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The wave-particle duality is related with the decreasing of the wavelength. It explains 

why an atomic electron does not radiate (Bohr atom). But there are discrepancies with 

the Pauli exclusion principle and the Fermi-Dirac statistics. The spin-orbit coupling 

resolves these discrepancies producing the fine structure splitting of the atom energy 

levels. 
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The light is an electromagnetic wave, hence the phenomena of interference and 

diffraction; but it also behaves as a particle called the photon, for example, on the 

photoelectric effect. De Broglie generalized this wave-particle (or wave-corpuscle) 

duality of the light to the matter, hence the figures of interference and diffraction of the 

electrons, typical of the waves. 

 

We know that the light behaves more like a particle than as a wave the greater is its 

frequency f and its energy, E = hf, where h is the Planck constant, and the lesser is its 

wavelength λ, since the speed of the light in the vacuum is c = λf. The so-called 
effective mass of the photon would be m = E/c

2
 = hf/c

2
 = h/cλ. And to lesser 

wavelength, more particle appearance. 

 

For the matter would be: E = mc
2
, as particle, where m = γm0 is the moving mass, γ = (1 

- v
2
/c

2
)
-1/2

 and v the velocity, and m0 the rest mass; but, E = hf, as wave, and vf = λf 
would be the velocity of the wave or phase velocity and λ the wavelength and f the 
frequency. Therefore, vf = λf = (h/mv)(mc

2
/h) = c

2
/v, where we have applied the de 

Broglie postulate: mv = h/λ. As v < c (special relativity), vf > c. And the lesser is v the 
greater is vf. Now, vf = λf = 2πf/(2π/λ) = ω/k, where ω = 2πf is the angular frequency 
and k = 2π/λ the wave number. The argument of the wave packet or wave group is: ϕ = 
ωt - kr + θ, where t is the time, r the distance and θ the phase angle; and for the center 
of the packet, it is dϕ/dk = 0, then, (dω/dk)t - r + dθ/dk = 0, equation that corresponds 
to the movement of the center of the packet with a group velocity vg = dω/dk. From E = 

mc
2
, p = mv, where p is the momentum, and m = γm0, it is obtained that E

2
 = m0

2
c
4
 + 

p
2
c
2
, then 2EdE = 0 + 2pc

2
dp and dE/dp = pc

2
/E = mvc

2
/mc

2
 = v; but also, E = hf and p 

= h/λ (since p = mv), then, v = dE/dp = hdf/hd(1/λ) = df/d(1/λ). But, vg = dω/dk = 
2πdf/2πd(1/λ) = df/d(1/λ); therefore, v = vg. Consequently, we can assume that the 

matter behaves more like a wave than as a particle the greater is its velocity v and its 

energy, E = γm0c
2
. The phase velocity vf would decrease, since vf = c

2
/v, the frequency f 

would increase, since also is E = hf, and the wavelength λ would decrease, since vf = λf, 
approaching to the particle dimensions, to its diameter. Thus for the electron, for 

example, it would be a wave, of very small wavelength, that may give rise to 
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interference and diffraction patterns when interacts with objects with dimensions of the 

same order of magnitude. 

 

A very interesting example is its application to the Bohr atom. Due to the wave-particle 

duality, an electron can exhibit both wave and particle properties, but only one of both 

simultaneously due to the complementary postulate of Bohr. If the atomic electron 

would exhibit particle properties, this one would radiate electromagnetic energy, 

because of its acceleration, falling to the atomic nucleus. But, it is known that a closed 

string can be deformed for obtaining a stationary wave. As a stationary wave continues 

indefinitely, then there is not electromagnetic radiation. Therefore, the atomic electron 

does not radiate electromagnetic energy because exhibits stationary wave properties, 

with the condition 2πr = nλ, where r is the radius of the orbit, n = 1, 2, 3, ... (it is the 
first quantum number, called the principal quantum number) and λ the wavelength of 
the stationary wave. This one was solved by Bohr with his postulate

1
: mvr = nh/2π. If 

we apply the de Broglie postulate: mv = h/λ, we obtain the previous relation: 2πr = nλ. 
 

However, there are discrepancies with the Pauli exclusion principle
2
 and the Fermi-

Dirac statistics. The Pauli exclusion principle can be summarized saying, for example, 

that two electrons in an atom cannot share the same orbit with the same four quantum 

numbers: n (principal), l (orbital), ml (magnetic) and ms (magnetic of spin). If the three 

first quantum numbers are the same for the two electrons, then, an electron has ms = 

+1/2 and the other one ms = -1/2. However, an electron would have a total angular 

momentum projection |Lz| + |Sz| and the other one |Lz| - |Sz| (spin-orbit coupling), where 

Lz = mlh/2π and Sz = msh/2π are the angular momentum projections, orbital and intrinsic 

(or of spin), respectively. But, the electron with |Lz| + |Sz| would have a little more 

energy than the one with |Lz| - |Sz|; therefore, both electrons would be in different near 

orbits (fine structure splitting of the atom energy levels). 

 

Then, why are not there two electrons with the same four quantum numbers in the same 

orbit?. Because the electrons are fermions and they, according to the Fermi-Dirac 

statistics, have antisymmetric states, that is: |ΨΦ> = -|ΦΨ>, where Ψ and Φ are wave 

functions and the Dirac kets |Ψ>, |Φ>, |ΨΦ> and |ΦΨ> single and two electron states, 

respectively. If Φ = Ψ, then |ΨΨ> = -|ΨΨ>, |ΨΨ> + |ΨΨ> = 2 |ΨΨ> = 0, and 

|ΨΨ> = 0, therefore this state cannot exist, and two electrons with the same four 

quantum numbers cannot share the same orbit. In quantum mechanics (QM), the wave 

function is complex, not real, and |Ψ(x,y,z,t)|
2
 = ΨΨ*

, where Ψ*
 is the complex 

conjugate of Ψ, gives the probability density of finding the particle at the point (x,y,z) at 

the instant t (Born postulate). In the QM, due to the Heisenberg uncertainty principle, 

there are no trajectories or orbits. 

 

However, if we apply the wave-particle duality, we have that two electrons might stay, 

a priori, in the same orbit with the same four quantum numbers because: the two 

electrons would have the stationary waves A cos a and B cos b, respectively, where A 

and B are the amplitudes and a = 2πft - kr + θ and b = 2πft - kr + ϕ the arguments, and 

r = nλ/2π is the radius of the orbit, n being the principal quantum number. We suppose 

single waves, although it implies that v = vf = c. As the two electrons are in the same 

orbit, their energies, that is, the root mean square (rms) values of their waves, A/2
1/2
 and 

B/2
1/2
, are the same, then B = A. And the superposition of both waves would be: A cos a 

+ B cos b = A (cos a + cos b) = 2A cos((a + b)/2) cos((a - b)/2) = 2Acos((θ - ϕ)/2) 
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cos((a + b)/2). Due to the energy conservation, it would be: (2A/2
1/2
)cos((θ - ϕ)/2) = 

A/2
1/2
 + B/2

1/2
 = A/2

1/2
 + A/2

1/2
 = 2A/2

1/2
; then, cos((θ - ϕ)/2)= 1 and θ - ϕ = j2π (j = 0, 

1, 2, ...), and the two waves would be in phase forming a two-electron stationary state. 

However, this state has not been observed because the two electrons are not 

interchangeable, since |ΨΦ> = -|ΦΨ>, then, due to the Pauli exclusion principle, an 

electron would have ms = +1/2 and the other one ms = -1/2 and they would have a very 

little difference between their energies (spin-orbit coupling), occupying two very close, 

but different, orbits (fine structure splitting). Note that we have used cosine functions 

because: sin α = cos(π/2 - α) = cos a with π/2 - α = a and sin β = cos(π/2 - β) = cos b 
with π/2 - β = b. 
 

In summary, the wave-particle duality is related with the decreasing of the wavelength. 

It explains why an atomic electron does not radiate (Bohr atom). But there are 

discrepancies with the Pauli exclusion principle and the Fermi-Dirac statistics. The 

spin-orbit coupling resolves these discrepancies producing the fine structure splitting of 

the atom energy levels. 

 

 
1
 The Bohr postulate was proposed and published before by Nicholson. 

 
2
 The Pauli exclusion principle is based on the sequence of atomic electrons: 2, 8, 18, ...; 

discovered by Stoner. From this sequence Pauli deduced the expression: 2n
2
, where n is 

the principal quantum number, that gives: 2(1
2
), 2(2

2
), 2(3

2
), ...; and devised a fourth 

quantum number with only two possible values. Kronig proposed to Pauli (and also to 

others) that this fourth quantum number would be the electron spin, but his idea was 

rejected by Pauli, and Kronig does not published it. Months later, and independently, 

Uhlenbeck and Gousmith discover the electron spin and published it. 

 

 

Beiser, Arthur, Conceptos de Física Moderna, Ediciones del Castillo, Madrid, 1965. 

Original edition, Concepts of Modern Physics, McGraw-Hill, USA, 1963. 

 

Kumar, Manjit, Quántum: Einstein, Bohr y el gran debate sobre la naturaleza de la 

realidad, Kairós, Barcelona, 2011. Original edition, Quantum: Einstein, Bohr and the 

Great Debate about the Nature of Reality. 

 

Messiah, Albert, Mecánica Cuántica, tomo 1, Tecnos, Madrid, 1973. Original edition, 

Mécanique quantique, Dunod, Paris. 


