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Abstract

It has recently been shown that self-gravitation reduces static spherically-symmetric cumulative energy
distributions below the value of their radii times the “Planck force”, which is the inverse of G times
the fourth power of c. In this article quantitative treatment of self-gravitation is extended to any static
energy density that is nonnegative, smooth and globally integrable. The resulting dimensionless local
gravitational energy-reduction factor (namely the inverse of the local gravitational time-dilation factor)
is shown to satisfy the zero-momentum nonrelativistic Lippmann-Schwinger quantum scattering equation
for a repulsive potential which is proportional (with a known coefficient) to that static energy density.
Standard perturbative Born-type iteration of Lippmann-Schwinger equations can diverge for sufficiently
strong potentials, which in the gravitational case correspond to sufficiently large static energy densities.
We have been able, however, to devise an alternate, completely nonperturbative iteration method for
Lippmann-Schwinger equations in coordinate representation. Every one of this nonperturbative method’s
successive approximations to the local gravitational energy-reduction factor turns out to be positive and
less than or equal to unity. In consequence, the self-gravitationally corrected static energy contained in
any sphere is bounded by that sphere’s diameter times the “Planck force”.

Self-gravitational correction of nonnegative static energy densities

It has recently been shown that any spherically-symmetric static cumulative energy distribution EG=0(r)
that satisfies EG=0(r = 0) = 0 and d (EG=0(r)) /dr ≥ 0 has a corresponding self-gravitationally cor-

rected spherically-symmetric static cumulative energy distribution EG(r) which satisfies the inequalities
0 ≤ EG(r) ≤ EG=0(r) and which also, irrespective of how large EG=0(r) may be, is bounded above by the
product of its radius r and the “Planck force” (c4/G), i.e., EG(r) < r(c4/G) [1].

Here we extend the self-gravitational energy-correction process introduced in Ref. [1] to any specified
static energy density TG=0(r) which is nonnegative, smooth and globally integrable, i.e.,

TG=0(r) ≥ 0, (1a)

∇r (TG=0(r)) is continuous, (1b)

and, ∫
TG=0(r

′)d3r′ <∞. (1c)

We specifically refrain here, however, from making the Ref. [1] assumption that TG=0(r) possesses spherical

symmetry , nor do we assume that it possesses any other particular symmetry .
Now if it were the case that we actually had in hand the self-gravitational correction TG(r) of the specified

static energy density TG=0(r), we could calculate the negative Newtonian gravitational work done to bring
the infinitesimal original static energy TG=0(r)d

3r from infinity to its position at r while subject to the static
gravitational field that is provided by TG(r), which yields the result −(G/c4)

∫
d3r′TG(r′)|r−r′|−1TG=0(r)d

3r.
However, because the static gravitational interaction inherently occurs between pairs of infinitesimal energies,
we must take care to avoid double-counting , so we assign only half of this negative gravitational work

correction to the infinitesimal static energy located at r, and thus obtain,

TG(r)d3r =
[
1 − 1

2
(G/c4)

∫
d3r′TG(r′)|r − r′|−1

]
TG=0(r)d

3r. (2a)

From Eq. (2a) we see that the dimensionless local gravitational energy-reduction factor FG(r) that satisfies,

TG(r)d3r = FG(r)TG=0(r)d
3r, (2b)

is given by,

FG(r)
def
= 1 − 1

2
(G/c4)

∫
|r − r′|−1TG(r′)d3r′. (2c)
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This static local gravitational energy-reduction factor FG(r) is obviously the inverse of the corresponding
gravitational time-dilation factor, and thus is equal to (g00(r))

1

2 [2]. If we insert the instruction implicit in
Eq. (2b) into the right-hand side of Eq. (2c), we obtain the following inhomogeneous linear integral equation
for FG(r),

FG(r) = 1 − 1

2
(G/c4)

∫
|r − r′|−1TG=0(r

′)FG(r′)d3r′. (2d)

In light of Eq. (1c), we can deduce from Eq. (2d) that,

lim
|r|→∞

FG(r) = 1. (3a)

Furthermore, since the integral transform kernel −1/ (4π|r − r′|) is the Green’s function of the Laplacian
operator ∇2

r, we in addition deduce from Eq. (2d) that,

∇2
rFG(r) = (2πG/c4)TG=0(r)FG(r),

which is readily reexpressed as a zero-energy stationary-state nonrelativistic Schrödinger equation [3] for the
dimensionless wave function FG(r), namely,

(
−h̄2∇2

r/(2m) + V (r)
)
FG(r) = 0, (3b)

whose repulsive potential V (r) is defined as,

V (r)
def
=

[
πh̄2G/(mc4)

]
TG=0(r). (3c)

Because of Eq. (1c) it is clear from Eq. (3c) that,

lim
|r|→∞

V (r) = 0, (3d)

which, in turn, implies that the large-|r| limit of FG(r) that is given by Eq. (3a) is consistent with the
Eq. (3b) zero-energy Schrödinger equation.

Having established the connection of the Eq. (2d) gravitational integral equation to the Eq. (3b) zero-

energy stationary-state Schrödinger equation, we now furthermore note that for stationary states of positive

energy E > 0 this Schrödinger equation becomes,

(
−h̄2∇2

r/(2m) + V (r)
)
〈r|ψE〉 = E〈r|ψE〉. (4a)

From Eq. (3d) we see that as |r| → ∞, Eq. (4a) becomes simply,

(
−h̄2∇2

r/(2m)
)
〈r|ψE〉 = E〈r|ψE〉, (4b)

whose solutions include all the dimensionless plane waves eip·r/h̄ for which p satisfies |p|2 = 2mE, as well, of
course, as the linear combinations of these which comprise the the full set of angularly-modulated outgoing
and ingoing free spherical waves which have this same scalar wave number k = (2mE)

1

2 /h̄ [3]. Thus we see
that Eq. (4a) has a massive inherent solution degeneracy . A useful resolution of this solution degeneracy
can be achieved by reexpressing Eq. (4a) in an inhomogeneous linear form that can only be satisfied by the
particular permissible |r| → ∞ asymptotic behavior which properly accords with the design of a specified
experiment.

That idea underlies the Lippmann-Schwinger inhomogeneous modification of Eq. (4a), which forces its
wave function to behave as a specifically chosen single permitted plane wave eip·r/h̄ plus only outgoing

angularly-modulated spherical waves in the asymptotic region |r| → ∞ where Eq. (4a) is adequately described
by Eq. (4b). If we denote as 〈r|ψ+

p 〉 the solution of Eq. (4a) which satisfies this particular permitted |r| → ∞
asymptotic behavior, then the inhomogeneous Lippmann-Schwinger equation that uniquely describes 〈r|ψ+

p 〉
is [4],

〈r|ψ+
p 〉 = eip·r/h̄ − 〈r|(−h̄2∇̂2/(2m) − |p|2/(2m) − iǫ)−1V̂ |ψ+

p 〉. (5a)

From a static gravitational standpoint the relevant feature of the Eq. (5a) inhomogeneous Lippmann-
Schwinger equation and its wave function 〈r|ψ+

p 〉 is that,

〈r|ψ+
p 〉

∣∣
p=0

= FG(r), (5b)
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as is seen from comparison of the p = 0 case of Eq. (5a) with Eq. (2d)—to make this comparison one must
use Eq. (3c) to express V (r) as the appropriate constants times TG=0(r), and one must also use the fact that
the integral transform kernel −1/ (4π|r − r′|) is the coordinate-representation inverse (i.e., Green’s function)

of the Hilbert-space “Laplacian” operator ∇̂2 = −|p̂|2/h̄2, namely that,

〈r|(∇̂2)−1|r′〉 = −1/ (4π|r − r′|) .

Note that the negative imaginary infinitesimal −iǫ which appears in Eq. (5a) is unnecessary when p = 0,
which represents a purely static state of affairs that has no distinguishable outgoing versus ingoing spherical
waves. Indeed the massive solution degeneracy of the stationary-state Schrödinger equation given by Eq. (4a)
collapses when E = 0.

Given the Eq. (5b) close relationship of the local gravitational energy-reduction factor FG(r) to the
Lippmann-Schwinger wave function 〈r|ψ+

p 〉, it would seem logical to apply well-known general solution
methods for Lippmann-Schwinger equations to our gravitational Eq. (2d). Unfortunately, however, the only
widely-applied fully general solution method for Lippmann-Schwinger equations is perturbative in character,
and therefore is inherently subject to failure.

The struggle to transcend the perturbative Born trap

If we bring the second term on the right-hand side of the Eq. (5a) Lippmann-Schwinger equation to its
left-hand side, we obtain,

〈r|ψ+
p 〉 + 〈r|(K̂ − Ep − iǫ)−1V̂ |ψ+

p 〉 = eip·r/h̄, (6a)

where K̂
def
= (−h̄2∇̂2/(2m)) is the kinetic energy operator and Ep

def
= (|p|2/(2m)) is the kinetic energy

c-number scalar that corresponds to the c-number momentum vector p. Taking 〈r|p〉
def
= eip·r/h̄, the formal

solution of Eq. (6a) is,

〈r|ψ+
p 〉 = 〈r|[1 + (K̂ − Ep − iǫ)−1V̂ ]−1|p〉. (6b)

The only way forward at this point would seem to be expansion of the inverse of the operator in square brack-
ets in the well-known Born geometric perturbative series, which involves successive powers with alternating
signs of the particular operator,

X̂
def
= (K̂ − Ep − iǫ)−1V̂ ,

acting on the momentum eigenstate |p〉 [5]. If the operator X̂ dominates the identity on the momentum
eigenstate |p〉, it is not unlikely that the Born geometric series diverges. One might suppose that in such

instances one could simply recast the Born geometric expansion to be in powers of the inverse of X̂, since
one is formally free to choose either the expansion [1+X̂]−1 = 1−X̂+X̂2−· · · or the expansion [1+X̂]−1 =

X̂−1[1+X̂−1]−1 = X̂−1−(X̂−1)2+(X̂−1)3−· · ·. Most unfortunately, however, since X̂−1 = V̂ −1
(
K̂ − Ep

)
,

the operator X̂−1 vanishes altogether when applied to the momentum eigenstate |p〉. This unanticipated
abrupt setback is a stark warning that hidden snares beset Born-style geometric perturbative expansions for
the Lippmann-Schwinger equation.

For the p = 0 case of the Lippmann-Schwinger equation that applies to static gravitation, we are,
of course, particularly interested in arbitrarily large energy densities TG=0(r), and therefore in arbitrarily

strong operators V̂ and X̂. Thus it is clear that we need to entirely abjure Born-style geometric perturbative
expansion, but how could that conceivably be accomplished in practice? The only possibility is through
exploration of nonstandard manipulations of the Lippmann-Schwinger equation.

Returning to Eq. (6a) we now deliberately shun the elegant and natural factorization of the operator [1+X̂]
on its left-hand side, which can only lead us down the primrose path to the Born geometric perturbative
series, and instead opt to forcibly factor that side into two mere functions of the vector coordinate r, the first

of which is still 〈r|ψ+
p 〉 because we aim for a result which is at least akin to Eq. (6b), but the second of which

is repulsively inelegant , being merely the product of (〈r|ψ+
p 〉)−1 with the original left-hand side of Eq. (6a).

There is in fact “method” in that gross ugliness, however, because we can now actually arithmetically divide

the plane wave eip·r/h̄ on the right-hand side of Eq. (6a) by that gauche second factor without resorting

to any kind of perturbative expansion. A very heavy price has been paid in the coin of gross inelegance,
but the goal of no perturbative expansion whatsoever has been achieved. To be sure, the almost childish
manipulations just described haven’t extracted any final result from Eq. (6a), what they have produced is
only a basis for refinement through iteration. It is readily seen, however, that the iteration process is devoid

of perturbative characteristics; it instead resembles a continued fraction.
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The iteration formula we have just extracted from Eq. (6a) is explicitly,

〈r|ψ
(n+1)+
p 〉 = eip·r/h̄/[1 + (〈r|ψ

(n)+
p 〉)−1〈r|(K̂ − Ep − iǫ)−1V̂ |ψ

(n)+
p 〉], (6c)

for n = 0, 1, 2, . . ., where, of course, 〈r|ψ
(0)+
p 〉 = eip·r/h̄. Therefore (〈r|ψ

(0)+
p 〉)−1 is obviously well-defined,

and the form of Eq. (6c) makes it apparent that for n = 1, 2, . . ., (〈r|ψ
(n)+
p 〉)−1 is well-defined as well. That

the iteration formula of Eq. (6c) does not have perturbative characteristics, but rather those of a continued
fraction is also manifest.

Finally, on inserting p = 0 into Eq. (6c) we obtain the iteration formula for the gravitational energy-
reduction factor FG(r), which is,

F
(n+1)
G (r) = 1/[1 + 1

2
(G/c4)(F

(n)
G (r))−1

∫
|r − r′|−1TG=0(r

′)F
(n)
G (r′)d3r′], (7a)

for n = 0, 1, 2, . . ., where, of course, F
(0)
G (r) = 1.

Since TG=0(r) ≥ 0 from Eq. (1a), TG=0(r) is smooth from Eq. (1b), and
∫
TG=0(r

′)d3r′ < ∞ from
Eq. (1c), it is clear from Eq. (7a) that,

if 1 ≥ F
(n)
G (r) > 0, then 1 ≥ F

(n+1)
G (r) > 0. (7b)

Therefore we can conclude that,
1 ≥ FG(r) > 0. (7c)

From Eqs. (1a), (2b) and (7c) we can deduce that,

0 ≤ TG(r) ≤ TG=0(r). (7d)

From Eq. (2c) and the fact that the gravitational energy-reduction factor FG(r) satisfies FG(r) > 0 we can
deduce that,

2(c4/G) >

∫
|r − r′|−1TG(r′)d3r′ =

∫
|r′′|−1TG(r + r′′)d3r′′,

where r′′
def
= (r′ − r). Furthermore, we have that,

∫
|r′′|−1TG(r + r′′)d3r′′ ≥

∫

|r′′|≤R

|r′′|−1TG(r + r′′)d3r′′ ≥ R−1

∫

|r′′|≤R

TG(r + r′′)d3r′′.

Therefore from the two foregoing lines of displayed integral inequalities we can conclude that,

(2R)(c4/G) >

∫

|r′′|≤R

TG(r + r′′)d3r′′, (7e)

namely that the self-gravitationally corrected static energy contained in any sphere cannot exceed the di-
ameter of that sphere times the “Planck force” (c4/G). Note that this result is completely independent of

any assumption concerning symmetry properties of the energy distribution. Therefore it is likely to be overly
conservative in practice. A more practical energy upper-bound estimate can be obtained by simply averaging
the maximum possible and minimum possible values of |r′′| that occur when integrating over the sphere of
radius R, which yields R/2, and therefore the “rough” bound,

R(c4/G) >̃

∫

|r′′|≤R

TG(r + r′′)d3r′′,

which is in line with the result obtained in Ref. [1], where spherical symmetry was assumed.

Conclusion

No doubt the most interesting aspect of what has been presented here is the unfastening of the shackles of
the perturbative Born-expansion paradigm for a class of equation systems that incorporate linear operators.
A superior iteration method has been developed by deliberately shunning an attractive natural relationship
that involves those linear operators in favor of concocting a clumsy artificial relationship that involves only

function values. The point of proceeding in this way is that purely arithmetic operations with function values
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require no approximations, whereas even quite elementary-looking operations involving operators may not

be practically feasible without making use of potentially disastrous perturbation expansions. Indeed function
manipulations can, on the contrary, be directed toward the goal of achieving iteration schemes that have
continued fraction rather than perturbative character.
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