Energy. Phys. Rev. 122, 1649-1658 (1961).

C.G. Darwin, Free Motion in the Wave Mechanics. Proc. R. Soc. London A117,
258-293 (1927).

M.V. Berry and N.L. Balazs, Nonspreading Wave Packets. Am. J. Phys. 47,
264-267 (1979).

G.A. Siviloglou et. al., Observation of Accelerating Airy Beams. Phys. Rev. Lett.
99, 213901 (2007).

N. Mott, The Wave Mechanics of a-Ray Tracks, Proc. Royal Soc. A126, 79-84
(1929).

E.P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group.
Ann. Math. 40, 149-204 (1939).

F. Lev, Ezact Construction of the Electromagnetic Current Operator in Rela-
tivistic Quantum Mechanics. Ann. Phys. 237, 355-419 (1995).

M.B. Mensky, Method of Induced Representations. Space-time and Concept of
Particles. Moscow:Nauka (1976).

65



[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

W. Pauli, The Connection Between Spin and Statistics. Phys. Rev. 58, 716-722
(1940).

N.N. Bogolubov et. al., General Principles of Quantum Field Theory.
Berlin:Springer (1989).

T.D. Newton and E.P. Wigner, Localized States for Elementary Systems. Rev.
Mod. Phys. 21, 400-405 (1949).

V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Relativistic Quantum The-
ory. Part 1. Moscow:Nauka (1968).

G.C. Hegerfeldt, Instantaneous Spreading and FEinstein Causality in Quantum
Theory. Annalen Phys. 7, 716-725 (1998).

R.B. Griffiths, Nonezistence of Quantum Nonlocality. arXiv:1304.4425 (2013).

B.J. Smith and M.G. Raymer, Photon Wave Functions, Wave-packet Quantiza-
tion of Light, and Coherence Theory. New J. Phys. 9, article No. 414 (2007).

K. Bradler, Relativistically Invariant Photonic Wave Packets. arXiv:0910.0497
(2009).

D.V. Naumov and V.A. Naumov, A Diagrammatic Treatment of Neutrino Os-
cillations. J. Phys. G37, 105014 (2010).

L. Landau and R. Peierls, Quantenelektrodynamik im Konfigurationsraum.
Zeitschr. Phys. 62, 188-200 (1930).

A.I. Akhiezer and V.B. Berestetskii, Quantum FElectrodynamics. Moscow:Nauka
(1969).

I. Bialynicki-Birula, Photon Wave Function. Progress in Optics XXXVI, 245-
294, E. Wolf, Editor, Amsterdam:Elsevier (1996).

M. Hawton, Photon Wave Mechanics and Position Eigenvectors. Phys. Rev.
AT5, 062107 (2007); M. Hawton, Photon Position Measure. Phys. Rev. A82,
012117 (2010); M. Hawton, Photon Location in Spacetime. Phys. Scr. T147,
0140142012 (2012).

M.H.L. Pryce, The Mass-Centre in the Restricted Theory of Relativity and Its
Connezion with the Quantum Theory of Elementary Particles. Proc. R. Soc.
London A195, 62-81 (1948).

G. Dillon, Fourier Optics and Time FEvolution of De Broglie Wave Packets.
arXiv:1112.1242 (2012).

66



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. New
York:Cambridge University Press (1995).

F. Lev, Could Only Fermions be Elementary? J. Phys.: Math. Gen. A37, 3285-
3304 (2004).

M.O. Scully and M..S. Zubairy, Quantum Optics. New York:Cambridge University
Press (1997); W.P. Schleich, Quantum Optics in Phase Space. Berlin:Wiley-VCH
Verlag (2001).

L.D. Landau and E. Lifshitz, Statistical Physics. Part 1. Oxford:Butterworth-
Heinemann (2005).

NASA homepage on gamma-ray bursts.
http://imagine.gsfc.nasa.gov/docs/science/know_11/bursts.html.

Cassini Solstice Mission. NASA homepage for the Cassini mission and Huygens
Titan probe. http://saturn.jpl.nasa.gov/.

http://deepspace.jpl.nasa.gov/dsn/antennas/34m.html. The official site of the
DSS-25 antenna.

CERN homepage on the lead-proton-run.
http://www.stfc.ac.uk /resources/PDF /UKnewsfromCERNIssuel2FINAL.pdf

A. Hewish et. al., Observation of a Rapidly Pulsating Radio Source. Nature 217,
709-713 (1968).

V. Letokhov and S. Johansson, Astrophysical Lasers. New York:Oxford Univer-
sity Press Inc. (2009).

K.Z. Hatsagortsyan and G.Yu. Kryuchkyan, Photon-photon Interaction in Struc-
tured QED Vacuum. International Journal of Modern Physics: Conference Series
15, 22-30 (2012).

C.1. Christov, On the Evolution of Localized Wave Packets Governed by a Dis-
sipative Wave Equation. Wave Motion 45, 154-161 (2008).

K. Wang and Z. Cao, Wave Packet for Massless Fermions and its Implication to
the Superluminal Velocity Statistics of Neutrino. arXiv:1201.1341 (2012).

F. Lev, Do We Need Dark Energy to Explain the Cosmological Acceleration? J.
Mod. Phys. 9A, 1185-1189 (2012).

F. Lev, Quantum Theory over a Galois Field and Applications to Gravity and
Particle Theory. arXiv:1104.4647 (2014).

67



(53] H.S. Snyder, Quantized Space-Time. Phys. Rev. 71, 38-41 (1947).

[54] L. Smolin, Classical paradozes of locality and their possible quantum resolutions
i deformed special relativity. General Relativity and Gravitation 43, 3671-3691
(2011).

[55] M. Beuthe, Oscillations of neutrinos and mesons in quantum field theory. Phys.
Rept. 375, 105-218 (2003).

[56] E.Kh. Akhmedov, J. Kopp, Neutrino oscillations: Quantum mechanics vs. quan-
tum field theory. JHEP 2010, article No. 8 (2010).

[57] C. Rovelli, Forget Time. The FQXI Essay Contest ” The Nature of Time” (2008).

(58] G. Keaton, What is Time?. The FQXI Essay Contest "The Nature of Time”
(2008).

68



