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Abstract

Violating the law of energy conservation, Zanaboni Theorem is invalid
and Zanaboni’s proof is wrong. Zanaboni’s mistake of “ proof ” is ana-
lyzed. Energy Theorem for Zanaboni Problem is suggested and proved.
Equations and conditions are established in this paper for Zanaboni Prob-
lem, which are consistent with , equivalent or identical to each other. Zan-
aboni Theorem is, for its invalidity , not a mathematical formulation or
proof of Saint-Venant’s Principle.
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1 Introduction

Saint-Venant’s Principle in elasticity has its over 100 year’s history [1, 2]. Boussi-
nesq and Love announced general statements of Saint-Venant’s Principe [3, 4].
The early and important researches contributed to the principle are the articles
[3-9]. Zanaboni [7] “ proved ” a theorem trying to concern Saint-Venant’s Prin-
ciple in terms of work and energy, but, in the present paper, we will prove that
Zanaboni Theorem is false and its proof by Zanaboni is wrong. Zanaboni Theo-
rem is seriously concerned because of its profound influence on the development
of Saint-Venant’s Principle.

2 Zanaboni Theorem

In 1937, Zanaboni published a theorem dealing with energy decay of bodies of
general shape [7]. The result played an influential role in the history of research
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on Saint-Venant’s Principle, restoring confidence in formulating the principle
[10] .

The theorem is described as follows [7, 11]:
Let an elastic body of general shape be loaded in a small sphere B by P ,

an arbitrary system of self-equilibrated forces, otherwise the body is free. Let
S′ and S′′ be two arbitrary nonintersecting cross sections outside of B and S′′

be farther away from B than S′ . Suppose that the body is cut into two parts
at S′ . The system of surface tractions acting on the section S′ is R′, and the
total strain energy that would be induced by R′ in the two parts is denoted by
UR′ . Similarly, we use R′′ and UR′′ for the case of the section S′′ which would
also imaginarily cut the body into two pieces (See Fig.1).

Then, according to Zanaboni,

0 < UR′′ < UR′ . (1)

3 Zanaboni Theorem is Invalid

3.1 Zanaboni’s Proof

The proof of Zanaboni Theorem is (See [7] and pp 300-303 of [11]) :
Assume that the stresses in the enlarged body C1 + C2 are constructed by

the following stages . First, C1 is loaded by P . Second, each of the separate
surfaces S1 and S2 is loaded by a system of surface traction R. Suppose that R
is distributed in such a way that the deformed surfaces S1 and S2 fit each other
precisely, so that displacements and stresses are continuous across the joint of
S1 and S2. Then C1 and C2 are brought together and joined with S as an
interface. The effect is the same if C1 and C2 were linked in the unloaded state
and then the combined body C1 + C2 is loaded by P .(See Fig.2)

Thus
U1+2 = U1 + UR1 + UR2 + UPR, (2)

where U1+2 is the strain energy stored in C1 + C2 , U1 is the work done by P
in the first stage, UR2 is the work done by R on C2 in the second stage, UR1 is
the work done by R on C1 if C1 were loaded by R alone , UPR is the work done
by P on C1 due to the deformation caused by R , in the second stage.
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Now the minimum complementary energy theorem is used. All the actual
forces R are considered as varied by the ratio 1 : (1+ε) , then the work UR1 and
UR2 will be varied to (1+ ε)2UR1 and (1+ ε)2UR2 respectively because the load
and the deformation will be varied by a factor (1+ ε) respectively. UPR will be
varied to (1 + ε)UPR because the load P is not varied and the deformation is
varied by a factor (1 + ε) . Hence, U1+2 will be changed to

U ′
1+2 = U1 + (1 + ε)2(UR1 + UR2) + (1 + ε)UPR. (3)

The virtual increment of U1+2 is

∆U1+2 = ε(2UR1 + 2UR2 + UPR) + ε2(UR1 + UR2). (4)

For U1+2 to be a minimum, it is required from Eq.(4) that

2UR1 + 2UR2 + UPR = 0. (5)

Substituting Eq.(5) into Eq.(2), he obtains

U1+2 = U1 − (UR1 + UR2). (6)

By repeated use of Eq.(6) for U1+(2+3) and U(1+2)+3 (See Fig.1), then

U1+(2+3) = U1 − (UR′1 + UR′(2+3)), (7)

U(1+2)+3 = U1+2 − (UR′′(1+2) + UR′′3)

= U1 − (UR1 + UR2)− (UR′′(1+2) + UR′′3). (8)

Equating Eq.(7) with Eq.(8) he obtains

UR′1 + UR′(2+3) = UR1 + UR2 + UR′′(1+2) + UR′′3. (9)

It is from Eq.(9) that

UR′1 + UR′(2+3) > UR′′(1+2) + UR′′3 (10)

because UR1 and UR2 are essentially positive quantities . Equation (10) is Eq.(1)
, on writing UR′ for UR′1 + UR′(2+3), etc. And Eq.(1) is “ proved ”.
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3.2 Confusion in Zanaboni’s Proof

In Zanaboni’s proof (See [7] , pp 300-303 of [11]), Eq.(8) is deduced by confusing.
The first is the confusion of the construction (1+2) in Fig.1 , where its “ far end
” is loaded ( by R′′ ) , with the construction C1 + C2 in Fig.2, where its “ far
end ” is free. The second confusion is that of work W and energy U , especially
W1+2 and U1+2. In fact, Eq.(2) should be revised to be

U1+2 = W1 +WR1 +WR2 +WPR (11)

and Eq.(6) should be corrected to

U1+2 = W1 − (WR1 +WR2). (12)

And then the use of Eq.(12) should result in (See Fig.1)

U1+(2+3) = W1 − (WR′1 +WR′(2+3)), (13)

U(1+2)+3 = W1+2 − (WR′′(1+2) +WR′′3). (14)

Thus Eq.(8) , then Zanaboni Theorem, which would be equivalent to

0 < WR′′ < WR′ , (15)

(See Eq.(1)) , is not deducible from Eq.(12), Eq.(13) and Eq.(14) because of

W1+2 ̸= U1+2, (16)

as is reviewed by Zhao [12].

4 Energy Theorem for Zanaboni Problem

4.1 Understanding UR′ and UR′′

From Eq. (2) we know that UR1 is the work consisting of the work done by
R on the displacement induced by R itself and the work done by R on the
displacement induced by P , regardless of the claim in the proof that UR1 is the
work done by R on C1 if C1 were loaded by R alone . Therefore, UR1 + UR2 is
the total work done by R on the displacement of the section S, then UR′ and
UR′′ are the total work done by R′ and R′′ on the displacement of sections S′

and S′′ respectively.

4.2 Energy Theorem for Zanaboni Problem

If energy decay has to be discussed for Zanaboni Problem, we have, from the
understanding of UR′ and UR′′ in the last subsection, that

UR′′ = UR′ = 0. (17)

where UR′ and UR′′ are the “ total ” strain energies induced respectively in the
related parts. We will prove Eq.(17) in the following subsections.
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4.3 Proof of Energy Theorem, Equation of Continuity of
Stress and Displacement, First Disproof of Zanaboni
Theorem

We consider the section S, which is outside B and cuts the body into two pieces
C1 and C2 and where R1 and R2 are the tractions on the opposite sides of the
section respectively (See Fig.2 ).

We suppose that Cartesian coordinates are established for defining stresses
and displacements of the body. Then continuity, across the section, of stresses
and displacements results in Eq. (17). In fact, for linear elasticity, the work
done by the traction R1 on the right side of the section, S1, is

WR1 =
1

2

∫
S

∫
(

3∑
i=1

3∑
j=1

τijnjui) ds (18)

where τij are the stress components at the face S1, nj are the direction cosines
of the normal to the right face S1 and ui are the displacement components of
the face S1.

The work done by the traction R2 on the left side of the section, S2, is

WR2 =
1

2

∫
S

∫
[

3∑
i=1

3∑
j

τij(−nj)ui] ds (19)

where τij are the stress components at the face S2 because of continuity of stress,
(−nj) are the direction cosines of the normal to the left face S2 and ui are the
displacement components of the face S2 because of continuity of displacement.
From Eq.(18) and Eq.(19) we have the total work done by R on the section as

WR = WR1 +WR2 = 0. (20)

Equation (20) is defined to be the equation of continuity of stress and dis-
placement for Zanaboni’s problem.

Using Eq.(20) repeatedly for R′ and R′′ ( or S′ and S′′ ) in Fig.1 , it is
obtained that

WR′′ = WR′ = 0. (21)

The total work WR′′ and WR′ are equal to the total induced strain energy
UR′′ and UR′ respectively , and so Eq.(17) is deduced from Eq.(21), Zanaboni
Theorem Eq.(1) is disproved.

4.4 Another Proof of Energy Theorem, Equation of En-
ergy Conservation, Second Disproof of Zanaboni The-
orem

The energy of the body without sectioning (See Fig.2) is

U = WP (22)
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where WP is the work done by the load P .
The energy of the imaginarily-sectioned body (See Fig.2) is

U(C1+C2) = WP +WR1 +WR2 (23)

where WP is the work done by the load P , WR1 and WR2 are the work done
by R1 and R2 respectively. It is obtained from Eq.(22) and Eq.(23) that

WR = WR1 +WR2 = 0 (24)

because
U = U(C1+C2). (25)

Equation (24) is defined to be the equation of energy conservation for Zan-
aboni’s problem because of the argument put forward in the next subsection.

Using Eq.(24) repeatedly for R′ and R′′ ( or S′ and S′′ ) in Fig.1 , Eq.(21)
and then Eq.(17)) are proved, Zanaboni Theorem Eq.(1) is disproved again.

4.5 Absurdity of Zanaboni Theorem Violating the Law of
Conservation of Energy

If Zanaboni Theorem Eq.(1) were true , it would be required that

WR = WR1 +WR2 > 0. (26)

Then it would be deduced from Eq.(22) , Eq.(23) and Eq.(26) that

U(C1+C2) − U = WR1 +WR2 > 0, (27)

which means energy growth of the body by imaginary sectioning. Then one
could accumulate strain energy simply by increasing the “imaginary” cuts sec-
tioning the elastic body. That violates the law of energy conservation because
energy would be created from nothing only by imagination, as is reviewed by
Zhao [12].

5 Variational Theorems for Zanaboni’s Prob-
lem, Conditions of Joining

5.1 Variational Theorem of Potential Energy , Condition
of Joining, Third Disproof of Zanaboni Theorem

From the construction of the body C1 +C2 in Section 3.1 ( See Fig.2) we know
that S1 and S2 are the parts of the boundaries of C1 and C2 for joining, or
the opposite sides of the interface S inside the body C1 + C2 . In the proof of
Zanaboni (See [7] and pp 300-303 of [11]), he treats S1 and S2 in the latter way
because stress-strain relation which is established inside elastic bodies has been
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used for the argument , that is, when R is considered as varied by the ratio
1 : (1+ε), the deformation is considered as varied by a factor (1+ε) . However,
to establish the variational theorem of potential energy for Zanaboni’s problem
, we deal with the structure of the body in the former way, that is :

Considering S1 and S2 are the joint boundaries of C1 and C2 , the potential
energy or the strain energy in the combined body is

Up
(C1+C2)

= WP +WR1 +WR2 , (28)

where Up
(C1+C2)

is the strain energy stored in C1 + C2 ; WP is the work done

by P ; WR1 and WR2 are the work done by R1 and R2 respectively.
Suppose that the displacements on S1 and S2 are varied by the ratio 1 : (1+ε)

respectively and the loads R1 and R2 remain unchanged, then it is easy to find,
for linear elasticity, from Eq.(28), that

δUp
(C1+C2)

= ε(WR1 +WR2). (29)

And the condition of stationarity of Up
(C1+C2)

, according to Eq.(29), is

WR = WR1 +WR2 = 0. (30)

Therefore, the variational theorem of potential energy for Zanaboni’s prob-
lem is:

The potential energy Up
(C1+C2)

stored in the combined body C1 + C2 is

stationary as the total work WR done by the load R on the joint surface S
equals zero.

Equation (30) is the condition of joining C1 and C2 to construct the body
C1+C2 for Zanaboni’s problem, which leads to Eq.(17) because WR is equal to
UR.

5.2 Variational Theorem of Complementary Energy , I-
dentical Condition of Joining, Fourth Disproof of Zan-
aboni Theorem

Considering S1 and S2 are the joint boundaries of C1 and C2 , the complemen-
tary energy in the combined body , which is equal to the potential energy in
the combined body for linear elasticity, is

U c
(C1+C2)

= WP +WR1
+WR2

, (31)

where U c
(C1+C2)

is the complementary energy in C1 +C2 ; WP is the work done
by P ; WR1 and WR2 are the work done by R1 and R2 respectively.

Suppose that R1 and R2, the loads on S1 and S2, are varied by the ratio
1 : (1+ε) respectively and the displacements on S1 and S2 remain fixed without
variation, then it is easy to find, from Eq.(31), that

δU c
(C1+C2)

= ε(WR1 +WR2). (32)
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And the condition of stationarity of U c
(C1+C2)

, according to Eq.(32), is

WR = WR1 +WR2 = 0. (33)

Therefore, the variational theorem of complementary energy for Zanaboni’s
problem is:

The complementary energy U c
(C1+C2)

in the combined body C1 + C2 is sta-
tionary as the total work WR done by the load R on the joint surface S equals
zero.

Equation (33) is the condition of joining identical to Eq.(30) for Zanaboni’s
problem, which leads to Eq.(17) because WR is equal to UR.

We emphasize the consistency, equivalence or identity of the equation of
continuity of stress and displacement , Eq.(20), the equation of energy conser-
vation, Eq.(24) and the condition of joining, Eq.(30) or Eq.(33), and each of
them results in Eq.(17), instead of Eq.(1).

6 Zanaboni Theorem and Saint-Venant’s Prin-
ciple

Boussinesq, Mises and Sternberg try to express Saint-Venant’s Principle in terms
of stress or dilatation [3,5-6] , but Zanaboni Theorem tries to express Saint-
Venant’s Principle mathematically in terms of work and energy [7, 11]. This “
pioneer ” work has profound influence on study of the principle.

Fung translates and includes Zanaboni Theorem and its proof in his “ text-
book ” as “ one possible way to formulate Saint-Venant’s principle with math-
ematical precision ”, declaring “ the principle is proved ”. [11]

Toupin, however, does not evaluate Zanaboni Theorem with high opinion.
He remarks at first that

“ While the theorems of Boussinesq, von Mises , Sternberg and Zanaboni
have independent interest, I have been unable to perceive an easy relationship
between these theorems and the Saint-Venant Principle ” [13] , then comments
in another way in Ref.[10]:

“ In 1937, O. Zanaboni proved an important theorem for bodies of general
shape which begins to restore confidence in Saint-Venant’s and our own intuition
about the qualitative behavior of stress fields. ” He continues his remark by
saying that

“ It is possible to sharpen Zanaboni’s qualitative result and to derive a
quantitative estimate for the rate at which the elastic energy diminishes with
distance from the loaded part of the surface of an elastic body.” Toupin’s results
are cited and explained afterwards.

It seems that the establishment of the well-known Toupin Theorem of energy
decay should be the achievement of sharpening Zanaboni’s “ qualitative ” result.
[10, 13] However, Horgan and Knowles review Zanaboni’s work, saying
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“ The notion of examining the distribution of strain energy in an elastic body
apparently first appeared in papers concerned with Saint-Venant’s principle by
Zanaboni (1937a,b,c); Zanaboni did not, however, estimate the rate of decay of
energy away from the loaded portion of the boundary , and his results do not
appear to be directly related to those of Toupin (1965a) or Knowles (1966). ”
[14]

It seems that Horgan and Knowles do not qualify mathematically Zanaboni’s
results for formulation of Saint-Venant’s Principle. Zanaboni’s results are not
valued highly. [14, 15]

Considering its influence on the history of Saint-Venant’s Principle, further
academic survey of Zanaboni’s results is inevitable. Our result of mathemat-
ical analysis in this paper tells that Zanaboni Theorem is invalid, and so the
argument, put forward by Fung [11], that Zanaboni Theorem is a mathematical
formulation or proof of Saint-Venant’s Principle is unreasonable.

7 Conclusion

A. Zanaboni Theorem is not true, violating the law of energy conservation. Four
disproofs of the theorem are given in this paper.

B. Zanaboni’s “ proof ” of Zanaboni Theorem is wrong for its confusion of
work and energy.

C. Energy Theorem for Zanaboni Problem is suggested and proved.
D. The equations and conditions established in this paper for disproof of

Zanaboni Theorem, the equation of continuity of stress and displacement, the
equation of energy conservation and the condition of joining, are consistent with
, equivalent or identical to each other.

E. Zanaboni Theorem is, for its invalidity, not a mathematical formulation
or proof of Saint-Venant’s Principle.
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