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Abstract

Geometrical structures presented in the work naturally provide the standard model and
quantum gravity, with explaining the important features of quantum physics and cosmo-
logy. Even though this endeavor has started with exploiting the intriguing spin of quantum
mechanics, the geometry arising on that has directly lead to a comprehensive unified theory.

Together with that, a key distinction between two time notions, i.e. of the apparent time
and of the manifold time is introduced. It shall be fundamental for understanding both the
relativistic dynamics and quantum phenomena.

The geometry of extended tangloids is developed in a step-by-step manner, so that it is
relatively easy to understand and apprehend it.

A notable point is that a way for creation of the exotic, i.e. anti-gravitating, matter was
found along the way. Some applications of the exotic matter are discussed as well.

1

http://www.tangloid.net/
mailto:martin@saturka.net
http://creativecommons.org/licenses/by-sa/3.0/


Contents

Introduction 4

I Fundamentals 5

1 Tangloidal Geometry 6
1.1 Spin Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Sheet Reversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Matter Structures 10
2.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Pressure Interaction 15
3.1 Structure Borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Structure Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Classical Physics 19
4.1 Restricted Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Restricted System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II Standard Model 22

5 Pulled Sheets 23
5.1 Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Pushed Sheets 29
6.1 Nucleon Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Hadron Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Bubbles 33
7.1 Sheet Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Closed Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Special Relativity 38
8.1 Apparent Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2 Mass Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III Quantum Gravity 43

9 Space Structure 44
9.1 Dimensional Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.2 Volume Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 Time Structure 49
10.1 Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2 Manifold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



11 Exotic Matter 55
11.1 Exotic Matter Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.2 Exotic Matter Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12 Cosmology 60
12.1 Universe Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
12.2 Universe Evolving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Conclusion 64

3



Introduction – Ruled by Geometry
Since the development in the field of fundamental physics has been stalled for quite some time,
the author has decided to get inspiration in the ways of the exciting explorations that took place
in the early 20th century. While successful theories originated during those celebrated times, the
later advancements can be seen as precise adjusting without new reasonable rules.

The choice of targets for the explorations was identified as the main difference between then
and now. The founding fundaments were revealed as clear consequences of simple thoughts and
experiments. The later attrition of ascending thus descends from direct attempts to attack the
universal unifications. Therefore, returning to essential phenomena was taken as the starting
point.

Among the basic facts that have the most profound implications, there is the spin of elemen-
tary particles and its peculiar properties. The very existence of organized matter is determined
by the everlasting spin. And yet the up to now theories of spin properties do not seem to explain
its nature in an apprehensible way.

Geometrical models of spin had previously failed to describe systems of more than two par-
ticles. And putative proofs of the improvement impossibility lead to abandoning of such ap-
proaches. Fortunately, every proof has its preconditions, and it was possible to find a path to
overcome the obstacles. The found way enlightens the spin, provides the standard model, and
develops the quantum gravity.
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Part I

Fundamentals
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1 Tangloidal Geometry

1.1 Spin Requirements

The described geometry is initially found for 1/2-spin particles. The other particle types and
other structures follow the resulted scheme as well.

Rotation of one 1/2-spin particle by 4π radians

 πI = 4
~

Figure 1: 4π rad rotation

Having 4π rad rotation as
equivalent to 0 rad rotation,
while non-equivalent to 2π
rad rotation, can be achieved
by any body connected (by
at least three 1-dimensional
connections) to the outer
space. This can be set up for
any amount of such bodies.

This is simple to create
for any (reasonable) connec-
tion type, see Figure 1.

Exchange of two 1/2-spin particles followed by one 2π rad rotation

A B

C

A

A<−>B

B

A
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π2   (A)

Figure 2: Exchange of two particles with single 2π rad rotation

To have the property that exchange of two such bodies is equivalent to 2π rad rotation of
one of those bodies, can be seen as a simple consequence when dealing with just two bodies.
For more particles, exchangeable pairs need to be connected to the third bodies, so that the
subsequent 2π rad rotation does not produce additional tangles. Together with it, the notion of
inner vs. outer is exchanged during this process. It requires to deal with double-laid sheets to
preserve the geometry, see Figure 2.

For the other particles (connected to the exchanged pair), a process of putting one (double-
laid) sheet over another (having a common base over the exchanged pair) is undergone during
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the pair exchange. It produces three 2π rad rotations, thus the ending 2π rotation untangles the
structure. This is explored in general in the Sheet Reversion section below.

A common opinion has been that the equivalence of ”exchange of two bodies” with ”2π rad
rotation of one body” can not be geometrically retained for connected bodies of count greater
than two. The fact is that this equivalence is lost for such sets of bodies when the connections
are pair-wise without having the other bodies engaging in them.

The solution is to add other bodies into the connections previously held as pair-wise.
Triples of bodies nearly solve the problem of retaining the pair exchange–2π rad rotation

equivalence. It requires to have the triples with inner and outer surfaces where the surfaces
themselves are taken as equivalent – unless differentiated by their features, like corner tips, as
discussed later.

A natural view is that the basic geometrical structure is a double-laid sheet with three corners.
They are (in the sequel) called 3T -sheets, for three-corner tangloidal sheets.

As it shall be seen, the main building blocks are these 3T -sheets (i.e. not their corners), even
though the corners correspond to particles and thus they are (directly) detectable in simpler
ways than the (overall) wholesome 3T -sheet structures.

For the following, it is assumed that smooth layer parts that are not (multiply) wound, can –
under ordinary conditions – pass through each other. The main constraint on such passage are
alignments between the layers that would try to pass through each other.

1.2 Sheet Reversion

B

C
D

D

C

AA

B

A<−>B

Figure 3: Exchange over the 3rd particles

A notable geometrical process (during the pair exchange) is taking a corner and moving it
over the opposite base. It employs three rotations by 2π rad – one rotation by each of the corners.

To have the geometry internally consistent, it has to be related to the two-corners exchange
case. And it is that way. An exchange of two bodies where both of them are connected to a
common pair of other bodies, is followed by simple moving of one of those 3T -sheets, and by
putting the second 3T -sheet over the first one – i.e. over the common pair of bodies, see Figure 3.

The cases where the 3T -sheets do not share a corner are taken as (mostly) independent,
meaning that such 3T -sheets can pass through each other. A global point of view on the resulting
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geometry is explored in the sequel.
Taking a pair of corner structures (A, B at Figure 3) of a 3T -sheet (ABC there), two classes

of 3T -sheets are directly affected by the process of the A↔ B exchange (Ex) followed by 2π rad
rotation of one of these corners (abbreviated as 2π ◦ Ex). They are ABC, ABD for 3T -sheets
based on the exchange side, and ACD, BCD for 3T -sheets based on the other two sides of the
acted 3T -sheet.

The 2π ◦ Ex on A, B corners of the ABC 3T -sheet exchanges the two layers of the double-
layer of this 3T -sheet. Since the same holds for the ABD sheet, the inner layers – i.e. those in
between ABC and ABD – go outside, and vice versa for the outer layers.

The ACD 3T -sheet becomes (after the 2π ◦Ex on A, B) effectively the BCD 3T -sheet with
one exception: the layer facing the interior of the ACD, BCD 3T -sheets becomes facing the
exterior there. The outer layer of the double-laid ACD 3T -sheet is the complementary layer,
and thus it becomes the inner one then. Analogically, it holds for the BCD 3T -sheet too.

The result is that the 2π ◦Ex process leads to the eversion (abbreviated as Ev in the sequel)
of the ABCD tetrahedron formed by the respective four 3T -sheets.

Since the eversion is itself possible (i.e. putting the inner of the object outside without making
crisps) in 3-dimensional space, the 2π ◦Ex process – previously described 3T -sheet-wise without
intersections at all – can happen at once as well (allowing the crisp-less intersections).

Having an AB edge (of a possible ABCD tetrahedron) of the 3T -sheets, each corner-based
structure has to cooperate on either a) one of the A, B corners; or b) on one of the C, D corners
of a tetrahedron with AB as its opposing edge.

Making eversions on these (3T -sheets based) tetrahedrons – while leaving the other tetrahe-
dral structures – forms one part of the whole process.

The previous paragraphs dealt with (3T -sheets based) tetrahedrons that have (at least) one
of the A, B corners as one of their corners. Any 3T -sheet CDE that is off the A, B corners, is
still a part of a tetrahedron where all the other 3T -sheets have one of the A, B corners as their
third corners, see Figure 4.

It forces the CDE sheet to exchange its two layers a well. As any tetrahedron CDEF that
is off the A, B corners is composed of such 3T -sheets (like the CDE one), the eversion on all
the remaining tetrahedrons complete the 2π ◦ Ex process.

Since all the 3T -sheets reverse (abbreviated as Rev) their two layers during the 2π ◦ Ex
process, the resulting wholesome structure (of all the 3T -sheets) is globally isomorphic to the
original one. I.e. no geometrical difference is produced. It can be written down equationally:

2π ◦ Ex(loc)
Ev∼= Rev(glob)

meaning that a local corner pair exchange followed by a corner 2π rad rotation is congruent via
the (middle-scope) tetrahedron eversions to the global reversion of the double-laid sheets of all
the 3T -sheets.

It makes – together with the local 4π rad rotations – an algebraic background for the whole
geometrical construction of the spin-based geometry that is itself formed by the double-laid 3T -
sheets. It must be stated that while local (structure-wise) 4π rad rotations are equivalent to the
identity, the local 2π rad rotation actions produce geometrically different structures.

Rot(4π) ∼= Id 6∼= Rot(2π)

Otherwise, the resulting universe would contain just bosons, it would be without any fermionic
structures. I.e. no complex matter would originate there.
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Figure 4: Sheet reversion

A few notable notices onto the tetra-
hedral structures should be stated.

Having a corner structure, multiple
tetrahedrons originate there. To allow
a sensible notion of orientation of the
(rotation-based) spin, they should share a
common start – with a multiplicity of all
these 3T -sheet-based tetrahedral struc-
tures serving as a background for linear
combinations of particular orientations.

Actually, creation of new corners – as
described in the sequel at the Standard
Model part – follows this single-start de-
sign.

Contrary to the general auxiliarity
of the tetrahedron-like structures, these
tetrahedrons do not form new distinctive
local objects themselves, i.e. on the top
of objects already available via the two-
dimensional 3T -sheet structures.

The eversion of three-dimensional objects (topologically equivalent to a sphere) would equate
clockwise and counter-clockwise rotations – and thus particle and anti-particle objects too; leav-
ing just simple boson-like structures.

Herein, such a structure loss is avoided via extending the (rotating) tips of corners for just
single layers of the (otherwise mostly) double-laid 3T -sheets.

Figure 5: Single layer corner tips

Relations between the single layer parts remain intact during sheet reversion, see Figure 5.
It is important for keeping the distinction between particles and antiparticles, as it is depicted
in the sequel.

The corner tips are taken as (effectively) asymmetric single-laid sheet parts. Still, they can be
based on pairs of single-laid fragments. It is discussed in the Universe Origin section. Regardless
of the one-or-two single-laid tips question, the relative position of the (inner-vs.-outer) sheets is
the property causing the distinction between particles and antiparticles.
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2 Matter Structures

2.1 Building Blocks

Basic building blocks of matter and energy structures are the 3T -sheets. Two other (auxiliary)
types – closed balls and wound rods – are introduced in the sequel.

BA C

a b

Figure 6: Building blocks

The 3T -sheets are extended (i.e. nonlocal-wise) structures that give rise to two local-wise
structures: sheet corners and sheet bubbles, see Figure 6, A, B. While the double-laid sheets
themselves are materialization of the dark energy, the sheet corners and sheet bubbles are the
matter structures.

A single measurable structure is comprised of a multitude of actual sheets, see Figure 6, C.
This enables e.g. the quantum-mechanical superposition of states.

Here, just the main ideas are presented. Particular cases are explore at next sections.

Sheet corners

attached

pushed sheetsDA B

C E

corners of pulled sheets

Figure 7: Corner structures

The geometry held by single corners is the that of fermions, see e.g. Figure 7, A (neutrino
type), C (electron type), E (quarks). Genuine (i.e. elementary) bosons are paired corners, forming
tight structures, see e.g. Figure 7, B (photons), D (W± bosons). The 2π rad rotation and
exchange properties of bosons follow simply by taking that as twice done actions, since it is done
on corner pairs.

Corner angles go from 0 rad to π rad. As it is described in the Pressure Interaction section,
both 0 rad and π rad corners are of (locally) minimal pressure potential by their borders.
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Along the real (corner-based) particles being corners of actual 3T -sheets, virtual particles
are disturbances within the 3T -sheets (i.e. living on double-laid sheets of real particles), with
structural properties alike those of distinct corner-based particles.

The 3T -sheets are of two topology types: pulled and pushed ones. The pulled case belongs
to electroweak interactions, the pushed case belongs to the strong interaction. For the cause of
these two cases, see the Universe Origin section.

Corners of the pulled vs. pushed 3T -sheets are held under different constraints:

• corners relatively free for the pulled type

• corners held together for the pushed type

Both corner-based and bubble-based particle structures employ single-layer parts for their
mass acting. They are corner tips, bubble hemispheres for the corner-based, bubble-based par-
ticles, respectively.

Sheet layers

Apart from the corners (that are taken as non-scalar particles), the double-laid sheets themselves
offer explanation for the dark energy and dark matter phenomena.

By the Casimir way of interaction of near surfaces, the double-laid sheets have to provide
the property known as the dark energy. Then sheet bubbles flowing inside the double-laid sheets
serve as constituents of the dark matter.

The double-laid sheets are a source of mass as well, as it is presented in the next parts. The
Higgs-like properties are discussed at the Standard Model part by each matter structure type.

Being summarized, the double-laid sheets play a triple role:

• dark energy structure via their aligned sheets,

• dark matter and alike structures via sheet bubbles,

• Higgs-like mass generation via corner holding.

The double-laid 3T -sheets (outside of their corners and bubbles) contain negative pressure by
Casimir-like force on the aligned layers themselves (lesser content of virtual particles in-between).
This way, the dark energy is a delocalized two-dimensional (not three-dimensional) structure,
thus avoiding the cosmological constant discrepancy.

From the quantum dynamics point of view, the roles of 3T -sheets can be seen as:

• laid over distant regions → enabling (non-local) entanglement

• a particle being a structure on a multitude of sheets → enabling state superposition

Sheet bubbles

The inner bubbles of 3T -sheets are formed by positive inner pressure that is caused by the
Casimir-like force on oppositely shaped layers. They can be seen as excitations of the double-
laid sheet structures. Among others, sheet bubbles of a stable form are the materialization of
the dark matter.

More on the sheet bubbles in the Sheet Bubbles section.
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Antiparticles

Figure 8: Corner rotations

The (single-laid) tip extensions of corners rotate. It is a reason for corner angles being between
0 rad and π rad, so that the corner tips can pass around.

Types of the rotations (along with corner angles) are (among others) a base for mass hier-
archies, see more at the Standard Model part. Orientations of those corner rotations make the
distinction between particles and antiparticles.

Structures of a corner-based particle vs. antiparticle pair rotate under mutually opposite
orientations – using opposite layers for their rotating tips, see Figure 8. It does not change the
mass of the particles, though it alters their dynamics under some conditions. See e.g. the meson
case, Figure 30, later for an example.

In this way, (sheet) bubbles can be seen as their own antiparticles, alike it is e.g. for photons
wherein it is based on corner pairing though.

The fact that layer relations of the double-laid 3T -sheets remain intact under an 2π◦Ex oper-
ation is necessary for not loosing the difference between (corner-based) particles vs. antiparticles,
since they use different layers for their corner tips.

Closed bubbles

If the double-laid sheets would be restricted to form closed three-dimensional structures, the
sphere eversion process would provide a single basic formation type. A system of such closed
bubbles is taken as an alternative to the general, i.e. 3T -sheets based, system.

The closed bubbles are exploited throughout the rest of the text, starting in the Classical
Physics section.

Extended alignments

The sheet layers outside of matter structures should pass freely through each other. It can be
altered though.

When the layers form (effectively) voluminous structures, i.e. of (effectively) non-zero cross-
sections, they keep being split. One possibility to make such structures is to wind the sheets
multiply, with e.g. wound rods as a result. This is another alternative structure (along with the
closed bubbles) that is reused in the sequel, see the Classical Physics section, and the Quantum
Gravity part.

Another alteration of the free sheet passing can be possibly done when the overall energy goes
down. The wobbling of 3T -sheets (being mostly outside of matter structures) vanishes and the
3T -sheets can align to each other at vast areas – like an extended form of the weak interaction.
Then, dynamics of these pressure-based interactions can overcome the – otherwise dominant –
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matter formations, since the matter structures are localized comparing to the extended (and thus
magnified) cold sheet aligning. This can be the cause of the bosenova phenomenon.

2.2 Statistics

Sheet flows

A common property for corners is that they execute rotations. These rotations are the (1/2-
valued) spins themselves and they provide both the distinction between particles and antiparti-
cles, and the spin orientations.

same spin opposite spin

Figure 9: Pauli exclusion principle

As the spin is materialized as corner rotations, the corner rotations cause a (sheet) flow that
can overlap with a flow of another corner structure.

Then there are two possible situations for a pair of 1/2-spin corners:

• same spin → contacts disagree

• opposite spin → contacts agree

The disagreeing (sheet) flows are the basis of the same-spin exclusion. Analogical (sheet)
flow situations are reused at other situations, like e.g. at the Standard Model part for the elec-
tromagnetic interaction.

Corner equivalence

The A, B corner cases at Figure 10 are populated by corners of 3T -sheets. Thus the corner
counting has to be done according to the whole sheet structures.

The main (building) geometrical entities are the whole 3T -sheets, not just their corners. This
way, exchanging two corners of a 3T -sheet dos not produce a new 3T -sheet entity. And the
exchange process is the same for having the corners laid either a) both on a single location; or
b) on two locations.

It results in the quantum version of statistics where particles have to be treated as indis-
tinguishable. Since the 3T -sheets are the basic constituents, it is not necessary to put any
requirements on particles herein – since those are just features of the 3T -sheets.

Even though the corner properties are described in a versatile way in the next chapters, it
should be remembered that they are just parts of the 3T -sheets and that it does not make sense
to treat sheet corners as wholesome entities.

The only way to distinguish among the corners is to have different geometries on those corners.
It can be done either by different corner types, i.e. different particle types, or by localizing the
corners, i.e. by restricting the connections among the corners. It leads into having (factor) sets
of sheet corners where the corners are factored by the (possible) connections.
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Figure 10: Quantum statistics

Sheet multiplicity

A natural way to put a distribution over the 3T -sheet geometries is to have multitudes of actual
3T -sheets for (measurable) structures, see Figure 6, C.

The 3T -sheets are spread over the available 3T -sheet geometries, with their distinguishability
being equivalent to a possibility to distinguish among the particular geometries of and along the
sheet matter structures.

A multitude of actual 3T -sheets is a natural explanation for the path-integral approach to
quantum physics where particular 3T -sheets provide layers and corners for all the executed paths.

A greater relative speed between sheets causes lesser pressure between them. Thus a sheet
part moving under a (greater) relative speed along other sheet parts attracts those sheets during
the course of such passing by.

This enables the relativistic mass increase when moving relative to an observer, as well as
creation of particles during high-speed collisions.
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3 Pressure Interaction

Structure of the double layer of both 3T -sheets and their inner bubbles is based on Casimir-like
force, i.e. on differences of virtual particle compositions inside and outside the double layer.

The differences in energy content result in pressures that keep and curve the double-layer
formations.

Since the non-rotating parts of the double-layer can not feel the interactions of the Stan-
dard Model, neither the 3T -sheets themselves nor their inner bubbles can be accelerated by the
processes described in the Standard Model part in the sequel.

Thus pressure gradients end-up being the main sources of accelerations of 3T -sheet formations
outside of their corners. Here, we neglect gravitation that is considered in the Quantum Gravity
part.

3.1 Structure Borders

Borders of the double-laid sheets can be taken as the outer (Figure 11) ones – forming the actual
double-laid sheets themselves, and the inner (Figure 13) ones – delineating the bubbles inside
the sheet double-layers.

Sheet corners

π

0

a b

c

Figure 11: Outer borders

Putting a corner angle from π rad into a slightly greater or lesser value causes an approaching
of two oppositely shaped surfaces, see Figure 11, a.

For 0 rad angles, the borders are (π rad) aligned with their corner tips, see Figure 11, b.
Two close borders (e.g. borders of 0 rad angled corners) are held apart (i.e. not passing

through each other) via repelling of those (oppositely shaped) borders, see Figure 11, c. Analog-
ically, a similar lock can hold the structure of weak-interaction bosons temporarily. There the
lock is just transient, since it is opposed by sheets of non-zero widths.

For a lower energy, borders of corners do not wobble – curving would cause (partially) op-
positely shaped formations. Thus they can be aligned to fulfil the weak interaction. A greater
(amount of) energy can cause waves along the sheet structures, disabling the – otherwise common
for fermions – weak interaction. A narrow sheet strip should be more prone to that wobbling
than the other corner side structures, see Figure 12, b. Hence the 0 rad angled particles (i.e. of
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ba

π/3

2π/3

Figure 12: Altered borders

the neutrino type) should be able to form that as the first particles – thus becoming the so called
sterile (anti)neutrinos and loosing the weak interaction ability. This should be visible as a lack
of particles on greater energies, firstly for the neutrino type.

Single 3T -sheet corners – i.e. those formed as leptonic particles – are for pulled 3T -sheets of
either π rad or 0 rad angles. They correspond to electron-type fermions for the π rad case, and
to neutrino-type fermions for the 0 rad case.

Pulled 3T -sheets of hadrons are under constraints of having attached the geometry of the
pushed 3T -sheets onto them in a way where they form a single outer structure altogether. See
Figures 7, E, and 12, a. Particular alignments of the combined structure are described in the
Pushed Sheets section in the sequel. They share the next properties:

• The borders located inside the (double-laid) sheet half-plane are displaced from each other
and from the overall half-plane borders as much as possible – thus forming either π/3 rad
or 2π/3 rad angles.

• Those internally located borders – even though still considered as outer borders of respective
sub-sheets – are aligned with those borders going from the pushed 3T -sheet structure that
itself sticks out from the overall double-layer half plane. It stabilizes the overall structure.

The pressure preferences of aligned sheet structures (of various 3T -sheet geometries) over
their displacements should be the cause of allowing just distinctive quantum states.

Sheet bubbles

Generally, two sheet bubbles repel each other, and the same repelling holds for a sheet bubble
vs. sheet borders.

a c

d

b

Figure 13: Inner borders

Putting two sheet bubbles together aligns their oppositely curved surfaces. Thus sheet bubbles
are mutually strongly repelled from each other, see Figure 13, a, b.
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Putting a bordered bubble slightly off the border would disalign two already alike aligned
surface, see Figure 13, c. Putting a sheet bubble closer to an outer border puts closer two
differently curved surfaces. The border would need to change its shape according to the bordered
bubble case, see Figure 13, d. Thus this switch between free and bordered bubble cases is
analogous to switching between electron-type and neutrino-type corners.

For more on sheet bubbles, see the Sheet Bubbles section.

3.2 Structure Flows

Sheet layers

The free type of the 3T -sheet inner bubbles are repelled from each other and from the other
border structures, and thus they can overcome their forming pressure gradients (and decay) only
if the actual surrounding effects exceed the barriers of partial overlays of sheet bubbles and outer
sheet borders. It shall be on the order of their inner energy contents.

The 3T -sheets themselves contain negative relative energy with added positive energies under
curving of itself, though such positive energy additions shall be lesser, since the curving is spread
over larger distances than the inter-layer distance. It means that lesser energy contents are
necessary to locally overcome this sheet stretching.

Thus the 3T -sheets are accelerated toward regions of lower pressures at basic situations,
but an energy addition allows other processes as well. And the default situation is that the
double-laid sheets themselves are repelled from their matter structures.

Velocity dynamics

The basic ideas presented here are heavily used for relativistic effects.

a b

c d e

Figure 14: Flow effecting

Sheet structures moving relatively along each other perceive lesser pressure in between of
them, thus they are attracted, see Figure 14, a. The same holds for a case of a rotational motion,
see Figure 14, b.

Analogically, a sheet bubble flowing inside a double-laid sheet perceive a lesser inner pressure
thus changing its structure from spherical into elliptical, see Figure 14, c, d. When the sheet
bubble accelerates, it has to overcome the friction in front of it, thus changing its shape from
a symmetrical one into a drop-like structure, see Figure 14, e.
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Sheet bubbles

dcb

a

Figure 15: Bubble releasing

Taken the previous together, when a (sheet) bubble flows inside a double-laid sheet, it repels
the surrounding parts of the double-laid sheet and it thus stabilizes the layout of the sheet, see
Figure 15, top.

As a result, sheet bubbles flowing even through curved double-laid sheets do not cause ac-
celerations of the overall structure – unless the energy content of its surrounding allows sheet
restructuring.

Such sheet restructuring can go as follows, see Figure 15, bottom:

• A temporal energy increase enables the free sheet bubbles to flow away.

• Sheet bubbles change their shapes according to velocity.

• Sheets restructure to oppose the shape, releasing the bubbles.

When ambient energies (slightly) raise to the energies of the double-layer repelling, double-laid
sheets stop to oppose the actions of their sheet bubbles. I.e. the whole formation can follow the
sheet bubble flow that is not hindered by the sheets themselves. Sheet layers relocate according
to sheet bubble vs. sheet layer repelling when energy goes back to low values.

It is reused in the Cosmology section in the sequel.
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4 Classical Physics

In this section, a brief development of the geometry that is suitable for classical physics is done.
The main purpose is to use it for comparing to the real world physics.

4.1 Restricted Geometry

Closed bubbles

The closed bubbles are closed double-laid three-dimensional structures, see Figure 16.

Figure 16: Closed bubbles

Closed bubbles are a simple structure that serves as particles of classical physics. They are
based on a closed double-layer sheet that was found in the Tangloidal Geometry section. It does
not distinguish between fermion and boson particles, being just a classical boson-like structure.

It forms symmetric bubbles that can be pressed to other sheets when under relative motions
toward them.

Wound rods

Figure 17: Wound rods

The rods a different structure – made of a single layer, here by multiple winding around itself.
It is a variation on the sheet alignment scheme, since it uses repeated alignments. The result of
the rod winding is that even though it is based on a single sheet, the layer is multiple, providing
an effectively voluminous structure, see Figure 17.

The rods can serve as a scaffold for interactions with other structures, especially with those
of single-layer parts. Having a matter structure, one single-laid part of it is aligned to the rods.
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Thus, sheet bubbles can align just single hemispheres to the rods. The second (single-laid)
hemispheres of sheet bubbles are open for interactions with other structures. As for corners, see
the Universe Origin section for discussing the one-vs.-two single-laid tips question.

4.2 Restricted System

Classical dynamics

a

b

c

d

Figure 18: Bubble pulsing

A natural dynamics for the closed bubbles is pulsating. It can be symmetric or it can lead
to shape changes and or (closed) bubble splitting, see Figure 18. Actions of surrounding closed
bubbles or pressures between closed bubbles and nearby 3T -sheets can cause the asymmetric
way of pulsation.

a

b

Figure 19: Classical interactions

Attractive and repulsive forces can be seen as exchanges of closed bubbles. An exchange of
(small) closed bubbles can go in two possible ways:

• When the exchanged closed bubbles are free in-between, the interaction is repulsive.

• When the exchanged closed bubbles are shared (temporarily), the interaction is attractive.
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Newtonian gravitation

Figure 20: Classical gravitation

The classical (i.e. Newtonian) gravitation is materialized as aggregation around the (wound)
rods. This form of gravitation can be used as an addition to the Standard Model to complete
the flat-space (i.e. without general relativity) interactions of physics.

If the space were exactly three-dimensional, objects there would be restricted to these three
dimensions as well. And thus the closed bubbles and the wound rods are a natural fit for such
a system.

Some wound rods could be dispersed throughout this restricted system. Aligning between
and those wound rods the closed bubbles would concentrate the rods at places with greater
concentrations of the closed bubbles. Complementarily, the closed bubbles would be attracted
to such places. It would end-up with the Newtonian gravitation where the concentration of the
wound rods would serve as the scalar gravitational potential.

The Quantum Gravity uses a more complete system. Still, it reuses these (wound) rods and
(closed) bubbles too.
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Part II

Standard Model
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5 Pulled Sheets

5.1 Corners

For the pulled 3T -sheets, the geometry of each corner is formed by itself.

Corner life

Figure 21: Corner origin

Two types of corners – according to structures of borders (see e.g. Figure 32 for a concrete
depiction of the border types) – are assumed:

• corners of real particles: with real borders, i.e. sheet endings,

• corners of virtual particles: with borders as crisp (i.e. non-smooth) folds inside the sheets.

3T -sheets themselves – apart from matter formations – evolve via smooth changes. When
a crisp folding occurs, it starts its life as (a part of) a virtual particle. If enough energy is put
onto such structures (i.e. enough sheets aligned), the original 3T -sheets tear up (by the stiffness
of those sheets) into triples, forming thus a new real – corner based – particle.

Structures at new corner formations (of virtual particles) depend on the angles that are held
by the new corners. They range from prism-like ones for 0 rad angles, to monkey saddle-like ones
for π rad angles. The newly created triple structure separates, forming a freed star-like structure
then, see Figure 21.

The tetrahedron-like structure of the original-plus-new geometries assures that the triple
connectivity among all (corner-based) particle bodies is retained. The new corner is connected
to the same corner pairs as the original corner, plus the pair of original-new corners is connected
to all the other corners.

When a corner cease to exist via becoming (a part of) a virtual particle, the process goes
the opposite way – i.e. through healing the borders among triples of sheets. The absorbing 3T -
sheet geometry ends up with a greater amount of actual 3T -sheets. It is in accordance with the
increased energy of the absorber, see the Mass Action section for more information.

During a fermion-antifermion pair annihilation, two initial corners (one per fermion) trans-
form into four final corners (two per boson), see Figure 22, top.

Steps of the process:

• Corners of the two initial fermions are aligned, thus sides of their borders become free from
each other.

• The sidewise borders rotate according to the original rotation flows.
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Figure 22: Annihilation and creation

• The (new) alike rotations on a fermion repel each other, while they are attracted to the
opposite ones.

• The (former) rotation pairs split and connect with the opposite rotations that become
available in alike way.

• The new rotation pairs join, forming final pairs of rotations, i.e. photons herein.

The corner creation process can be a part of particle-antiparticle pair creation. When enough
energy present, rotation pairs – of mutually opposite orientations – originate by the action of
a respective corner tip, see Figure 22, bottom. The (mutually opposite) rotations are based on
complementary sheet layers, as it shall be for particle-antiparticle pairs.

For bosons, natural processes of corner changes are corner joining and splitting.
Bosons are created by joining two corners that are either some of the original ones, or newly

created ones during the boson-creation process.
One of the ways to decay a boson is to split the two-corner joining. It can be done when

corners of its corner pairs compete for the common double-layers, while having enough of sheet
momentum to tear the joining, i.e. when (at least) one of them has non-zero angle (and thus rest
mass). It holds for bosons of the weak interaction. It can happen alike for a tightly connected
fermion pair of opposite rotation types, i.e. for mesons, see the Hadron Dynamics section.

Rest mass

While the genuine bosons have stabilised tips (thus forming a single generation), fermions have
flipped tips with possible bending (and oscillating). The result is that there is a single generation
of bosons, while there are three (as depicted below) generations of fermions.

Rest mass can be viewed as basically generated by connections between the corner tips and
the rest parts of the 3T -sheets. It is considerable for for non-0 angled corners. Then fermion
tip rotating (based on its flipping) and bending provide additional – minuscule, considerable,
respectively – mass sources (the only ones for neutrino-type corners), leaving photons as the
only massless particles of the pulled 3T -sheets.

Apart from photons, angles between rotation axes (of corner-based particles) are π/2 rad,
thus a rotation can be seen along any direction. Further exploring of mass is in the sequel,
notably in the Mass Action and Space Structure sections.
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Corner dynamics
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Figure 23: Corner rotations

Fermions of pulled 3T -sheets are leptons, with corner angles at limit values: 0 rad (neutrino
and alike, Figure 23, ν), π rad (electron and alike, Figure 23, e).

The feasible way to rotate a corner tip around the corner itself is by flipping the corner tip,
see Figure 23, top right. Then rotating the flipped tip by twofold 2π rotation around the rest of
the corner brings it back into the original state. If the corner itself is rotated (i.e. not only its
tip), it is necessary to make a 4π rotation to bring it back to its original state, as it was described
in the Spin Requirements section.

The tip itself is a structure that can be bent, with possibly doing oscillations. There are
two principal directions for the bending: normal and tangential to the flipped tip – both being
perpendicular to the depth of the corner, see Figure 23, bottom right.

Naturally, the tangential case (with π twisted corner tip) requires a greater energy. Since
a 2π twisting is reverted by just moving the corner tip cross the corner body plane, such 2π
twisting does not create new entities. And since any 4π twisting (or generally rotating) results
in structures equivalent to the initial ones, the original (i.e. non-bent) and the two bent (with
corner tip untwisted or π rad twisted) cases are the only real structure versions.

All these rotations employ two rotation axes (where one of those axes rotates itself) that are
mutually orthogonal. This is an important and notable property.

Bosons of pulled 3T -sheets are the bosons of electroweak interactions. Here we mean genuine
bosons (of the pulled 3T -sheets), i.e. the W±, Z, γ ones. For the photon structure, see Figure
23, γ. Bosons of the weak interaction are presented at Figure 25. These bosons are of the form of
double-corner tips – a structure with an inter-corner bordering, but without a flip of the aligned
(and thus straighten) corner tips.

The moieties either oscillate perpetually (for photons), or until the inner 3T -sheet is depleted
(for W± bosons), or until the inter-corner border rips the structure by its momentum (for the Z
boson).

Here again, the massive bosons employ two mutually orthogonal rotation axes. The photon
case is the only one for pulled 3T -sheets where the two axes are parallel – and hence the photon
is a special case, with zero rest mass and the maximal velocity (in vacuum, i.e. when not mixed
with other structures).
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5.2 Interactions

Interactions among corners of pulled 3T -sheets are based on rotations of the interacting corners.

Mediated interaction

Electric charge of a (rotating) corner is equal to the angle size (in rad/π) of that corner – when
the corner sheets undergo a rotation flow. By this way, the Z-boson has zero charge (even though
it has overall π rad angle), since its corners obliterate their charge feeling (into effectively just
border transitions).

ϕ/π

A

B C

Figure 24: Electromagnetic interaction

Schematic view of a twofold action of virtual photons is at Figure 24. A rotating corner of
open particles (electron and alike, W± bosons, quarks) or a sheet transition between corners of
a boson (photon or Z boson) triggers photon-like disturbances over the 3T -sheets. Those virtual
photons spread and interact with particles having a rotating open corner.

Alike rotating disturbances are repelled from the source, alike by the Pauli exclusion principle.
When approaching another open (to be able to enter) rotating corner, two cases can happen:

• For an oppositely rotating corner (e.g. of a charge opposite to the source charge), it shares
its sheet flows with the approaching virtual photons. Thus the connecting borders tend to
be shortened, starting from the corner being approached. The result is an attraction of the
approached corner toward the source of those virtual photons.

• For an alike rotating corner, the corner vicinity is repelled (by the opposing sheet flows)
out of the virtual photon source.

This shows up both the dual usage of photons – as real (Figure 24, B) and virtual (Fig-
ure 24, C) particles – and a reuse of the geometrical origin of the Pauli exclusion principle
for attracting and repelling over distant regions (via the virtual photons as mediators of the
attraction or repulsion), here manifesting as the electromagnetic interaction.

An argument for the fine structure constant at zero energy is 1/α ' ((((2π+2π)·π)+π)·π+π)
where the apparent zero outer energy actually means a positive effective energy, since the 3T -
sheet double-layers contain negative relative (Casimir-like) energy by themselves.
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The first term part of 2π + 2π would correspond to the total angles of the paired corner
rotations – one of those rotations being effectless for the interaction.

Then, π multiplications would be for angles at next sections (at rotating corner vs. virtual
photon meeting), with π additions for alternative possibilities of the two-fold action of virtual
photons as discussed in the preceding. Greater energy would force the sections to be closer to
corner tips.

Analogical reasoning for the weak vs. strong interactions would result in greater vs. lesser
inverse values of respective coupling constants – since the contact lengths are extended for the
alignments of the weak interaction, while the strong interaction works on tight areas.

While the basic structural definition is the same for both real and virtual photons (apart
from sheets involved), the exact geometries differ.

Real photons are symmetric beings where the two corners of a photon play the same role.
As for the electromagnetic interaction-mediating virtual photons, (momentary) roles of their two
corners differ. One corner exerts the rotation (that fulfils the electromagnetic interaction), the
second corner just releases the structure tension, so that it can proceed into the next (rotation)
step. This twofold stepping of virtual photons should be the reason for the dichotomous nature
inside the advised derivation of α (the fine structure constant).

Direct interaction

Two (of pulled 3T -sheets) fermions – being put together – can form structures with outer angles
of either 0 rad (for the boson of electromagnetic interaction), or π rad (for weak interaction
bosons). For bosons of the weak interaction, see Figure 25.

W Z

Figure 25: Weak interaction

A schematic view on transfers of the sheet layers at virtual particles of the weak interaction:

• W± bosons – living while having some sheet to wind,

• Z-boson (functional as a massive photon) – big sheet momentum disallows (contrary to
photons) a perpetual sheet (un)winding.

Anti-rotating particles (like e+ and ν) can touch together when aligned, forming the W±

bosons.
W± decay is based on depletion of the 3T -sheets in between its forming corners. It is alike

for mesons (another unstable structure based on two anti-rotating corners, as described below).
Virtual Z-bosons can change the alignment of 0-charged and 1-charged leptons, resulting in

scattering of neutrinos.
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As for photons, the real vs. virtual particles of the weak interaction share common structural
properties, but their differ in their exact geometries. Contrary to the electromagnetic interaction,
virtual bosons of the weak interaction are formed by direct contacts of the interacting fermions.
While real W±, Z particles are genuine bosons based on tight corner pairs, their virtual coun-
terparts are just loose pairs of co-aligned corners that can exchange their (corner angle forming)
sheet layers.

The direct output is that weak interactions are chiral, since the contacts has to be formed by
aligned boundaries of the respective 3T -sheets.

Electroweak algebraic structure

The SU(2)⊗ U(1) structure of the electroweak interaction describes (inter-corner) structures of
pulled 3T -sheets of the paired corners:

• The U(1) algebra describes possible orientations of a shared (i.e. coupled) rotation of the
corners around a common axis (i.e. around each other).

• The SU(2) describes possible alignments of the respective corners from the point of view
of transfers of the sheet layers between the paired corners.

The mixing of the (original) U(1) and SU(2) algebras – that produces photon and Z-boson
– is based on the fact that these two (neutral) bosons employ both the sheet transfer (between
their corners) and the (paired) rotation of their corners.

Both the above structures are based on rotating 3T -sheet corners, i.e. they combine directions
of rotation axes and orientations of those rotations, in the result forming complex spaces.

If a hypothetical boson (made of two 0 rad angled corners) would contain (effectively) zero
amount of the (inter-corner) sheet material – with its two corners just rotating around their
common axis – it would be a boson of the original U(1) algebra.

The chirality of the week interaction is already explained above.

Since neither a direction nor an orientation has a geometrical preference, the structures of
the electroweak interactions naturally obey the gauge invariance.
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6 Pushed Sheets

For a pushed 3T -sheet, geometries of all its three corners combine together to form a single
geometry. Hadronic structures with pushed 3T -sheets can be seen as a densely packed dual of
leptonic particles with just the pulled 3T -sheets.

6.1 Nucleon Structure

Nucleon structure is made of three pulled 3T -sheets with an attached (size-limited) pushed 3T -
sheet of a tight spherical surface. Then, quarks are combinations of regular corners of the packed
pulled 3T -sheets and of angular points (i.e. corners, called partons henceforth) of the attached
pushed 3T -sheet.

Gluons are (flow-causing) pairs of rotations on the sides (i.e. on corner connections), thus
they are coupled to pairs of corners. Embedded squeezed surfaces (created by inner gluons) on
the attached pushed 3T -sheet form virtual quarks, known (together with their gluons) as the
quark-gluon sea. Colliding nucleons form these disturbances where even the embedded squeezed
surfaces can host other embedded quarks. The result being the fractal-like structure of measured
energies on non-elastic hadronic interactions.

Each corner tip is aligned along a different axis, forming – together with orientations of the
flows through the corners – a three-dimensional complex space. Limited size of the spherical
surface puts stringent constraints on parton separation lengths, while leaving them virtually free
on distances lesser then the lengths of the spherical triangle sides.

Since no axis or orientation is privileged, the gauge invariance holds automatically. It is alike
for the electroweak case where the gauge invariance is geometrically satisfied as well.

Weak interactions acting on hadrons
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Figure 26: Nucleon stability

Comparing proton and neutron schemes from the point of view of their structural properties,
see Figure 26, with A, C for aligned, counter-aligned; L, B for layers, borders:

• The proton scheme (Figure 26, left) is more knotted than the neutron scheme (Figure 26,
right). This fixes the proton.

• The neutron scheme contains a counter-aligned border part (CB). This provides the switch-
ing axis.

• The neutron scheme contains one more π/3 rad angle (compared to the corresponding 2π/3
rad angle of proton). This forces the neutron ⇒ proton switch, since it is more favourable
to have angle values closer to π rad.
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The structure of the 2π/3 overall angle with mutually cancelled charges (i.e. of neutron)
is a (higher energy) alternative to the basic proton structure. Since the particular 3T -sheets of
neutron form non-π spread outer geometries, they are unstable structures. They can be stabilized
by aligned (muon) structures, as it is at nuclei, though.

Hierarchy of quark energies

The sterically constrained structure forces the particular quark angles to be integral parts of π/3
rad, i.e. their electric charges have to be integral multiple of 1/3 (of the basic e charge).

For quarks of the 2nd and 3rd generations, the (corner tip) bending energy is greater for
greater angles. It makes the c, t (of 2π/3 rad angles) to be heavier than the (π/3 rad angled)
s, b, respectively – contrary to u being lighter than d (because of lesser border repelling of the
greater angle of u).

Nucleosynthesis
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Figure 27: Nucleon creation

The initial structure (see the Universe Origin section) is explored herein, as it transforms into
the stable nucleon, see Figures 27, left to right; 26 left.

Since the outer layers of the the 3T -sheets have to form 0 rad or π rad angles, the initial
structure can not stay on itself (unless under enormous energy density, forming the quark-gluon
plasma). The structure discrepancy can be (easily) solved by emitting the W− bosons (for
quarks), or W+ bosons (for anti-quarks).

Initial charges of the quarks are −1/3 (and 1/3 for anti-quarks). The resulting structure
being the simplest nucleon, with 3 quarks, one of them −1/3 charged, the other two 2/3 charged.
The net result is +1-charged nucleon (i.e. proton, Figure 26, left) as the wholesome structure.
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6.2 Hadron Dynamics

Fermions of the pushed structures are quarks. Real quarks contain both the pulled 3T -sheet
parts and the parton structures based on corners of the attached pushed 3T -sheets.

Figure 28: Pushed corners

Steric constraints on the pushed 3T -sheets require some embedded form of their corner tip
rotations, see Figure 28. A simple way to achieve it is a loop passing through itself.

The tip loops (of the pushed 3T -sheet corners) provide orthogonal axes of the embedded flow,
being an addition to the flow going along the corners themselves. Again, it results in a structure
of two – mutually orthogonal – actions per corner. The loop-like rotations on corner tips of
a pushed 3T -sheet cause an overall surface rotation of that 3T -sheet. It provides an additional
(abundant) source for the overall nucleon spin.

Bosons of the pushed structures are gluons. Virtual (since living inside the 3T -sheets of other
particles) gluons are pairs of flow-causing rotations, leading to (spring-like) oscillations of the
overall structure. The (virtual) gluons are – alike photons – formed by (herein virtual) corners
with parallel axes. Although gluons are outer flow-causing rotation pairs, thus schematically
resembling more the W± bosons, apart from the 0 rad angles of both parts of (virtual) gluons.

Rest masses of pushed matter structures are affected by the parton additions to the pulled
3T -sheets that form quarks. The pulled 3T -sheet moiety builds the three generations of quarks.
The pushed 3T -sheet moiety puts an additional strength on the structure, and thus making
generally greater masses of quarks.

When partons of the same directions (i.e. of the same colors) belong to alike rotating quark
tips (i.e. generations), the steric constraints are lesser, and thus such a system can achieve greater
densities.

Pushed interaction

The strong force is a gluon-mediated color (i.e. axis) changing, see Figure 29. The color exchange
is equivalent to exchanging the respective two partons, i.e. applying ”times −1” on the pushed
3T -sheet structure (algebraic view). Thus it fits with the double π rad rotation – carried out by
the gluon-caused flow – of the two partons (geometrical view). The equivalent views are:

• exchange of gb 2→ 3,
• exchange of bg 3→ 2,
• moving the R quark relatively to the other two ones,
• π rad flip of the side connecting the G and B partons.
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Figure 29: Pushed exchanges

The result is that a) the color exchange is accompanied with a quark movement; and b) a vir-
tual gluon (pair) is equivalent to a pair of flip-forming rotations.

Longer distances cause a narrower tip of the displaced quark; thus the flip-forming gluons in
that part can result in a chain of displacements with aligned stretches, known as the gluon tube.
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Figure 30: Pushed pairs

Taking the color exchange process as rotation-based flows, such flows can be put together,
forming structures of virtual parton-antiparton pairs, see Figure 30, left. These pairs are squeezed
tips on the surface then, see Figure 30, middle. Such a structure is along a single direction, thus
the paired partners have the opposite (strong-force) colors. They are laid on opposite orientations
of the same direction, thus they are of mutually complementary matter-antimatter forms.

Quarks vs. anti-quarks use opposite orientations for their tip rotations, therefore their sheet
flow dynamics can be different. Thus it enables a (slight) CP -asymmetry on them. Short ranges
of pushed 3T -sheets (together with their overall flows) cause a (slight) influencing of the 3rd

corners, see Figure 30, right. It leads to a slight (local) CP -symmetry violation – effecting on
the dynamics of the hadrons, e.g. a meson decays where the sheet depletion determines the meson
life-time.

Since the corner tip rotations, sheet flows and (un)winding are the main parts of a particle
life, their dynamics is what determines life-times of particles (as it is explored later in the Special
Relativity section). The main point is that changing the (apparent) speed of the corner actions
changes the life-times of particles.
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7 Bubbles

7.1 Sheet Bubbles

Disturbances of the 3T -sheet double-layer structure are materialized as bubbles inside the sheets.
Since they are based on oppositely curved layer parts, they have positive energies – contrary to
the rest of the aligned sheets.

Notice that the sheet bubbles are frequently called just bubbles in the sequel.

Types of sheet bubbles
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Figure 31: Bubble symmetry

Pulled 3T -sheets are extended structures. Thus a local view on a pulled 3T -sheet geometry
is a sheet with bordering of one of the next three (local) cases, see Figure 31, top left, middle:

• free sheet with no border
• open sheet with one border
• two aligned borders with a sheet strip

It is similar for the pushed 3T -sheets, see Figure 31, top right.
Taken together, according to locations (and binding) of the bubbles inside the (pulled or

pushed) 3T -sheet layers (Figure 31), next types of sheet bubbles can be recognized:

• free bubbles, cases a, e
• bordered bubbles, cases b, f
• strip bubbles, case c
• star bubbles, case d

Since these bubbles do not rotate, they should not interact via the electromagnetic interaction.
Having no straight parts causes a lack of the weak interacting too.

According to complementarity to corners of their sheets, the sheet bubbles are coupled to:

• 0 corners for free bubbles
• 2 corners for bordered bubbles
• 1 corner for strip bubbles
• 3 corners for star bubbles
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And the sheet bubbles can be seen as duals to the sets of the remaining corners (of respective
3T -sheets) as well.

Exchange of two sheet bubbles is accompanied with exchange of corners they are coupled
to. This way, the free and bordered bubbles (coupled to even counts of corners and dual to odd
counts of corners) are of bosonic nature, while the strip and star bubbles (coupled to odd counts
of corners and dual to even counts of corners) are of fermionic nature.

Rotational symmetry of sheet bubbles is twofold as well. It is of π rad for the free and strip
bubbles, while it is 2π for the bordered and star bubbles.

Energies of sheet bubbles
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Figure 32: Bubble energy

Relative potential energy of a bubble part that is far from borders is a summation of differences
of a) zero vs. (negative) potential energy of aligned sheet layers; and b) (positive) potential energy
of bubble hemispheres vs. zero. This is roughly twice as much as the potential energy of a bubble
part attached to a (real) border, since the sheet borders themselves are curved.

Borders of virtual particles are taken as effectively with no curvature changes, thus causing
no energy changes in the neighbouring parts of the sheet bubbles.

These approximate values are used for estimations of sheet bubble energies, see Figure 32.

Regarding the shapes of sheet bubbles, changes of the bubble energy by borders of real
particles is taken as an analogy to the hydrophobic effect, see below by the Figure 33 for more
explanation.

It is assumed that there is no structure change of sheet bubbles by borders of virtual particles.
Borders of virtual particles thus effect as a neutral agent for structure formation.

The result is that the bordering parts of attached bubbles are greater for bubbles attached to
borders of virtual particles (Figure 32, I) than those attached to borders of real particles (Figure
32, II).
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The sheet bubbles are kind of excitations of the 3T -sheet layers. Since the 3T -sheets them-
selves are a source of mass, the notions of Higgs field and its excitation (i.e. the Higgs boson)
can be viewed as a pre-tangloidal version of the 3T -sheet layers and bubbles. It enables a search
for signals that correspond to creation or decay of sheet bubbles.

As for bordered and free bubbles, the 125 GeV signal (of colliders), and 130 GeV and 135
GeV signal (of gamma ray emissions) are relevant as described below.

As for the strip bubbles, the 5 GeV signal (of gamma ray emissions), and the 10 GeV signal
(of dark matter detectors) are relevant as well.

Ea(270G) ≈ 2 · EbI (125G) + EcI (20G) (1)

EbII (260G) ≈ Ea(270G)− EcII (10G) (2)

EcII (10G) ≈ 1

2
· EcI (20G) (3)

This way, the proclaimed signal of the Higgs boson belongs to the bordered bubble attached
to a border of virtual particles. The low energy signal belongs to the strip bubble (of virtual
particle borders) then.

The gamma-rays based signals are halves of energies of the respective bubble decays – i.e. of
a sheet bubble into two photons.

The 260 GeV and 270 GeV signals should go against themselves, as it is described below.

Bubbles of pushed 3T -sheets should be generally of free and bordered types. Since the nucleon
structure contains a sea of virtual particles, the general density of energy is much greater inside
the nucleon than in a free pulled 3T -sheet.

It should result in much lesser relative energies of such bubbles in the pushed 3T -sheets. The
proclaimed E(38) boson, i.e. the 38 MeV and 76 MeV signals (of detectors), could belong to
bordered bubbles – attached to borders of virtual vs. real particles – of the pushed 3T -sheets.

The proposed cca 1 MeV force carrier (of Lamb shift measurements) should belong to a
strip-like version of bubbles in pushed 3T -sheets then.

Comparing it to the pulled 3T -sheets cases, the cca order lower energy is in accordance with
a case where the borders constitute a larger part of the sheet bubble. It can happen when two
hadronic borders get aligned, e.g. during interactions of a nucleon with a muon.

Since it should be attached to those hadronic borders, it should alter the nucleon-muon
interaction then. And it is, in fact, the very reason of its proposal.

The sheet bubble structure itself is a result of two forces (Figure 33, a). First, the opposite
curvatures of bubble hemispheres try to separate the layers and to spread the bubble content
out of its center. Second, the surrounding aligned layers try to hold the layers together and to
limit the bubble size.

Since the curvature counter-alignment of sheet bubble hemispheres is lessened for growing
bubble sizes, the result bubble size is held at a constant (steady) value.

For the cases of sheet bubbles attached to borders of real particles, relative energies of the
curvature counter-alignments (and thus the spreading forces) are lesser. It results in lesser bubble
spreads at such areas, as it was announced above.

Stabilities of sheet bubbles

The bordered and strip bubble cases should be lead by the borders toward a corner where they
can decay (e.g. into γγ pairs, Figure 33, b, c).
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Figure 33: Bubble stability

The free bubble case is repelled from borders and thus it remains stable – until the ambient
energy content gets so great that the bubble-border barrier gets negligible. It happens e.g. when
the free bubbles are in the high-energy environment around a black hole.

In this way, the free bubbles of pulled 3T -sheets are a natural explanation of the dark matter.
It is supported by the γ emission signals.

The process of a coupled production and decay of a sheet bubble has to overcome an initial
barrier of the sheet disalignment. If the production (i.e. collision) energy is low, separation of
the decay results is not complete.

Thus e.g. fermion-antifermion pairs (of a sheet bubble decay) can lead to immediate annihi-
lation for fermions of 0 rad angled corners. This can be a reason for the initial (based on a lower
beam energy) abundance of photons with a deficiency of ττ pairs.

Along with that, the bordered 260 GeV bubbles are unstable while the free 270 GeV bubbles
are hyper-stable. It should result in an abundance signal at the 260 GeV, and deficiency signal
at 270 GeV. These signals can obliterate themselves, especially for low beam energies.

Since the 7 to 8 TeV beam energies seem to be the limit cases for reasonable detections of
the 125 GeV bordered bubbles (of virtual particle borders), doubling the beam energies may be
necessary for a reasonable detection of the greater-energy bubbles.

For the lower-energy sheet bubbles, the strip vs. star bubble cases are unstable vs. stable
bubble types. Since they are of fermionic type, they can serve as a materialization of the proposed
axion particles.

Here, the star bubbles should be locked inside the structure. The bubble size should be three
times half of a strip bubble (for the bubble rays), with a lesser (cca half of a bubble ray) central
part. It is approximately 1

2 (3 + 1/2) · Ec). Thus, it should be cca 17.5 GeV for star bubbles
attached to borders of real particles, and cca 35 GeV for the ones attached to borders of virtual
particles.

It could be the reason for a deficiency at the γ emission signal at 35 GeV. Then a deficiency at
17.5 GeV and abundance at 20 GeV (of the strip bubbles attached to borders of virtual particles)
can obliterate themselves. As for the star bubble types, they can alter the γ emission spectrum
by star bubbles combining borders of real and virtual particles for their rays. It should go by
1/3 of the 35− 17.5 GeV difference.
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7.2 Closed Bubbles

Curvatures of the closed bubbles tends to be equal throughout the formation, since the more
curved parts undergo a greater pressure along the surface. The result is the spherical shape of
such formations.

Figure 34: Bubble environment

The closed bubbles themselves can be
seen not only as the particle objects of
classical physics, but they can form the
inter-environment for the 3T -sheet struc-
tures as well, see Figure 34.

It is reused at the Quantum Gravity
part in the sequel as the outer environ-
ment for the rod massif that is described
there.

Closed bubbles can be aligned to the
other structures, as it is described at sev-
eral places in the sequel. Closed bubbles
thus provide a solvent material that en-
velop the (osmotic solute-like) 3T -sheets
and fill the 3D-space in between them.

The closed bubbles (lacking single-layer parts) do not form matter structures by themselves.
It means that they can not be directly detected. They affect structure and dynamics of the
matter structures though.

Figure 35: Bubble pushing

When a closed bubble gets close to (the initial state of) a nucleon formation, the rotating
corners of the (pre)nucleon structure spin the closed bubble. It results in relative circular move-
ments and thus attraction between these two structures, see Figure 35, left, middle. This way,
the closed bubble forms a doubled structure of the (already double-laid) sheet. And it is the
origination of the pushed 3T -sheets of nucleons.

Corners of two pushed 3T -sheets could be put together (Figure 35, right) if their tips would
get mutually accessible. It is exploited in the Equivalence Principle section.
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8 Special Relativity

Relativistic effects are based on the apparent time, as it is described below.

8.1 Apparent Time

The special relativity description in this section is based on rotations of corners, shapes of bubbles,
and alignments of sheet layers.

a b c d

Figure 36: Rotation axes

For the (corner-based) massive particles, rotation dynamics employ pairs of orthogonal axes.
Thus massive (i.e. of non-zero rest mass) particles feel the apparent time changes for movements
at any direction. It is alike for sheet bubbles, since they are voluminous (and massive as well).

For the massless particles, the time changes are felt for directions perpendicular to the rotation
axes (thus enabling movement direction changes), while changes parallel to the axes result in
frequency changes.

Particular cases according to Figure 36:

a: two axes on single corners of fermionic pulled 3T -sheets, regardless of their bending;
b: two axes for paired corners of W± (top), Z (bottom) bosons;
c: two axes for flows through the tip loops and corner bodies of pushed 3T -sheets;
d: parallel axes for photons (top), gluons (bottom).

Changes on this rotations result in altered perceived times of all dynamics processes. Since
time is actually measured by events based on such processes, the perceived changes on the
measured time are taken as apparent.

Thus the measured time is called the apparent time throughout this exposition.

Generally, a corner tip at rest (with an inertial observer) does (generally) different counts of
rotations comparing to e.g. an accelerating corner tip.

In the sequel, connections between the apparent time and movements of the whole structures
(vs. observers) are unleashed. It forms the core of the special theory of relativity.

Acceleration

The body and the tip of a corner are aligned (Figure 37, I left) when under zero acceleration,
i.e. at an inertial state – since at this section, the environment is that of special relativity,
i.e. without gravity.
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Figure 37: Absolute time slow-down

An acceleration happens when the alignment is broken, e.g. by a force acting on the corner
body (Figure 37, II left).

For fermions, ticking of the apparent time is executed by corner tip rotations. The length of
the corner tip circling (around the corner body) gets longer under accelerations, i.e. any change
based on the tip revolving – thus by dynamics any evolving – gets slower. I.e. the apparent time
slows down, see Figure 37, middle.

For bosons, ticking of the apparent time is executed by rotations of their two corners. Thus
it is alike for fermions, with the exceptions for massless bosons as it was presented above.

For an example, the corner body can be disaligned by actions of virtual photons of the elec-
tromagnetic interaction. The corner tip then moves (during its rotating) toward the disaligned
corner body. When the interaction-based corner body disalignment continues, the particle gets
a continued acceleration.

This type of slowing-down of the apparent time does not depend on an inertial observer state.

While sheet bubbles do not rotate – and thus they do not have an apparent time – they have
shapes, and those are modified according to the special relativistic description. Thus for sheet
bubbles, the shape of the their structures is relevant for relativistic effects.

The free bubbles at rest with an (inertial) observer are of the spherical shape, i.e. they are
symmetric along all directions. For inertial movements, free bubbles have ellipsoid structures,
i.e. still symmetric in forward vs. backward orientations along the movement direction, as de-
scribed in the sequel.

An acceleration changes the shape of free bubbles into drop-like – i.e. asymmetric – structures,
as it is common for (otherwise spherical) structures passing through an environment that exerts
pressure onto those structures, see Figure 37, right.

This special-relativistic description is analogical for the other types of sheet bubbles.

Pressure

Acceleration alters local shapes and displaces structures, and thus it affects the apparent time
as well.

Analogically to the (acceleration-based) local pressure effecting, ordinary (directed) pressure
can alter the shapes and displace the structures as well. Such ordinary pressure effects are
mediated by the closed bubbles, thus it is natural that they have a minuscule impact under
ordinary (i.e. not a huge pressure) circumstances.
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Velocity

The core of special relativity is shown-up on velocity. It provides the special relativistic structure
without a necessity to deal with all the particular phenomena of the special theory of relativity.

This is a relative – i.e. observer dependent – view. It can be formed over an absolute structure
via putting in a grid that the matter structures have to pass through and rotate around, see Figure
38, e.
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Figure 38: Relative time changes

For an inertial observer at rest with an (inertial) corner, the corner rotation scheme is a re-
peated connected trajectory.

For an inertial observer with a non-zero velocity relative to the inertial corner, a view of it
changes to a mode similar to that of an accelerating corner. It gives inertial observer-dependent
apparent time.

The rotation scheme curve can be taken as the basis of the whole description from the point
of view of special relativity, see Figure 38, left.

Velocity additions result in constringing or stretching over the rotation curve. When adding
a velocity at the same direction, the curve is just simply constringed or stretched (Figure 38, a).
When adding a velocity at an orthogonal direction, just the free rest (in the respective direction)
of the curve is changed (Figure 38, b).

If the velocity would went to c for a massive particle, the curve would change to a non-smooth
(with crisp points) trajectory.

The spring-like structure naturally exhibits the property that attempts to change a curve
structure of a lesser-than-c speed into a curve structure of a speed closer-to-c undergo an ever-
stronger adversity.

This description is the same as that based on fuzzy logic where the same-direction additions
are those of co-uninorms, and a view reversion (i.e. choosing an inertial observer) is based on the
co-implicator functors. Again, it can be seen here that any non-extremal point on the fuzzy-logic
domain interval can be taken as the neutral element (i.e. inertial observer).

Inertial movements of bubbles are accompanied with ellipsoid shapes of the bubbles, since
they exert lesser pressures to the sidewise directions – as it was already discussed in the Structure
Borders section.

As the relative speed approaches c, bubble shapes come closer to the one-dimensional (i.e. line)
structure (Figure 38, c). The same narrowing holds for the asymmetric shape of accelerating
bubbles.

If a bubble would undergo a (relative) velocity greater than c, its apparent shape would
revert the central widening into a narrowing (Figure 38, d). It is exploited in the Exotic Matter
Applications section.
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8.2 Mass Action

Matter structures, as presented below, employ single-laid sheet parts.

Rest mass
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f

Figure 39: Corner rest mass

The rest mass is – avoiding the point of view of Quantum Gravity – based on the acting that
the corners and bubbles effect on the ambient environment.

It is based on connectivity of single-layer parts (i.e. corner tips and bubble hemispheres) to
the double layers of 3T -sheets (Figure 39, b). Greater is the connectivity, greater is the basic
part of the rest mass of the respective matter structure. The closed bubbles have no single-layer
parts, no connectivity to the 3T -sheets, and thus no mass at all.

This way, neutrino-type corners, photons, and (virtual) gluons stand aside from the other
corner types and bubbles.

Additions to the basic mass action by sheet corners, according to Figure 39, are:

a: the flipped tip of fermionic corners adds a minuscule mass, making the neutrinos massive,

c: a lesser than π rad (but non-zero) corner angle that tends to extend to the π rad angle,

d: tip bending of fermionic corners, adding two (higher-mass) generations for fermions,

e: structure toughening by attaching the pushed 3T -sheets, for quarks,

f: structure toughening by aligning two (massive) pulled 3T -sheets, for W±, Z bosons.

For the general description on leptonic fermions and respective bosons, see the Pulled Sheets
section; for the quark and gluon cases, see the Pushed Sheets section.

Fixing effects on double-laid 3T -sheet parts (that bear a corner or a bubble) increase their
sheet stiffness and thus the respective mass acting. According to that, the composite structures
of (massive) bosons increase their mass acting – while it precludes the corner flipping for bosons
along with that.

The stiffness-increase effect holds on quarks as well, since they are a composition of partons
of the pushed 3T -sheets and of common fermionic corners of the pulled 3T -sheets.

Rest mass of sheet bubbles is based on their curved hemispheres. Greater is the Casimir-like
force (and thus their stiffness), greater is their mass action. See more in the Sheet Bubbles
section.
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Dynamic mass

a b

Figure 40: Relativistic mass

Sheet parts by a corner (or a sheet bubble) passing along an observer have non-zero relative
velocity to the (double-laid) 3T -sheets of that observer. Thus it lowers the pressure in-between
and attracts (other) sheets there.

Alike using the closed bubbles for the pushed 3T -sheets, the closed bubbles can serve as
a source of the additional sheets used for the dynamic mass increase.

Under a relative motion to a 3T -sheet part (by a matter structure), the lessened pressure
in-between the passing 3T -sheets makes the closed bubbles be plane-deflated and aligned more to
those 3T -sheets. Eventually, some such closed bubbles become additional sheets on the respective
matter structures, see Figure 40, a.

The greater amount of double-layer sheets by a corner (or a sheet bubble) increases its stiffness
and thus its effective (i.e. dynamic) mass – fulfilling the process of relativistic mass increase.

Regarding the bosons of zero rest mass, the relevant sheet parts are those being exchanged
between their two corners. Hence a greater frequency (i.e. exchange speed) of that exchange
process means a greater amount of attracted sheets, and thus a greater dynamic mass, see
Figure 40, b.

Here it can be seen that a hypothetical particle of the original U(1) group of the electroweak
algebra – i.e. a particle with parallel rotation axes, and without any inter-corner sheet exchanges
– would have both zero rest mass and zero dynamic mass.

Such a particle can not be directly detected then. Still, virtual particles of this type could
serve as an interaction mediator for photons – making them (self) interacting.

If there would be a reason for having a 3 + 1 space-time, this could mostly be the end of the
story, with special-relativistic particles interacting and living in a stale space.
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Part III

Quantum Gravity
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9 Space Structure

9.1 Dimensional Hierarchy

Having developed the model for particles, several natural questions come together:

• on the dimensionality of the overall system
• on the actual forms of mass actions
• on the origins of the 3T -sheet structures themselves

Answering the third questions, i.e. the origin of the 3T -sheets, is a clue for all these questions.

Figure 41: Rod massif

For the extended tangloids, one-moment shots of the 3T -sheets apparently occupy a three-
dimensional space. Then all the next evolving of the extended tangloids is due to dynamics of
the 3T -sheets.

It means that an initial state without such dynamics should not have the 3T -sheets open
to the evolving. It is possible when the 3T -sheets themselves are wound-up, i.e. forming the
structure of rotating – mostly one-dimensional – rods.

The extended tangloids have topological constraints on crossings as described in the Tan-
gloidal Geometry section. The wound-up structure is prone to (pressure-based) alignments to
other (single-laid) sheets as well. Thus the initial wound-up rods would clutter if they would
occupy a three-dimensional space.

As the non-trivial (i.e. with non-zero effective diameter) rods can not pass through each other
at the three-dimensional space, adding one more dimension is a solution for the issues herein.

→ The initial rods occupy a four-dimensional space, forming a rod massif.

→ The (unwound) 3T -sheets occupy a three-dimensional space where their single-layer parts
(including corner tips, as rudiments of the initial rods) direct into the 4th dimension. There,
they can be bent for fermions, forming the two more energetic generations, as described in
the Pulled Sheets section.

In this way, the tangloidal structures can generally occupy surfaces of a sequence of dimen-
sions. A greater dimensionality have a gradually lesser influence on the dynamics, since any
tangloidal geometry can pass more freely through each other there.

The two-dimensional sheet-based tangloidal objects form the 3D-space (that is surface of the
rod massif) with the help of closed bubbles that fill the places in-between of them. The closed
bubbles form a sea that extends out of the rod massif then. For the overall picture, see Figure 41,
left, middle.
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This brings up a question on allowed dimensions of possible tangloidal objects, apart from
the two-dimensional 3T -sheets. The connections between particle-forming parts – e.g. 3T -sheets
between the 3T -sheet corners – are taken as parts of the wholesome structures.

Zero-dimensional objects (i.e. just points) means no connections, and thus no meaningful
dynamics.

One-dimensional objects are the classical rope-based tangloids. One-dimensional spaces allow
no structuring, while an infinite amount of geometry classes arises on rotations in 2D-spaces. In
3D-spaces, the 2π ◦Ex actions still result in inseparable (i.e. they can not be untangled) objects
when applied onto more than two such objects, while 4D-spaces allow untangling of any structure
based on one-dimensional tangloids. Thus no regular structure of matter-forming complexity is
feasible either.

For the 3T -sheets, 2D-spaces lead to infinity classes of rotations, while 4D-spaces allow too
easy untangling.

For three dimensional objects, the sphere eversion is a prototype of unifying the clockwise
and counter-clockwise rotations, since inner vs. outer views of a single rotation on a sphere bear
opposite orientations. Thus from three-dimensional objects on, the distinction between fermionic
and bosonic objects is lost.

As a result, the 3T -sheets occupying a 3D-space (herein a surface of the rod massif) is the
only case left with a reasonable complexity. Lower dimensions of inter-connectivity lack the
regularization that is necessary for solving the 2π ◦Ex process. And the greater dimensionalities
of objects provide too powerful regularization then.

Matter acting

Mass property is defined just for structures that interact with the rod massif, i.e. corner tips
and bubble hemispheres. The double-laid sheets themselves do not have mass, even though they
cooperate on the mass acting of the corner and bubble structures. A natural distinction between
massive and massless particles is presented below.

Since the rod massif is four-dimensional, there are three principal axes for the rod directing
out of the 3D-space. Corner structures that undergo a pair of rotations with orthogonal axes
have to pass through (some of) the rods. It is the same for generally voluminous structures, as
the sheet bubbles are. It actually provides the rest mass – even for the nearly massless neutrinos.

Contrary to that, corners with rotations of parallel axes can (align to and) pass along the
massif rods.

The passage generally slows all these matter structures down (to c or below c), and thus it
can be seen as the mass generation. This is a process similar to the (classical) mixing of photons
with electrons when the photons pass through matter.

Taken together:

• the structures of non-zero rest mass pass through (surfaces of) massif rods over all three
(spatial) directions,

• the structures of zero rest mass only pass through (surfaces of) sideways rods, taken rela-
tively to the movement directions of the respective matter structures.

Corner tips and bubble hemispheres protrude into the rod massif. It is notable that one
hemisphere of each bubble goes the other way – toward the outer environment made of closed
bubbles – where it is presented as a stable (i.e. non-rotating) structure. It is advised at Figure
16, and it is exploited in the Exotic Matter section.
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The protruding of sheet bubble hemispheres is fixed by its structure. Structure of (genuine)
bosons is fixed as well – via their corner coupling. The fermionic corners can (apart from their
flip-based rotations) bend inside the rod massif surface and thus form the two more generations.

As the matter structures pass through the rod massif surface, they flow around the rods.
One such passing around a rod shall be equivalent to the elementary Planck action (Figure 41,
middle).

The necks of matter structures – i.e. the one dimensional cuts where the single-laid parts of
corners and bubbles enter the rod massif – can be seen as structures by themselves. Then sheet
bubbles are closed strings, while corners are open strings, with some mutual dualities as it is
mentioned in the Sheet Bubbles section.

Along with that, the 3T -sheets can be viewed as (spin-based) connections of the neck-based
strings. And since the 3T -sheets are the basic space-forming structures, these connections are
a version of the spin foam of the LQG. Thus the extended tangloids provide a unification of the
string and LQG approaches, see Figure 41, right.

9.2 Volume Tension
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Figure 42: Massif surface curving

The interactions between the rod massif and mass-making sheet structures can be seen as an
analogy to a complex of water with a hydrophobic stuff. Since the lengths of the rods are quite
greater than the lengths of the interlaced (single-layer) sheet structures (i.e. bubble hemispheres
and corner tips), rods align greatly more to themselves than to those sheet structures. Still,
the matter structures prefer to align to the (massif) rods. As a result, the rods repel off the
matter structures – curving thus the 3D-space at its surface (Figure 42, a). It is similar to the
two-dimensional analogy of water in a capillary made of a hydrophobic material (Figure 42, b).

A case of (spherical) central clutter of matter is presented at Figure 42, c. The whole
matter clutter is dragged (by the hydrophobicity-like tendency) toward the rod massif. The
(hydrophobicity-like) dragging causes the 3D-space curvature at the places where it acts.

Taking centered subparts of the matter clutter, such regions are dragged (by the central
matter rest) even in the whole matter clutter. Though, this sub-dragging is performed via
a lesser drag, since a central subpart is (by definition) lesser than the whole matter clutter – thus
it undergoes a lesser (hydrophobicity-like) sub-dragging. It means that more inner parts (of the
matter clutter) have lesser 3D-space curvatures.

The result is that:

• the greatest dragging (and curvature) is exerted by the border of the matter clutter,

• the dragging (and curvature) is lessened by each matter structure, see Figure 42, d.
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The elementary curvature changes are smoothened by a process depicted later at Figure 59, a.
If – for a reason – the rods were interacting more with the matter structures than with

themselves, the 3T -sheets would get dissolved in the rod massif, alike to water with a hydrophilic
stuff. It apparently does not happen (for the standard matter).

The corner tips – that are logged into the surface layer of the 4D-space of the rod massif
– alter contact interactions among the rods. These rods have lesser ability to align where the
matter structures are present. The greater is mass acting, the greater is the eroding of the
inter-rod aligning.

This way, the volume tension (as an analogy to surface tension of classical physics) is low-
ered in the presence of the matter structures. The volume tension decreasing executes the
hydrophobic-like mass action. It results in bending of the 3D-space (as a surface of the rod
massif) towards the rod massif, according to the varying volume tension. A case of a spherical
clutter of matter structures (in surrounding vacuum) creates the common Flamm’s paraboloid
of the Schwarzschild embedding.

Dynamic transfers

a b

Figure 43: Massif coupling

Since the matter structures (partially) overlap with the massif rods, the movements of the
matter structures are partially transferred onto the massif rods. Thus, when a matter clutter un-
dergoes a rotation, the massif rods (slightly) rotate as well. And since the massif rods constitute
a natural reference frame, the whole perceived space (slightly) rotates, see Figure 43, a.

Volume tension based on classical pressure of matter structures is another source of massif
rod alignment decreasing, along the (mass-based) alignments of matter structures to the massif
rods, see Figure 43, b. Alike for the rotation transfer above, this is of a minor effect under
ordinary circumstances.

If the structure of 3D-space bending changes during 3T -sheet evolving, the respective double-
layer sheets undergo collision-like events. Such double-laid sheets can get locally disaligned, with
a new (free) sheet bubble creation as a result, see Figure 44. Since the free bubbles obey π rad
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Figure 44: Bubble production

rotation symmetry, they can be thought of as graviton-like particles. And the bubble production
should correspond to the energy releasing seen at the binary-star situations.

An effect of the double-laid sheets is that both the rods of the massif and matter structures
can slide over them – since they contain a lower amount of virtual particles, see Figure 45. The
rod massif sliding should generally help to (partially) overcome the rod alignment obstacles, and
thus to counteract the volume tension decreasing.

Figure 45: Massif sliding

In a (hypothetical) case of some 3T -sheets being directed out of the rod massif (surface), this
sliding can lead the rods towards the outer sea of closed bubbles, see Figure 45, right. This is
explored more in the Exotic Matter and Cosmology sections.
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10 Time Structure

10.1 Equivalence Principle

Rotations of corner tips proceed in their rotation planes. However, when a region of 3D-space is
bent over the four-dimensional rod massif, the rotation planes are laid (i.e. projected) onto the
curved space.

Thus the (effective) lengths of rotation curves that lie on curved regions become greater. This
is the same result as for 3T -sheet corners undergoing accelerations, see the Special Relativity
section.

Nearby matter means a bent 3D-space region. It means acceleration structures of corner tip
rotations, and it means slowing down the apparent time too. Then a present corner tends to move
into a direction where the 3D-space curvature is maximal. When its acceleration corresponds to
the 3D-space bending, it undergoes a steady-state version of inertial motion. It holds analogously
for the sheet bubbles, as it is described in the sequel.

The case of a central clutter of matter is presented below. It is simpler to use (free) sheet
bubbles for exploring the curvature effects, thus they are used throughout the rest of the text.

Figure 46: Gravitation

A situation of 3D-space curvatures caused by a matter clutter is shown at the bottom left
part of Figure 46. The local structuring is presented at the top parts there: vacuum section on
the left, matter patch section on the right.

The 3D-space curvatures cause geometry changes of matter structures and thus their accel-
erations. Sheet bubbles are used for the exploring herein.

For the vacuum section, the 3D-space curvature increases as a concave function in the center-
wise pointing, thus sheet bubbles can spread more toward the center there. For the matter patch
section, 3D-space curvature decreases as a convex function in the center-wise pointing, thus sheet
bubbles are hindered less toward the center there.
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For the both cases, shape changes of the sheet bubbles are the same as for sheet bubbles
accelerating toward the center. Since the very reasoning is the same here and in the Special
Relativity section, the sheet bubbles tend to form symmetric structures and thus they accelerate
toward the center.

It holds analogically for the corner-based matter structures, fulfilling the basic part of the
equivalence principle.

Two more additions are to be added to complete the picture:
First, a case of a region of the (hypothetical) exotic, i.e. anti-gravitating, matter is shown

at the bottom right part of the Figure 46. The concave vs. convex forms of section functions
of 3D-space curvature changes are exchanged – relatively to the case of the standard matter.
Therefore, the matter structures accelerate out of such regions, accordingly to the definition of
the exotic matter. This case is thoroughly explored in the Exotic Matter section.

Second, classical pressure causes both 1. effects relating special relativity (see the paragraphs
on pressure in the Apparent Time section), and 2. the rod massif surface changes (see Figure
43, b). These complementary changes comprise a part of the equivalence principle that is of a
minuscule effect under ordinary circumstances.

Black halls
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Figure 47: Black hall formation

As the bending of the 3D-space increases, the lengths of corner rotation curves (closer to the
central matter clutter) grow. Eventually, the rotation is not fast enough to overcome that length
increase. At such point, the apparent time cease to grow. Then the corner rotations slide over
the massif rods instead of passing through them. It means that the rod massif surface leads
directly toward the massif there, see Figure 47, top left.

The 3D-space curvature of a matter clutter (of effectively constant density) is greatest on the
border of the matter clutter. It is reflected by the lessened gravitational acceleration inside the
matter clutter when approaching its center.
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Thus a growing mass of such a clutter has the most stringent effect onto the 3D-space curva-
ture at the clutter border. Eventually, the curvature gets infinite, meaning the rod massif surface
goes directly into the massif itself, see Figure 47, top right. Such a region starts to accumulate
all the matter from its surrounding, including the matter clutter itself.

It creates a two-dimensional region where the matter structures are accumulated at a fissure
protruding into the rod massif – and thus forming the third dimension of the structure. As the
matter structures enter the black hall fissure, they separate from the – otherwise enveloping –
closed bubbles. For the black hall formation structure, see Figure 47, bottom.

When a corner reaches the matter fissure of a black hole, it meets the other 3T -sheet struc-
tures. As the amount of the 3T -sheets grow there, they separate from their – formerly coupled
– closed bubbles. Thus the (tightly tangled) matter structures fill the growing fissure.

The matter fissure of a black hole is filled up with 3T -sheets. It looks alike a structure that
mimics the Hopf fibration in 3D-space.

Since an arbitrary amount of entangling can be formed, no information should be lost during
this process.

Black hall evaporation

a dcb

Figure 48: Escaping a black hall

As the tangled sheet structures of a black hole evolve tightly, their single-layer parts can con-
nect. Thus they form (temporary) structures where (some of) the single-layer parts – originally
pointing into the rod massif surface layer – are freed from the rod massif, see Figure 48, a.

When all the original rod-massif connectors of such a structure get interconnected, a pseudo-
knot is formed. If such a pseudo-knot gets nearby orifice of the black hole fissure, it can escape
into the outer environment that is formed by the closed bubbles (Figure 48, a, b).

It forms a kiting-like structure where the inter-aligned matter structures form the body of
the kite, and the rest parts of their 3T -sheets hold them back to the 3D-space (Figure 48, c).

Among such pseudo-knot structures, there are e.g. coupled pushed 3T -sheets, as depicted at
Figure 35, right. Pseudo-knots based on sheet bubbles are explored in the Exotic Matter section.

The escaped pseudo-knots fall back into the 3D-space eventually (Figure 48, d). If it is at the
outer vacuum part by the black hall, the outcome of it can be detected. Apart from the original
matter structures themselves, the momentum of falling back (to the 3D-space) shall materialize
as a radiation. It should be of a wide energy distribution.
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10.2 Manifold Time
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Figure 49: Time structure

The whole – up to know presented – picture lacks some parts yet. It is the nature of the
sheet material itself, and the real – i.e. manifold, not just the apparent – time.

Double-laid sheet structures can evolve in several ways, see Figure 49.
Notably, a corner or a sheet bubble can arise or cease where either a sheet part (forming a

new structure) go towards the 4th dimension to interact with the rod massif, or a sheet part
(forming the old structure) goes backwards, again along the 4th dimension.

A corner or a sheet bubble can move inside the 3D-space. It is done via moving its sheet
neck (i.e. matter structure connection) in a direction that is normal to the 4th dimension axis,
i.e. normal to the connector itself. Alternatively, it can be seen as a structure annihilation at a
former place and its creation at a latter place.

Together with it, a sheet double-layer or its border can move, again to a direction normal to
its spreading.

All together, it is that the evolving of the sheet layers and their structures goes in directions
that are perpendicular to the sheet material.

It means that no external evolving is equivalent to just mixing of the sheet material within
itself, while any structure change adds movements that are orthogonal to it. This is a behavior
that is generally expected from the time dimensions of a manifold.

A reasonable conclusion is that the sheets themselves play the role of manifold time. Along
with the already discussed space dimensionality, this provides the time dimensionality, so that
it need not be set artificially.

While this manifold time has effectively one dimension for (outer) particle movements, it has
two-dimensional structure (of the sheets) amenable for inner information transfer. Since this
sheet-based inner information processing does not need to put structures through the massif
rods, it is not bound by the – otherwise limiting – c speed.

Thus particle movements – that are practically the outer information transfer – are limited
by the speed of light. Still, inner information transfer is not obligated to these limitations. It
can be seen as follows: The lack of interactions with the rod massif during a change means the
lack of speed limitations.

It explains the dichotomy on the speed bounds:

• outer information transfer, like (continuous) particle movements, limited by c,

• inner information processing, e.g. during measurements on a part of an entangled system,
without speed limitation.
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Changes on the 3T -sheets-mediated entanglement employ two-dimensional sheets, i.e. time-
like material that does not need to move any structure through the rod massif to achieve a new
(result) state.

Since sheet layers are considered to be the manifold time, the closed bubbles form a closed
time structure. Time paths are closed inside of them.

The sheet winding of rods should enable steady waves over them. Thus the rods can possibly
serve as mirrors for holding the information on events.

Quantum mechanical dynamics
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c d

Figure 50: Quantum mechanics

For the Figure 50, the next items explain the schemas. It is presented for corner-based
structures herein, but it holds for any matter structure.

a Closed bubbles penetrate among the particular sheets of matter structures. Tighter is an
initial packing of the particular sheets of a single particle, greater is the penetration action
of the closed bubbles. I.e. greater is the momentum distribution for the penetrated matter
structures. They form together a coupled system.

b The closed bubbles pulsate (and exchange with closed bubbles at other layers along the 4th

dimension going out of the rod massif) with frequencies set according to dynamic masses
of the coupled systems. The pulsation coupling is only to matter structures, since the
sheets themselves are of zero (dynamic) mass, thus without a stiffness for the pulsing.
When (flowing) parts of a coupled system mix, pulses of their closed bubbles add together
according to the met phases.

c When hitting another coupled system (e.g. a screen), a pulsing closed bubble of the com-
ing system can destroy a closed bubble of the reached system. Greater is the pulsing of
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a closed bubble, greater is the probability of such a breakage. As the newly created closed
bubbles are void of matter structures, the matter structures of the coming system follow
the breaking closed bubble and flow into (or orient along) that place. The sheet structures
that can pass in, are those that are not interconnected, i.e. those of a single particle. The
flow is immediate, since it avoids passage through the rod massif, as the sheet structures
just swing over the closed bubbles. It is a materialization of the alternative view on matter
structure transfer, as it was described above.

d When a corner tip undergoes a (breakage-based) change, a respective compensating change
is (immediately) propagated onto the other corner tips. In the case of existence of a corner
tip that is not coupled to another system, such an (entangled) corner can undergo the
respective change. Otherwise the respective compensation is melt in a whole (distant)
coupled system.

Whenever a breakage into a colliding system happens, it provides a sheet concentration
gradient that acts as a funnel for injecting the approaching sheet structures.

This process (immediate from the point of view of apparent time) finishes when all the parts
of the respective matter structure – i.e. all of its actual sheets – couple to a single set of (steady)
closed bubbles.

Since the state change triggering requires an already present (sheet-based) matter structure,
and since the transformation core is set effectively random, the immediate inner information
transfer does not lead to paradoxes that would be inevitable if such an immediate transfer
should happen for the outer information.

Any information on the coupled sheets should be immediately accessible to all sheet structures
that are parts of the respective wholesome coupled state. It holds e.g. for entangled sheet
structures. The immediate inner information transfer can be seen as a preservation of inner
pressure along the double-laid 3T -sheets.

Disconnection of particular sheet structures is done via the (closed bubble breakage-based)
abrupt transitions that are triggered by decoherence situations themselves.

A careful environment preparation can (temporarily) avoid the abrupt transitions – alike
sustaining a phase state even when an environment condition was shifted to a value adhering to
a different phase state. It is at the background of the quantum condensate states.

Taken together, this can be viewed as a two-way acting of the environment onto the foam of
(3T -sheets based) matter structures:

• the rod massif as a source of strict properties and a guiding for deterministic evolving,

• the sea of closed bubbles as a source of wave properties and effectively random changes.
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11 Exotic Matter

11.1 Exotic Matter Creation

The matter structures – i.e. corners and bubbles – on the 3T -sheets act as the standard gravity-
causing agents, while the double-laid sheets themselves lessen any curvature of the 3D-surface of
the rod massif by making the massif rods sliding over them (when those double-laid sheets are
located inside the 3D-surface).

Microscopic amounts

Some suitable amenable structures inside the outer sea of the closed bubbles (i.e. inside the
outer environment) are necessary for making the 3D-curvature lead out of the rod massif, i.e. the
opposite way than caused by the standard matter structures.

The situation when a pseudo-knot is kite-like flying through the closed bubbles inside the
outer environment is exactly what is necessary herein, see Figures 48, 51.

The massif rods can slide (the outward way) over the double-laid sheets that connect the
pseudo-knot structures back to the 3D-space. As the structures of pseudo-knots are in the outer
environment, the sliding massif rods are naturally guided there as well.

This exotic matter form provides the curving of the rod massif surface out of the rod massif.
Thus it really implements the geometrical structure of the exotic matter as it is described in the
Equivalence Principle section above.

As the kiting pseudo-knots align to the slid rods, the exotic matter structures (follow the
slid rods and thus they) are attracted to the regions of the exotic matter. This fulfills the
anti-gravitating part of the exotic matter properties.
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Figure 51: Microscopic exotic matter

Macroscopic amounts

A single pseudo-knot provides just a microscopic amount of the exotic matter. Macroscopic
amounts are necessary for practical applications though. A possible way for creating such an
amount of the exotic matter is as follows, see Figure 52.

It shall start with a region that is doped with a greater amount of free bubbles of pulled
3T -sheets. Sheet bubbles are composed of pairs of single-layer hemispheres where one of them
is exposed to the outer environment. Thus they are amenable for alignments to possible (single-
layer) structures approaching them from the outer direction (Figure 52, a).

55



a b c d

Figure 52: Macroscopic exotic matter

Then a greater amount of energy should allow a (3D-space laid) sheet bubble pair to overlap,
thus providing a pseudo-knot for triggering the creation of next sheet bubble pair-based pseudo-
knots (Figure 52, b).

When a triggering kite-like pseudo-knot falls back to the 3D-space (i.e. into the surface of
the rod massif), it can separate and its parts align with two other (free) sheet bubbles. As a
result, a single sheet-bubble-based pseudo-knot causes creation of two such sheet-bubble-based
pseudo-knots – when the respective region is doped with free sheet bubbles (Figure 52, c).

When the bubble-based pseudo-knots fall back, they should align with other sheet bubbles
easier. Since they approach the – 3D-space laid – sheet bubbles from the 4th dimension, they do
not start interactions via (mutual) partial overlaps.

As a result, they are not repelled from each other by the pressure interaction, contrary to
sheet bubbles coming from inside of the 3D-space.

In fact, the kiting bubbles should be attracted to the 3D-space-laid sheet bubbles – by lowering
the overall distances between alike shaped sheet layers – when not being too distant for sufficient
overlapping when the separation over the 4th dimension vanishes.

As one sheet-bubble-based kiting pseudo-knot creates two new such pseudo-knots (on the
free-bubbles doped region), the exotic matter formation undergoes a (possibly exponential) chain
reaction.

When the pseudo-knots start to form dense enough structures of exotic matter, they align to
each other and stabilize the exotic matter formation. The remaining rest of free bubbles can be
put away via a lower energy addition to the region (Figure 52, d), since it is sufficient to release
the free bubbles – as it is described in the Structure Flows section.

Thus the main predisposition for the exotic matter formation process is to have a great
concentration of – otherwise inert – free sheet bubbles, and an initial energy density impulse.
See the Sheet Bubbles section for information on stability and dynamics of the sheet bubbles.

A greater amount of the exotic matter should create a system with both pseudo-knots and
(some of) the massif rods being slid toward the pseudo-knots. The holding 3T -sheets of the
kiting structures are partially oriented along the 4th dimension, and thus greater parts of them
are amenable for alignments with the massif rods.

The result is a region of unstable to meta-stable (according to its size) exotic matter, itself
resembling the restricted system of classical physics.

Since the actually measured 3D-space part does not behave according to classical physics
(i.e. it obeys the dynamics of 3T -sheets being laid on the rod massif surface), it is fortunately
not a transient region of the exotic matter.
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11.2 Exotic Matter Applications

Warp drive

b ca

Figure 53: Warp drive driving

An application of the exotic matter is a warp drive-like system, i.e. crafted combination of
standard and exotic matter that causes a (possibly faster than c) movement of a neighboring
part of the massif rod – together with its respective surface, i.e. neighboring space region.

The standard construction of the warp drive-like system is a central clutter of standard matter
surrounded by a ring of exotic matter. A prolonged ring of the exotic matter should a) lessen
location instability of the central matter; and b) help to loosen the alignments of massif rods
along the separation between the drive region and the rest of the rod massif, see Figure 53, a.

The central standard matter clutter helps to keep the exotic matter patches away off (cen-
trally) collapsing together.

A simple exploration of the warp drive-like system can be done by putting a testing sheet
bubble (of the free type) into various distances off the system (while considering separately the
standard and exotic matter gravity sources).

The testing free bubble is intact at an (effectively) infinite distance, thus having a spherical
shape.

Then, the testing free bubble acquires both speed (Figure 53, b, top) and acceleration (Figure
53, b, bottom) by the action of the moving drive region.

The greatest acceleration shall be by entering the region of the drive. While a testing matter
in front of the exotic matter accelerates, it has its actual relative speed (to the distant observer)
lesser than the drive region itself. Thus it approaches the drive system.

The central narrowing of the testing free bubble (inside the drive region) is caused by the
repelling (i.e. anti-gravitating) effect of the exotic matter.

Since the local speed is limited by c, the greater than c speed (perceived by a distant observer)
means that the whole drive – including the belonging rod massif part – moves through the rest
of the (surface of the) rod massif.

Additionally, as the drive moves through the rod massif surface, it should constrict the massif
rods in front of itself, and loosen the rods in behind of itself. It thus resembles the Alcubierre
drive.

Any (through the front) injected standard matter causes the overall drive system to have
more standard properties. I.e. the system speed lowers this way. Ejecting a matter in the
rear counteracts it and thus it increases the system speed. It is in accordance with the overall
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momentum conservation. Merging with an (initially) zero-speed matter decreases the drive speed
while cutting off some such matter increases the speed of the remaining system.

Microscopic amounts of the exotic matter are unstable, with their pseudo-knots falling back to
the 3D-space. It should cause severe radiation, still it should not matter if being used as an anti-
impact projectile. A greater amount of exotic matter should stabilize itself by inter-alignments
though.

Avoiding the (possibly) approaching matter structures is another issue, see Figure 53, c. Since
the exotic matter repels from matter (and vice versa), an auto-avoiding should work by itself –
unless the center of the approached matter is exactly in the drive (tube) direction. A randomized
direction (e.g. via using a rotating asymmetric shape) should solve the issue even for the matter
clutters being (otherwise) exactly approached.

Massif mining
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Figure 54: Pipe system

The exotic matter can help to shape the 3D-space to form structures of rich curving of the
rod massif surface, see Figure 54, a. Clouds of exotic matter can e.g. fix orifices and branching
points of a worm hole-like pipe system, see Figure 54, b.

If a 3D-space from a different part of the rod massif surface is reached by a protruding pipe of
the worm hole-like pipe system, it should be without tangloidal connections to the source surface
of the pipe. Then the only interactions between the two sets of 3T -sheets would be via alignments
based on pressure interactions. Even when the reached 3D-space is the same as the source one,
the interactions would be affected via the lengths of 3T -sheets going through the pipes. It would
be kind of realization of the many-worlds (interpretation of) quantum mechanics.

Reaching the massif rods at other (distant) places could be used for dealing with possibly
mirrored events from other parts of space and time as well.

A variation on the previously described drive system is as follows, see Figure 55.
Starting with a warp drive-like system (Figure 55, a), when it gets (via injecting) a sufficient

amount of standard matter – but still with a reasonably high speed – the ring of the exotic
matter should be spread over the whole drive surface (Figure 55, b).
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Figure 55: Worm drive

This way, the central matter would start to create a (new) pipe of the worm hole-like pipe sys-
tem – both because of its gravity and because of its repelling off the exotic matter (Figure 55, c).

A part of the exotic matter would stay (fixing the orifice), part would follow the central
matter clutter, helping to disintegrate and pass through the rod massif surface.

It could be reusable for creation of rod massif surface irregularities and disturbances. Such
regions could get greater amounts of bubbles and exotic matter patches during the rod massif
surface smoothening. This can be viewed as a rod massif mining.

Together with it, a stale region of the 3D-space would be put into a more dynamic state.
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12 Cosmology

12.1 Universe Origin

Having the rod massif as the initial state, an event of disturbance should alter the overall structure
of rod alignments, see Figure 56.
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Figure 56: Geometry creation

The quaternary – chess like – alignment has a perfect matching of clockwise and counter-
clockwise orientations of the rods. Such an alignment structure is more sparse than the most
dense, i.e ternary, alignment.

A disturbance put onto massif rods of the quadruple structure can force the rods to be packed
more closely. Such a structure change can spread itself via direct contacts among the rods.

Additionally, it could be enhanced by rod reversals. When a rod (laid along a direction) is
turned by π rad, it reverses its rotation orientation.

As two of the rods of the ternary alignment collide via their (same-orientation) rotations,
they unwind and form the double-laid (since two rods unwound) three-corner (since based on
ternary rod structure) sheets.

This endorse and constructively develop the 3T -sheet structure of extended tangloids as it
was found in the Tangloidal Geometry section.

Choosing the rotation orientation of the colliding rod pair is (effectively) a random process.
Therefore it is practically impossible to end-up with equal counts of clockwise and counter-
clockwise rotating corners. It means that the newly created 3D-space has to have an abundance
of corners of one rotation orientation (i.e. of either particles or antiparticles).

Since the unwound rods – now corners of the 3T -sheets – have a lesser interaction with the
intact rods, they are expelled from the inner of the rod massif. Sheet structures reconnect during
the 3D-space formation, so that each corner-based particle is made of a multiple of actual sheet
layers. At the end, the 3T -sheets form a part of the rod massif surface.

The single-layer tips of corners can be seen as residua of the initial (wound) rods.

The starting structure of the unwound 3T -sheets is the one on the right at Figure 56. The
initial 3T -sheets either stick together (the inner orientation) forming nucleons via the process
depicted at Figure 27, or they separate (via choosing the outer orientation) and form leptonic
corners of the pulled 3T -sheets.

Alike rotating corner tips originally choose the same layers of the double-laid structure of 3T -
sheets to not destroy the starting structure. Thus for the corner tips, particles vs. antiparticles
use the opposite layers of the double-laid sheet structure.

In fact, the corners can still be based on pairs of single-laid tips when the second ones lead into
the outer sea of closed bubbles. Such a structure is generally more symmetric, while effectively
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with one single-laid corner tip – since the second tip fragment do not mix with massif rods.
As a main difference, the second single-laid fragments on corners should make faster the

process of black hall evaporating – via an easier pseudo-knot creation.

12.2 Universe Evolving

a b c

Figure 57: Geometry evolving

As the formation process of the rod massif surface shall be vigorous, a vast amount of dis-
turbances on the 3T -sheets had to be produced. Then the starting state of the newly created
3D-space should be full of regions of sheet bubbles and exotic matter.

As the greater regions of exotic matter are meta-stable with long life-times, the large primor-
dial exotic matter regions would stay for (astronomically) long times. Since the exotic matter
fixates curvatures of the rod massif surface, the 3D-space had to stay with generally greater
curvatures initially.

Once the pseudo-knots of the primordial exotic matter fall back to the 3D-space, the curvature
profile can start to smoothen (faster). It is the nature of the so called 3D-space inflation, see
Figure 57, a.

As the the curvatures and disturbances of the 3D-space lessen, the amount and strength of
virtual particles that keep the double-laid 3T -sheets aligned should diminish. Eventually, both
the black hole matter fissures should split themselves from the rest of the rod massif surface
(Figure 57, b), and lone corner tips should wind back into the massif rods (Figure 57, c).

A black hole shard flowing through the rod massif can collide with another such shard, causing
a (local) structure switch of the aligned massif rods – creating, in turn, a new 3D-space.

Universe status

a b

Figure 58: Dark matter effecting
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The dark matter – i.e. (free) sheet bubbles of pulled 3T -sheets – should be confined by the
corner-based matter clutters, unless it gets released during a situation of an overall (slightly)
increased energy density, see Figure 15. Such a releasing can happen in hotter (central) parts of
galaxies – leading to dispersing (of some) of the sheet bubbles out of the galaxy centers (Figure 58,
a left).

Another such situation (on mild energy increase) is when two galaxies collide. The bubble-
based dark matter is released and flow – in the original directions – out of the galaxy (corner-
based) matter clutters, see Figure 58, b.

A different situation is when the energy content is greatly increased, like around (central)
black halls (Figure 58, a center). Then the (free) sheet bubbles decay, leaving the gamma signal,
as discussed in the Sheet Bubbles section.

a b c

Figure 59: Dark energy effecting

As the massif rods slide over 3T -sheets, they can pass through the distractions made by the
matter structures (i.e. corners and sheet bubbles). This (together with fuzzifying via the sheet
multiplicity) makes the rod massif surface more smooth on the microscopic level, see Figure 59, a.

The same way as massif rods slide over the 3T -sheets, matter structures can slide over the
sheets as well. It can – for large and massive bodies, like stars – lead to significant sliding over
the 3T -sheets. It can be the case for the supernovae observations, see Figure 59, b.

Analogically, the matter sliding can be the cause of the (over-effecting) fly-by effect. A (large)
rotating body can align its 3T -sheets around itself. Then a matter body flying around it slide
over the sheets, see Figure 59, c.
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Figure 60: Exotic matter effecting
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Energy content inside a star system allows a local bubble releasing, so that the free bubbles
flow away off the star – leaving the bubbles by the borders of the respective star system. Then
wind collisions between the star vs. galaxy sources provide the triggering energy for creation of
a bubble-based pseudo-knot, see Figure 60, a.

It starts a local exotic matter patch creation, size of which depends on the amount of sheet
bubbles (of the free type) locally available. It should usually lead into microscopic unstable
patches of exotic matter, causing particle flows (and matter repelling) from the whole star system
surface. Since it is a random process, it should occasionally create a moderately larger patch
of exotic matter – resulting in a greater source of ionizing radiation, as detected by geological
measuring. It can also play a role in destabilizing the local standard matter clutters, thus
triggering e.g. comet origination.

For a binary star system, the geometry changes (caused by the rotating stars) create (free)
sheet bubbles, as discussed previously. Concurrent radiation from the stars provide the energy
content for triggering the creation of pseudo-knots based on those (free) sheet bubbles. It shall
continuously provide small amounts of exotic matter. That exotic matter repels the stars apart
then, see Figure 60, b.
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Conclusion
This endeavor had started with basic assumptions on geometry that lead directly to algebraic
characterization of the system. The crucial step was taking the 2π◦Ex process as the fundamental
symmetry operation of the system.

Having the tangloidal system, peculiarities of the quantum physics and cosmology were got for
free. The basic structure-forming interactions were found to be the pressure of the Casimir-force
type and sheet flows.

Particle life and interactions of the Standard Model followed as applications of the basic
processes onto the respective building blocks.

Trying various possibilities around the fundamental structures, the originally axiomatized
ones were found to be the ones able to form reasonably complex structures – i.e. neither unbear-
able chaos, nor fade uniformity.

Along with that, (dimensionally) restricted systems of closed bubbles and wound rods that
serve as ambient environments, were described.

Two notions of time – the apparent one that defines measured rates of changes, and the man-
ifold one that provides the substance for inner and outer information transfer – were identified.

For basic relativistic properties, the apparent time is sufficient. The manifold time provides
a deeper view, including the resolution of the quantum information features.

The (general) system that is rooted in general relativity, naturally provides the origin of both
the universe and elementary particles.

After exploring the dark matter and dark energy structures, a way how to transform them
into the (anti-gravitating) exotic matter is provided. Some applications and possible natural
occurrences are described as well.

An interesting feature of the (general) system is that views confined on particular properties
are (kind of) versions of theories already previously known.

Quite a few dualities are present in the (general) system, e.g.

• pulled vs. pushed 3T -sheet types for leptonic vs. hadronic structures,
• 3T -sheet parts that are effectively one-dimensional vs. two-dimensional provide manifold

time for classical vs. quantum information processing,
• orthogonal vs. parallel rotation axes of corner-based matter structures for less than c

vs. equal to c speeds.

Passing the matter structures through the rod massif – via a mixing with that – puts the
c-limit restrictions on the achievable (local) speeds.

For the fundamental matter and energy formations, a basic set of geometrical and dynamical
structures – based on sheet alignments and rotations – is reused for all the necessary devel-
opments. Together with it, the (general) system serves as a unifying explanation for puzzling
physical phenomena, without requiring ad-hoc assumptions. It for example naturally contains
both the symmetries of space-time, and separate asymmetries.

It is notable that actual predictions and applications are provided.
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