Abstract: A new concept of exponential-geometric mean is introduced and its properties are analyzed.

The concepts and properties of means of a set of numbers are well studied in calculus. In [1], a mean \(\mu \) of a set of numbers \(x_i, i=1,2,\ldots,n \) is defined as the value that satisfies the condition:

\[
\min(x_1,x_2,\ldots,x_n) \leq \mu \leq \max(x_1,x_2,\ldots,x_n).
\]

In this short note I introduce a new so-called exponential-geometric mean and give some of its properties.

Definition: A lower (upper) exponential-geometric mean \(\mu \) of two positive numbers \(a \) and \(b \) is:

\[
\mu_0 = \frac{a^b b^a}{\sqrt[7]{a^b b^a}} \quad \left(\mu_1 = \frac{a^b b^a}{\sqrt[7]{a^b b^a}} \right).
\]

We can see that the exponential-geometric mean \(\mu \) of any two positive numbers \(a \) and \(b \) conforms to the general definition of the mean. Indeed, without loss of generality, let’s assume \(a \leq b \), then:

\[
\begin{align*}
 a &\leq \frac{a^b b^a}{\sqrt[7]{a^b b^a}} \leq b \Rightarrow a^{a+b} \leq a^b b^a \leq b^{a+b} \Rightarrow \\
 a &\leq b
\end{align*}
\]

Note that the other two combinations \(a^b b^a \) and \(a^b b^a \) may not suit the general definition of the mean.

Examples: The lower and upper exponential-geometric means of numbers

1) \(a = 2 \) and \(b = 3 \) are \(\mu = \frac{2^{3.2}}{3} \approx 2.35 \) and \(\mu = \frac{3^{2.3}}{2} \approx 2.55 \).

2) \(a = 2 \) and \(b = 2.5 \) are \(\mu = \frac{2^{2.5}}{2.5} \approx 2.21 \) and \(\mu = \frac{2.5^{2}}{2.5} \approx 2.26 \).

3) \(a = 0.5 \) and \(b = 0.7 \) are \(\mu = \sqrt[26]{0.5^{0.7}} \cdot 0.7^{0.5} \approx 0.58 \) and \(\mu = \sqrt[5.3]{0.5^{0.7}} \cdot 0.7^{0.5} \approx 0.61 \).

It is well known the following relationships between harmonic, geometric and arithmetic means:

\[
\frac{2ab}{a+b} \leq \sqrt{ab} \leq \frac{a+b}{2}.
\]

Lemma 1: For the lower and upper exponential-geometric means of two positive numbers \(a \) and \(b \) the following holds true:

\[
\frac{a^b b^a}{\sqrt[7]{a^b b^a}} \leq \frac{2ab}{a+b} \leq \frac{\sqrt{ab}}{\sqrt[7]{a^b b^a}} \leq \frac{a^b b^a}{\sqrt[7]{a^b b^a}}.
\]

Proof: It is sufficient to prove the leftmost inequality, since it is equivalent with the rightmost shown below.

\[
\frac{a^b b^a}{\sqrt[7]{a^b b^a}} \leq \frac{2ab}{a+b} \Rightarrow \frac{a^b b^a}{a+b} \leq \frac{2ab}{a+b} \Rightarrow \frac{a+b}{2} \leq \frac{a^b b^a}{a+b}.
\]

Now, without loss of generality, let us denote \(b = ac, c \geq 1 \). Then,

\[
\frac{a + ac}{2} \leq \frac{a^c}{a^c + ac} \Rightarrow \frac{a(1+c)}{2} \leq \frac{a^c}{1+c} \Rightarrow 1 \leq \frac{2c^c}{1+c}.
\]
For the function \(y(x) = \frac{2x^x}{1+x} \), \(y(1) = 1 \) and it is monotonously increasing at \(x \geq 1 \). Its limit for \(x \to +\infty \) is \(\lim_{x \to +\infty} \frac{2x^x}{1+x} = 2 \). □

Lemma 2: For the lower exponential-geometric mean (LEGM), harmonic mean (HM), geometric mean (GM), arithmetic mean (AM) and upper exponential-geometric mean (UEGM) the following relations hold true:

1) \(\text{LEGM} \cdot \text{UEGM} = \text{AM} \cdot \text{HM} = \text{GM}^2 \);
2) \(\text{LEGM} \cdot \text{AM} \leq \text{HM} \cdot \text{UEGM} \);
3) \(\text{UEGM} - \text{AM} \geq \text{HM} - \text{LEGM} \);
4) \(\text{UEGM} - \text{LEGM} \geq \text{AM} - \text{HM} \);
5) \(\text{LEGM} + \text{UEGM} \geq \text{GM} \).

Proof: The 1st is rather straightforward:

\[
\text{LEGM} \cdot \text{UEGM} = \frac{a+b}{e} \cdot \frac{a+b}{e} = ab = \frac{2ab}{a+b} = \text{AM} \cdot \text{HM} = \left(\sqrt{ab} \right)^2 = \text{GM}^2.
\]

The 2nd is obvious since \(\text{LEGM} \leq \text{HM} \) and \(\text{AM} \leq \text{UEGM} \).

The 3rd and 4th can be proved by the method used in Lemma 1.

The 5th is also obvious. If we take into account the 1st relation, then

\[
\text{LEGM} + \text{UEGM} \geq \sqrt{\text{LEGM} \cdot \text{UEGM}}.
\]

The exponential-geometric means and their properties allow to estimate cumbersome and inconvenient expressions (and their limits). For example:

1) \(\left(\sin^2 \alpha \right)^{\sin^2 \alpha} \cdot \left(\cos^2 \alpha \right)^{\cos^2 \alpha} \geq \frac{1}{2} \) for \(\alpha \neq \frac{\pi k}{2} \), \(k \in \mathbb{Z} \).

2) \(\tan x + \cot x \sqrt{\left(\tan x \right)^{\cot x} \cdot \left(\cot x \right)^{\tan x}} \leq 1 \) for \(x \in \left\{ \pi k, k \in \mathbb{Z} ; \frac{\pi}{2} \pm \pi k, k \in \mathbb{Z} \right\} \)

(\(\tan x \)^{\cot x} \cdot (\cot x)^{\tan x} \leq 1 \) for \(x \in \left\{ \pi k, k \in \mathbb{Z} ; \frac{\pi}{2} \pm \pi k, k \in \mathbb{Z} \right\} \).

3) \(x^{x+1} \cdot 1^x \geq \frac{x+1}{2} \) for \(x > 0 \) \(\Rightarrow x^{x+1} \geq \frac{x+1}{2} \) for \(x > 0 \).

4) \(x^{e^x} \cdot 1^{e^x} \leq \frac{2e^x}{e^x+1} \) for \(x > 0 \) \(\Rightarrow \exp \left(\frac{x}{e^x+1} \right) \leq \frac{2e^x}{e^x+1} \) for \(x > 0 \).

5) \(x^{x^a} \cdot 1^{x^a} \leq \frac{x^a+1}{2} \) for \(x, a > 0 \) \(\Rightarrow x^{a} \left(\frac{a}{x^a+1} \right) \leq \frac{x^a+1}{2} \) for \(x, a > 0 \).

Reference

About author: Farrukh Ataev R., Lecturer at Westminster International University in Tashkent, Uzbekistan, Tashkent, Istikbol Street 12.

Email: farruhota@gmail.com.