A Note on Relativity

December 12, 2012

José Francisco García Juliá
jfgj1@hotmail.es

A note in favor of the correctness of the relativity, special and general.

Key words: relativity (special and general).

The special relativity gives us the equations: \(E = mc^2, \ E_0 = m_0c^2, \ E = E_0 + T, \ m = \gamma m_0 \) and \(\gamma = (1 - v^2/c^2)^{-1/2}, \) where \(E, E_0 \) and \(T \) are the total, rest and kinetic energies of the particle, \(m \) and \(m_0 \) its moving and rest masses, \(c \) the speed of the light in the vacuum and \(v \) the speed of the particle. For \(\sqrt{c} \ll c, \ E = m_0c^2 + (1/2)m_0v^2, \) which is the correct value for the Newton mechanics, where the kinetic energy is \(T = (1/2)m_0v^2. \) All these equations are obtained without using relativity, but with \(\gamma = (1 - v/c)^{-1}, \) which is not the correct value [1]. In addition, for two inertial systems: \(f'/f = ((1 - v/c)/(1 + v/c))^{1/2} \) (from the relativistic Doppler effect), where \(f' \) and \(f \) are the frequencies of the light in the moving and rest frames, respectively, \(v \) being the moving speed of the primed frame. But also, \(E'/E = ((1 - v/c)/(1 + v/c)) \) (from the Lorentz transformation for the energy), then \(E'/E = f'/f, \ E' = hf' \) and \(E = hf, \) which is the Planck-Einstein equation, \(h \) being the Planck constant [2]. All this is in favor of the correctness of the special relativity.

From the general relativity: \(R_{ik} - (1/2)g_{ik}R = (8\pi G/c^4)T_{ik}, \) \((i, k = 0, 1, 2, 3), \) where \(R_{ik} \) is the Ricci tensor, \(g_{ik} \) the metric tensor, \(R \) the scalar curvature, \(G \) the universal gravitational constant of Newton and \(T_{ik} \) the energy-momentum tensor. This equation is like the Poisson equation: \(\nabla^2 \phi = 4\pi G \rho, \) where \(V = (\partial \phi/\partial x, \partial \phi/\partial y, \partial \phi/\partial z), x, y \) and \(z \) being the rectangular coordinates, \(\phi \) the gravitational potential and \(\rho \) the mass density. In the vacuum: \(R_{ik} - (1/2)g_{ik}R = 0 \) (Laplace equation: \(\nabla^2 \phi = 0 \)), and \(R_{i} - (1/2)\delta_{i}R = 0, \ R_{i} - (1/2)\delta_{i} = 0, \) \(R - (1/2)4R = 0 \) and \(R = 0 \) (where: \(R_{i} = R, \ \delta_{i} = 1 \) if \(k = i \) and \(\delta_{k} = 0 \) if \(k \neq i \), and \(\delta_{k} = 4 \)); then, \(R_{ik} = 0. \) This equation was solved by Schwarzschild yielding a square space-time interval value of: \(ds^2 = (1 - r_g/r)c^2 dt^2 - r^2(sin^2 \theta d\phi + d\theta^2) - dr^2/(1 - r_g/r), \) where \(r_g = 2GM/c^2 \) is the gravitational (or Schwarzschild) radius, \(M \) being the rest mass of the particle that produces the gravitational field, \(t \) the time, and \(r, \ \theta \) and \(\phi \) the spherical coordinates. Note that \(r > r_g, \) since \(r = r_g \) and \(r = 0 \) would yield \(ds^2 = -\infty \) and \(r < r_g \) would produce a change of sign in time and in the space. Note also that, we may put \(r = 2GM/v^2, \) \(v \) being like a gravitational escape speed \((E = T + V = (1/2)m_0v^2 - GMm_0/r), V \) being the potential energy, and from \(E = 0, \) the escape velocity would be: \(v = (2GM/r)^{1/2}, \) and as \(r_g = 2GM/c^2, \) it would correspond to a gravitational escape speed of \(c. \) As \(r > r_g, \) \(v < c, \) and there is not black holes. In addition, substituting these values in the interval, we would have that: \(ds^2 = (1 - v^2/c^2)c^2 dt^2 - r^2(sin^2 \theta d\phi + d\theta^2) - dr^2/(1 - v^2/c^2), \) and for given values of \(\theta \) and \(\phi \) \((\theta = \text{constant}, \ \phi = \text{constant}, \ d\theta = 0 \) and \(d\phi = 0), \) it would be: \(ds^2 = (1 - v^2/c^2)c^2 dt^2 - dr^2/(1 - v^2/c^2) = c^2 dt^2 - dr^2 = ds^2, \) which is a generalization of the special relativity for a radial motion in a gravitational field. Note also that for \(|\phi| \ll c^2, \) which implies that \(v^2 \ll c^2, \) it is recovered the Newton gravitation formula [3]: \(F = -GMM_0/r^2, \) where \(F \) is the gravitational attraction force.
between the masses \(M\) and \(m_0\) separated a distance \(r\) (see the appendix). All this is in favor of the correctness of the general relativity.

Appendix

Newton’s gravitational attraction force from Einstein’s general relativity:

\[
R_{ik} - \frac{1}{2} g_{ik} R = \frac{8\pi G}{c^4} T_{ik}, \quad (i,k = 0,1,2,3)
\]

\[
R_i^i - \frac{1}{2} \delta_i^i R = \frac{8\pi G}{c^4} T_i^i
\]

\[
R_i^i - \frac{1}{2} \delta_i^i R = \frac{8\pi G}{c^4} T_i^i, \quad \left(R_i^i = R, \delta_i^i = 4, T_i^i = T \right)
\]

\[
R = -\frac{8\pi G}{c^4} T
\]

\[
R_{ik} = \frac{8\pi G}{c^4} \left(T_{ik} - \frac{1}{2} g_{ik} T \right)
\]

\[|\phi| \ll c^2, \quad v^2 \ll c^2\]

\[L = -Mc^2 + \frac{1}{2} M v^2 - M \phi\]

\(L\) being the Lagrangian.

\[L = -Mc \left(c - \frac{v^2}{2c} + \frac{\phi}{c} \right)\]

\[S = \int L dt = -Mc \int \left(c - \frac{v^2}{2c} + \frac{\phi}{c} \right) dt\]

\(S\) being the action.

\[S = -Mc \int ds\]

\[ds = \left(c - \frac{v^2}{2c} + \frac{\phi}{c} \right) dt\]

\[ds = c \left(1 - \frac{v^2}{2c^2} + \frac{\phi}{c^2} \right) dt\]

\[ds^2 = c^2 \left(1 - \frac{v^2}{2c^2} + \frac{\phi}{c^2} \right)^2 dt^2\]

\[\xi \ll 1, \quad (1 \pm \xi)^n \approx 1 \pm n \xi\]
\[
\left(1 - \frac{v^2}{2c^2} + \frac{\varphi}{c^2}\right)^2 \approx (1 + \xi)² = 1 + 2\xi = 1 + 2\left(-\frac{v^2}{2c^2} + \frac{\varphi}{c^2}\right) = 1 - \frac{v^2}{c^2} + \frac{2\varphi}{c^2} = 1 + \frac{2\varphi}{c^2} - \frac{v^2}{c^2}
\]

\[
c^2 \left(1 - \frac{v^2}{2c^2} + \frac{\varphi}{c^2}\right)^2 = c^2 \left(1 + \frac{2\varphi}{c^2} - \frac{v^2}{c^2}\right) = c^2 \left(1 + \frac{2\varphi}{c^2}\right) - v^2
\]

\[v dt = dr\]

\[
c^2 \left(1 - \frac{v^2}{2c^2} + \frac{\varphi}{c^2}\right)^2 dt^2 = c^2 \left(1 + \frac{2\varphi}{c^2}\right) dt^2 - v^2 dt^2 = c^2 \left(1 + \frac{2\varphi}{c^2}\right) dt^2 - dr^2
\]

\[ds^2 = c^2 \left(1 + \frac{2\varphi}{c^2}\right) dt^2 - dr^2\]

\[ds^2 = g_{00} c^2 dt^2 - dr^2\]

\[g_{00} = 1 + \frac{2\varphi}{c^2}\]

\[g_{\alpha\beta} = -1, \quad g_{\alpha\beta} = 0 \quad (\alpha \neq \beta), \quad g_{00} = g_{00} = 0, \quad (\alpha, \beta = 1, 2, 3)\]

\[T^i = \rho c \frac{dx^i}{ds} \frac{dx^k}{dt}, \quad u^i = \frac{dx^i}{ds}, \quad c = \frac{dx^0}{dt}, \quad v^\alpha = \frac{dx^\alpha}{dt}, \quad \gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2},\]

\[ds = c dt \gamma^{-1}, \quad T_0^0 = \gamma \mu c^2 = \mu c^2, \quad T_\alpha^\alpha = \gamma \mu v^\alpha v_\alpha = \gamma \mu v^2 = \mu v^2\]

\[T = T_i = T_0^0 + T_\alpha^\alpha = \rho c^2 + \rho v^2 = \rho c^2\]

\[R_i^k = \frac{8\pi G}{c^4} \left(T_i^k - \frac{1}{2} \delta_i^k T\right)\]

\[R_0^0 = \frac{8\pi G}{c^4} \left(T_0^0 - \frac{1}{2} \delta_0^0 T\right) = \frac{8\pi G}{c^4} \left(T_0^0 - \frac{1}{2} \rho c^2\right) = \frac{4\pi G \rho}{c^2}\]

\[R_{00} = R_0^0 = \frac{4\pi G \rho}{c^2}\]

\[R_{00} = \frac{\partial \Gamma_{00}^\alpha}{\partial x^\alpha}\]

\[\Gamma_{00}^\alpha\] being a Christoffel symbol.

\[\Gamma_{00}^\alpha \approx -\frac{1}{2} g_{\alpha}^{\alpha\beta} \frac{\partial g_{00}}{\partial x^\beta} = -\frac{1}{2} (-1) \frac{\partial g_{00}}{\partial x^\alpha} = \frac{1}{2} \frac{\partial}{\partial x^\alpha} \left(1 + \frac{2\varphi}{c^2}\right)\]

\[\Gamma_{00}^\alpha = \frac{1}{c^2} \frac{\partial \varphi}{\partial x^\alpha}\]

\[R_{00} = \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial x^{\alpha\beta}}\]

\[\frac{\partial^2 \varphi}{\partial x^{\alpha\beta}} = 4\pi G \rho\]

3
\[\nabla^2 \varphi = 4\pi G \rho \]
\[\varphi = -\frac{1}{4\pi} \int \frac{4\pi G \rho dV}{r} = -G \int \frac{\rho dV}{r} \]

\(V \) being the volume, since \(\nabla^2 (1/r) = -4\pi \delta(r) \), where \(\delta(r) \) is the Dirac delta function: \(\delta(r) = +\infty \) for \(r = 0 \) and \(\delta(r) = 0 \) for \(r \neq 0 \) and \(\int \delta(r) dV = 1 \); and \(\nabla^2 \varphi = -G/\rho \nabla^2 (1/r) dV = 4\pi G/\rho \delta(r) dV = 4\pi G \rho \int \delta(r) dV = 4\pi G \rho \). For a group of \(n \) particles

\[\varphi = -G \sum_n \frac{M_n}{r_n} \]

\(M_n \) being the masses of the particles and \(r_n \) the distances from them to the field points. And for a single particle

\[\varphi = -G \frac{M}{r} \]
\[F = -m_0 \frac{\partial \varphi}{\partial r} \]
\[F = -G \frac{M m_0}{r^2} \]

\(F \) being the Newton gravitational attraction force between two particles of masses \(M \) and \(m_0 \) separated a distance \(r \).

