
On the Fundamental Nature of the
Quantum Mechanical Probability Function

G. G. NYAMBUYA∗

National University of Science & Technology, Faculty of Applied Sciences,

School of Applied Physics, P. O. Box939, Ascot, Bulawayo,

Republic of Zimbabwe.

Abstract

The probability of occurrence of an event or that of the existence of a physical state has no relative
existence in the sense that motion is strongly believed to only exist in the relative sense. If the probability
of occurrence of an event or that of the existence of a physical state is known by one observer, this
probability must be measured to have the same numerical value by any other observer anywhere in the
Universe. If we accept this bare fact, then, the probabilityfunction can only be a scalar. Consequently,
from this fact alone, we argue that the quantum mechanical wavefunction can not be a scalar function as is
assumed for the Schrödinger and the Klein-Gordon wavefunctions. This has fundamental implications on
the nature of the wavefunction insofar as translations fromone reference system to the other is concerned.
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“My work always tried to unite the Truth with the Beautiful,
but when I had to choose one or the other,

I usually chose the Beautiful.”

– Hermann Klaus Hugo Weyl (1885− 1955)

1 Introduction

The probability of occurrence of an event or that of the existence of a physical state has no relative existence
in the sense that motion is strongly believed to only exist inthe relative sense where observers will in
general no agree on the numerical value of the speed of an object. For example, if I have6 similar balls
that differ only in their color such that2 are white and4 are black and these are placed in a closed container
such that one ball is drawn at random, then, the probability of picking a white ball first is distinctly1/3. It
really does not matter the relative state of motion between me and any observer anywhere in the Universe –
logic and physical reality dictates and compels that, they too will measure the same probability for picking
a white ball first as1/3.

Generalizing the above thesis, it follows that if the probability of occurrence of an event or that of the
existence of a physical state is known by one observer, this probability must be measured to have the same
numerical value by any other observer anywhere in the Universe. If we accept this bare fact, then, any
probability function can only be a scalar because only scalars have this property that what one observer
measures at any given time and place, every other observer must measure and find the same numerical value
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for that quantity at the corresponding time and place for that observer. Consequently, from this fact alone,
it is crystal clear that the quantum mechanical wavefunction can not be a scalar function as is assumed for
the Schrödinger and the Klein-Gordon wavefunctions. Thishas fundamental implications on the nature of
the wavefunction insofar as translations from one reference system to the other is concerned.

The synopsis of this reading is as follows: in the subsequentsection, we present an unequivocal argu-
ment that clearly demonstrates that no quantum mechanical wavefunction can ever be a pure scalar. In the
section that follows, we generalize the properties of the quantum probability function to include dynamic
probabilities. In section(4) we show that the required transformation properties of the quantum mechani-
cal wavefunction naturally complements (or is demanded by)the proposedUnified Field Theoryproposed
in the reading Nyambuya (2010). In section(5), we give a general discussion and the conclusion drawn
thereof.

2 Scalar Quantum Mechanical Probability Function

If Ψ is the wavefunction of a particle, then, the probability that this particle will be found in the regionr
andr0 is:

P (r, r0) =

∫

r

r0

Ψ†Ψdx3dx2dx1. (1)

If we have two systems of reference (traditionally denoted the primed and the unprimed) that are in a state
of relative motion, then, for the primed system of reference, we will have:

P ′(r′, r′
0) =

∫

r
′

r
′

0

Ψ′†Ψ′dx′3dx′2dx′1. (2)

If Ψ is a scalar, thenΨ′ = Ψ. For the differentialsdxj , they transform as:

dxj
′

=
∂xj

′

∂xj
dxj , (3)

so that:

P ′(r′, r′
0) =

∫ t

t0

∫

r

r0

Ψ†Ψ

(

∂x′2

∂x2
∂x′2

∂x2
∂x′1

∂x1

)

dx3dx2dx1dx0 6= P (r, r0). (4)

If P (r, r0) is to be a scalar is argued, we must haveP ′(r′, r′
0) = P (r, r0). If we are to haveP ′(r′, r′

0) =
P (r, r0) as logic and physical reality compels, thenΨ′ = SΨ, such that:

S†S

(

∂x′2

∂x2
∂x′2

∂x2
∂x′1

∂x1

)

= λ

(

∂x′2

∂x2
∂x′2

∂x2
∂x′1

∂x1

)

I = 1, (5)

whereS†S = λI. In this way, we achieve the desired resultP ′(r′, r′
0) = P (r, r0). Clearly, the probability

amplitudeΨ, nor the probability density functionρ = Ψ†Ψ, can not be a scalar.

3 Dynamic Quantum Mechanical Probability Function

According to Heisenberg’s quantum mechanical energy-timeuncertainty principle∆E∆t = ~ (where
∆E and∆t are the energy and time uncertainity respectively and~ is Planck’s normalised constant), it is
impossible to make a measurement in a zero interval time. TheprobabilityP (r, r0) and given in (1) is the
probability of occurrence of a quantum mechanical event at agiven instant in timei.e. in zero time interval.
As just stated, this is not permitted by Heisenberg’s uncertainty principle. All measurements must be made
in a finite time interval. To take this into account, the probability function must in-cooperate in it, this finite
time interval in which this event can or will occur, that is, we must have:
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P ′(r, r0; t, t0) =

∫ t

t0

∫

r

r0

Ψ†Ψdx3dx2dx1dx0. (6)

In most if not all cases considered in QM, the probability density functionΨ†Ψ is a static function because
Ψ ∝ eiEt/~. Because of this, the time dependence of the measurement process is usually ignored com-
pletely. For the sake of completeness and thoroughness in our effort to stay within the permissible physical
bounds, the correction made in (6) is just and valid.

Now, under a translation of the reference system, we must haveP ′(r′, r′
0; t

′, t′0) = P (r, r0; t, t0), if
the probability function is to be a scalar as argued. As before, the wavefunction will transform asΨ′ = SΨ
and the coordinates as:

dxµ
′

=
∂xµ

′

∂xµ
dxµ. (7)

Again,S is such thatS†S = λI. ForP ′(r′, r′
0; t

′, t′0) = P (r, r0; t, t0), we must have:

S†S

(

∂x′3

∂x3
∂x′2

∂x2
∂x′1

∂x1
∂x′0

∂x0

)

= λ

(

∂x′3

∂x3
∂x′2

∂x2
∂x′1

∂x1
∂x′0

∂x0

)

= 1. (8)

In this way, the dynamic probability function is a scalar function as required.

4 Link to the Proposed Unified Field Theory

What really motivated us to take a closer look into the transformational nature of the quantum mechanical
is theUnified Field Theory(UFT) presented in Nyambuya (2010). It is important to note that the thesis put
forward in §(1), (2) & (3) is independent of the what we shall say in the present sectionabout the work
Nyambuya (2010). This work (Nyambuya2010) is actually what got us thinking on the nature of the QM
wavefunction.

For the interested reader, we shall try and clearly elaborate on this effort (Nyambuya2010) so as to give
a clear perspective of where we are coming and where we are going with all this. With all having been said
and done – at the end of it all; the proposed UFT (Nyambuya2010) is actually an attempt at improving on
Weyl (1918, 1927a,7)’s failed unified theory of gravitation and electricity.In a nutshell, what Weyl (1918)
did was to supplement the usual metric of spacetimegµν with a scalar functione−2φ, so that the metric
usual metric of Riemann spacetimegµν is transformed to a new metriĉgµν , that is:

ĝµν = e−2φgµν , (9)

so that the corresponding line element of the emergent spacetime isdŝ2 = e−2φgµνdx
µdxν . With such a

line element, Weyl obtained that the new affine connectionΓ̂α
µν belonging to this kind of spacetime is such

that:

Γ̂α
µν = −Γα

µν +Wα
µν , (10)

whereWα
µν is the Weyl tensor andΓα

µν is the usual Christophel symbol of Riemann geometry. Weyl’s
geometry tends to Riemann geometry asWα

µν −→ 0. To try and find a link between electricity and
gravitation, Weyl carefully choose the functionφ so thatφ = Aµx

µ whereAµ is some four vector. If
φ = Aµx

µ, and just as in pure Riemann geometry, the covariant derivative of the metriĉgµν is upheld,i.e.
ĝµν;α = 0, then:

Wα
µν = δαµAν + δανAµ − gµνg

αλAλ. (11)

What deeply intrigued Weyl and many others (including ourself) that came to admire the theory, is the
‘seemingly divine and heaven sent’ fact that the Weyl connection̂Γα

µν , is invariant under the following
transformation:
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gµν 7−→ eχgµν ,
Aµ 7−→ Aµ + ∂µχ,

(12)

whereχ = χ(x) is an arbitrary scalar function. If̂Γα
µν is invarianti.e. δΓ̂α

µν ≡ 0, the curvature tensor

R̂α
µλν is also invarianti.e. δR̂α

µλν ≡ 0. Given that Weyl knew very well that Maxwellian electrodynamics
is described by a four vector such that the entire Maxwellianelectrodynamics is invariant under the trans-
formation (12 b) – without wasting much time, Weyl seized the golden momentand identifiedAµ with
the Maxwellian four vector potential of electrodynamics. At this point, one can not help but endlessly and
deeply admire Weyl’s brilliantly convinced theory, and on the other hand, one can only be irretrievably and
deeply sad to know that this theory, despite its esoteric grandeur and exquisite beauty, it does not have any
correspondence with physical experience as we know it.

From a ‘safe distance’, the great Albert Einstein(1879 − 1955) was the first to publicly exhibit his
passionatealbeit backhanded admiration of Weyl’s theory, he said of it:

“. . . apart from the agreement with reality,
it is at any rate a grandiose achievement of the mind . . .

a first class genius.”

(Abraham Pais2005, Subtle is the Lord, p. 341)

With equal passion, he made the one all-enduring ‘aerial bombardment’ to it, a bombardment from which
Weyl’s theory would never recover to this day. That is, the agile Einstein was quick and to point out that
in Weyl’s geometry, the frequency of the spectral lines of atomic clocks from different portions of the
distant heavenly spaces would depend on the location and pre-histories of the atoms. This is in fragment
disagreement with experience. The spectral lines are well-defined and sharp; they very strongly appear to
be independent of an atom’s pre-history. Atomic clocks define units of time, and experience shows they are
integrally transported from one portion of the heavens to the other. So, with this criticism alone, Einstein
gave Weyl’s theory a stillbirth with his backhanded compliant. Weyl’s brilliant and beautiful theory was
hopelessly thwarted and, to no avail, he made last ditch effort to save his theory in latter year (Weyl
1927a,7). Einstein’s criticism lay deep in the nimbus of the foundation stone of Weyl’s theory, which is
that the length of a vector varied from one point of spacetimeto another. In wrapping-up his criticism, he
[Einstein] said:

“... I do not believe that his theory will hold its ground in relation to reality.”

(Einstein1952, Sidelights of Relativity, p. 23)

Much for the great Hermann Weyl and hisall-brilliant, beautiful but ‘failed’ theory. Be that it may, the
theory presented in Nyambuya (2010) is a series of radical, modest yet subtly ambitious improvements on
Weyl (1918)’s theory. The first and most important of all the improvements is that the role of the conformal
objectφ added by Weyl now (in Nyambuya2010) takes a new role. It is now required of it that the Weyl
affine connectionWα

µν must be constrained such that, at the end of the day when all issaid and done,̂Γα
µν

is a tensor. In Weyl (1918)’s theory,Γ̂α
µν transforms much the way as the three Christophel symbolΓα

µν

which transforms as:

Γα′

µ′ν′ =
∂xα

′

∂xα
∂xµ

∂xµ′

∂xν

∂xν′
Γα
µν +

∂xα
′

∂xα
∂2xα

∂xµ′∂xν′
. (13)

If Γ̂α
µν is to be a tensor, thenWα

µν must transform as:

Wα′

µ′ν′ =
∂xα

′

∂xα
∂xµ

∂xµ′

∂xν

∂xν′
Wα

µν +
∂xα

′

∂xα
∂2xα

∂xµ′∂xν′
. (14)

If Wα
µν is to transform as suggested above, then, the Weyl’s four vector Aµ must seize to be a vector, it

must transform as:
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Aµ′ =
∂xµ

∂xµ′
Aµ +

∂2xα

∂xµ∂xα′
. (15)

In Weyl’s conformal connection (9), if we setρ = Ψ†Ψ = e2φ, thenĝµν = ρgµν , so that:

Aµ =
1

ρ

∂ρ

∂xµ
. (16)

Now, if ρ transforms asρ′ = λρ, then:

Aµ′ =
∂xµ

∂xµ′
Aµ +

1

λ

∂λ

∂xµ′
. (17)

It is not difficult to see that ifλ is defined as it is defined in (8), then the objectAµ clearly transforms as
desired, that is, it transforms as required in (15), thus leading us naturally to our desired tensorial affine
connection̂Γα

µν .
In Nyambuya (2010), the objectρ has been identified with the quantum mechanical probabilitydensity

function. To be more specific, it has been identified with the Dirac probability density functionρ = ψ†ψ
whereψ is the Dirac four component. What was not clear at the time of writing down this theory is
that the transformation properties required of this objectwould lead to the quantum probability function
[P (r, r0; t, t0) =

∫ t

t0

∫

r

r0

ψ†ψdx3dx2dx1dx0] having its required scalar properties as argued in§(1), (2)
and(3). The fact that this is so – in our modest view, this points to the ideas presented in Nyambuya (2010)
as containing in them an element of truth in them.

5 Discussion and Conclusion

We have argued here that the QM wavefunction can not be a scalar as we have long assumed. So doing
(i.e. assumingΨ to be a scalar) leads to a probability function that has not the desired scalar properties for
a probability function, which is that it must be a scalar. Simple as the arguments presented herein may be,
they have profound implications on our foremost understanding of the QM. The main result of this rather
brief study is thatΨ can not be a scalar.

5.1 Conclusion

Assuming the correctness or the plausibility of the ideas presented herein, we hereby make the following
conclusions:

1. If the quantum mechanical probability measure is defined as it is defined in quantum mechanics, then, it is not
possible to have scalar wavefunctions. The quantum mechanical probability measure is what must be a scalar
and not the wavefunction.

2. The required transform properties of the wavefunction for ascalar quantum mechanical probability measure is
what is naturally required to obtain tensorial connectionsin the proposed UFT presented in Nyambuya (2010).
We strongly believe that this fact certainly gives credenceto this UFT.
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