Gravitational Ejection of Earth’s Clouds

Fran De Aquino
Maranhao State University, Physics Department, S.Luis/MA, Brazil.
Copyright © 2012 by Fran De Aquino. All Rights Reserved.

It is shown that, under certain circumstances, the sunlight incident on Earth, or on a planet in similar conditions, can become negative the gravitational mass of water droplet clouds. Then, by means of gravitational repulsion, the clouds are ejected from the atmosphere of the planet, stopping the hydrologic cycle. Thus, the water evaporated from the planet will be progressively ejected to outerspace together with the air contained in the clouds. If the phenomenon to persist during a long time, then the water of rivers, lakes and oceans will disappear totally from the planet, and also its atmosphere will become rarefied.

Key words: Modified theories of gravity, Water in the atmosphere, Cloud physics, Water cycles, Solar variability impact.
PACS: 04.50.Kd, 92.60.Jq, 92.60.Nv, 92.70.Ly, 92.70.Qr.

1. Introduction

A cloud, in Earth’s atmosphere, is made up of liquid water droplets, if it is very cold, they turn into ice crystals [1]. The droplets are so small and light that they can float in the air.

Here we show that, under certain circumstances, the sunlight incident on the planet can become negative the gravitational mass of water droplet clouds. According to Newton’s gravitation law, the force between the Earth and a particle with negative gravitational mass is repulsive. Then, by means of gravitational repulsion, the clouds are ejected from the atmosphere of the planet, stopping the hydrologic cycle. Thus, the water evaporated from the planet is progressively ejected to outerspace together with the air contained in the clouds. Consequently, if the phenomenon to persist during a long time, then the water of rivers, lakes and oceans will disappear totally from the planet, and also its atmosphere will become rarefied.

2. Theory

The quantization of gravity shown that the gravitational mass m_g and inertial mass m_i are correlated by means of the following factor [2]:

$$\frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[1 + \left(\frac{\Delta p}{m_{i0}c} \right)^2 \right] \right\}^{-1}$$

(1)

where m_{i0} is the rest inertial mass of the particle and Δp is the variation in the particle’s kinetic momentum; c is the speed of light.

When Δp is produced by the absorption of a photon with wavelength λ, it is expressed by $\Delta p = h/\lambda$. In this case, Eq. (1) becomes

$$\frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[1 + \left(\frac{h/m_{i0}c}{\lambda} \right)^2 \right] \right\}^{-1}$$

(2)

where $\lambda_0 = h/m_{i0}c$ is the De Broglie wavelength for the particle with rest inertial mass m_{i0}.

From Electrodynamics we know that when an electromagnetic wave with frequency f and velocity c incides on a material with relative permittivity ε_r, relative magnetic permeability μ_r and electrical conductivity σ, its velocity is reduced to $v = c/n_r$, where n_r is the index of refraction of the material, given by [3]

$$n_r = \frac{c}{v} = \sqrt{\frac{\varepsilon_r\mu_r}{2\left(1 + (\sigma/\omega\varepsilon)^2\right) + 1}}$$

(3)

If $\sigma >> \omega\varepsilon$, $\omega = 2\pi f$, Eq. (3) reduces to

$$n_r = \sqrt{\frac{\mu_r\sigma}{4\pi\varepsilon_0f}}$$

(4)

Thus, the wavelength of the incident radiation (See Fig. 1) becomes
The wavelength of the electromagnetic wave can be strongly reduced, but its frequency remains the same. The wavelength of the electromagnetic wave is given by

$$\lambda_{\text{mod}} = \frac{v}{f} = \frac{c/f}{n_r} = \frac{\lambda}{n_r} = \sqrt{\frac{4\pi}{\mu_0 \sigma}}$$

(5)

Thus, the total number of collisions in the volume $S \xi$ is

$$N_{\text{collisions}} = n_d S \xi + n_{\text{collisions}} = n_d S \xi + (n_d S \xi - n_d S \xi) = n_d S \xi$$

(9)

The power density, D, of the radiation on the water droplet can be expressed by

$$D = \frac{P}{S} = \frac{P}{N_f S_m}$$

(10)

We can express the total mean number of collisions in each water droplet, n_1, by means of the following equation

$$n_1 = \frac{n_{\text{total photons}} N_{\text{collisions}}}{N}$$

(11)

Since in each collision a momentum h/λ is transferred to the molecule, then the total momentum transferred to the water droplet will be $\Delta p = (n_1 N_m) h/\lambda$. Therefore, in accordance with Eq. (1), we can write that

$$m_{\text{t}} = 1 - 2 \left[\sqrt{1 + \left(\frac{n_1 N_m \lambda_0}{\lambda} \right)^2} - 1 \right] =$$

$$\left[1 - 2 \left(\frac{n_{\text{total photons}} N_{\text{collisions}}}{N} \right) \right]$$

(12)

Since Eq. (9) gives $N_{\text{collisions}} = n_d S \xi$, we get

$$n_{\text{total photons}} N_{\text{collisions}} = \left(\frac{P}{h f^2} \right) (n_d S \xi)$$

(13)
Substitution of Eq. (13) into Eq. (12) yields
\[
\frac{m_{g(d)}}{m_{0(d)}} = \left\{ 1 - 2 \left[1 + \left[\frac{P}{n_0 S_0^2 \frac{\lambda_0}{\lambda}} \right] \right] - 1 \right\} \quad (14)
\]
Substitution of \(P \) given by Eq. (10) into Eq. (14) gives
\[
\frac{m_{g(d)}}{m_{0(d)}} = \left\{ 1 - 2 \left[1 + \left[\frac{N_s S_m D}{n_0 S_0^2 \rho_d S_d \frac{\lambda_d}{\lambda}} \right] \right] \right\} \quad (15)
\]
Substitution of \(N_f \equiv (n_f S_f) \phi_m \) and \(S = N_f S_m \) into Eq. (15) results in
\[
\frac{m_{g(d)}}{m_{0(d)}} = \left\{ 1 - 2 \left[1 + \left[\frac{n_f S_f^2 S_m D}{n_0 S_0^2 \rho_d S_d \frac{\lambda_d}{\lambda}} \right] \right] \right\} \quad (16)
\]
where \(m_{0(d)} = \rho_d V_d = \rho_d S_d \xi \). Thus, Eq. (16) reduces to
\[
\frac{m_{g(d)}}{m_{0(d)}} = \left\{ 1 - 2 \left[1 + \left[\frac{n_f S_f^2 S_m D}{\rho_d S_d \frac{\lambda_d}{\lambda}} \right] \right] \right\} \quad (17)
\]
Making \(\lambda = \lambda_{\text{mod}} \), where \(\lambda_{\text{mod}} \) is given by Eq. (5), we get
\[
\chi_d = \frac{m_{g(d)}}{m_{0(d)}} = \left\{ 1 - 2 \left[1 + \left[\frac{n_f S_f^2 S_m D}{4 \pi \rho_d S_d \frac{\lambda_d}{\lambda}} \right] \right] \right\} \quad (18)
\]

The area \(S_f \) is the total surface area of the water droplets, which can be obtained by multiplying the specific surface area (SSA) of the water droplet (which is given by \(\text{SSA} = \frac{A_d}{\rho_d V_d} = 3/\rho_d r_d = 300 \text{m}^2/\text{kg} \)) by the total mass of the water droplets \(m_{0(d)} = \rho_d V_d N_d \); \(\rho_d \approx 1 \times 10^8 \text{ droplets/m}^3 \) [4]. Assuming that the water droplet cloud is composed of monodisperse particles with 0.2 \(\mu \text{m} \) radius \(r_d = 2 \times 10^{-7} \text{ m} \), we get
\[
S_f = \text{SSA} \rho_d V_d = 4\pi r_d^2 N_d \quad (18)
\]
The area \(S_d \) is the surface area of one water droplet, which is given by
\[
S_d = 4\pi r_d^2 = 5.0 \times 10^{-13} \text{ m}^2 \quad (20)
\]
The “diameter” of a water molecule is \(\phi_m \approx 2 \times 10^{-10} \text{ m} \). Thus, we get
\[
S_m = \frac{4}{3} \pi r_d^3 \approx 3 \times 10^{-20} \text{ m}.
\]

An important electrical characteristic of clouds is that the electrical conductivity of the air inside them is less than in the free atmosphere, due to the capture of ions by the water droplets. Considering that the number of molecules per cubic meter of air is \(n_{\text{air}} \approx n_{\text{air}} \frac{A_N}{N_2} \approx 2.5 \times 10^{25} \text{ molecules/m}^3 \), then the total charge of the ions captured by the water droplets should be of the order of \(n_{\text{air}} e \approx 10^6 \text{ C.m}^{-3} \). This means that, the ions concentration in a cloud of water droplets is of the order of the ions concentration in metallic conductors \((10^6 - 10^7 \text{ C.m}^{-3})\). Thus, we can assume that the electrical conductivity of the clouds should be of the order of the conductivity of the metals \((10^3 \text{ S.m}^{-1})\). By substitution of the obtained values into Eq. (18), we get
\[
\chi_d = \left\{ 1 - 2 \left[\frac{1 + 4 \times 10^{38} D^2}{4 \pi \rho_d S_d \frac{\lambda_d}{\lambda}} \right] \right\} \quad (19)
\]
Since \(m_{g(d)} = \chi_d m_{0(d)} \), we can conclude, according to Eq. (19), that the gravitational mass of the droplet becomes negative when \(4 \times 10^{38} D^2 / f^3 > 1.25 \), i.e., when
\[
D > 5 \times 10^{-20} f^3 \quad (20)
\]
In the case of Earth, the actual average value of \(D \) due to the sunlight, is \(D_0 = 495 \text{ W.m}^{-2} \) [5].

* The solar constant is equal to approximately 1,368 W/m² at a distance of one astronomical unit (AU) from the Sun (that is, on or near Earth) [6]. Sunlight on the surface of Earth is attenuated by the Earth's atmosphere so that the power that arrives at the surface is closer to 1,000 W/m² in clear conditions when the Sun is near the zenith [7]. However, the average value is \(D_0 = 495 \text{ W.m}^{-2} \) [5].
Based on *Stefan-Boltzmann law*, we can write that $D_0 = \sigma T_0^4$ and $D = \sigma T^4$; $\sigma = 5.67 \times 10^{-8} \text{Wm}^{-2}\text{K}^{-4}$ is the Stefan-Boltzmann constant. Thus, it follows that

$$\frac{D}{D_0} = \left(\frac{T}{T_0}\right)^4 \quad (21)$$

Substitution of Eq. (21) into Eq. (20) yields

$$\frac{T}{T_0} > 3 \times 10^{-6} f^{\frac{3}{8}} \quad (22)$$

The *Wien’s displacement law* is given by $\lambda_{\text{max}} T = b$ where λ_{max} is the peak wavelength, T is the absolute temperature, and b is the *Wien’s displacement constant*, equal to $2.8977685(51) \times 10^{-3} \text{mK}$. Based on this equation, we can write that $\lambda_{\text{max}}/\lambda_{\text{max}(0)} = T_0/T$ or as function of frequency:

$$\frac{f_{\text{max}(0)}}{f_{\text{max}}} = \frac{T_0}{T} \quad (23)$$

Making $f = f_{\text{max}}$ in Eq. (22) and comparing with Eq. (23), we get

$$\frac{T}{T_0} > 1.5 \times 10^{-9} f_{\text{max}(0)}^{\frac{3}{8}} \quad (24)$$

Since $f_{\text{max}(0)} = 5.5 \times 10^{14} \text{Hz}$ (current value for sunlight) then Eq. (24) shows that, when $T > 1.05 T_0$ (T₀ is the current value of T) the gravitational masses of the water droplets become negative.

It is known that, the solar “constant” can fluctuate by ~0.1% over days and weeks as sunspots grow and dissipate. The solar “constant” also drifts by 0.2% to 0.6% over many centuries. Note that the *Gravitational Ejection of Earth’s Clouds* starts when the Sun’s temperature is increased by 5% in average † ‡. Under these circumstances, according to Newton’s gravitation law, the force between the Earth and the water droplets (negative gravitational mass) becomes repulsive. Then, by means of gravitational repulsion, the clouds will be ejected from the atmosphere of the planet, stopping the hydrologic cycle. Thus, the water evaporated from the planet will be

† According to the *Wien’s displacement law*, an increasing of 5% in the Sun temperature produces a decreasing of 5% in the peak wavelength (λ_{max}). This means that the peak of the solar spectrum is shifted to blue light. In this way, the sunlight becomes colder.

‡ After some millions of years, the stars’ internal structures begin to have essential changes, such as variations (increases or decreases) in size, temperature and luminosity. When this occurs, the star leaves the main sequence, and begins a displacement through the HR diagram. Significant increases in temperature can then occur during this period.
progressively ejected to outerspace together with the air contained in the clouds.

Note that the effect will be negligible if the phenomenon to persist for only some days. However, if the phenomenon to persist for some years, then most of animals will be dead. If it persists for some centuries, then the water of rivers, lakes and oceans will disappear totally from the planet, and its atmosphere will become rarefied.

This phenomenon can have occurred in Mars a long time ago, and explains the cause of the rivers, lakes and oceans dry found in Mars [10, 11]. Note that this phenomenon can also occur at any moment on Earth. In this case, there is no salvation to mankind, except if it will be transferred to another planet with an ecosystem similar to the current Earth’s ecosystem. Only Gravitational Spacecrafts [12] are able to carry out this transport.

Warning:

The IPCC - Intergovernmental Panel on Climate Change announced on September, 26 2013 a new report showing that the global mean surface temperatures can increase up to 4.8°C by 2100. If t_0 is the current global mean surface temperature, then an increasing of Δt_0 on t_0, will produce an increasing of 5% on the current global mean surface temperature if $(t_0 + \Delta t_0)/t_0 = 1.05$, whence we obtain $\Delta t_0 = 0.05t_0$. The global mean surface temperature of Earth was defined as 15°C in 1994 by Hartmann [13]. Thus, we get $\Delta t_0 = 0.75°C$. This means that, when the increasing on the current global mean surface temperature reaches $\sim 0.75°C$, in respect to the value of t_0 in 1994, the Gravitational Ejection of Earth’s Clouds starts. According to the IPCC report the total increase between the average of the 2003–2012 period is 0.78 [0.72 to 0.85] °C. Thus, we can conclude that the phenomenon might already have started. Consequently, clouds are already being ejected from Earth’s atmosphere. This means that water is being progressively ejected to outerspace together with the air contained in the clouds. If the phenomenon to persist for some decades the effects will be catastrophic for mankind.
References

