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         The authors show that the solutions of Maxwell’s equations in vacuum admit 

electromagnetic waves having oscillations not only in electromagnetic field but also in spatial 

displacement. The fact that the existence of such a spatial component of the electromagnetic 

wave has remained hidden from observations can be directly related to the gauge invariance. It 

is shown that the existence of the spatial oscillations can be attributed to a new basic field 

which appears to contribute major part of the energy of the electromagnetic wave with the 

electromagnetic field accounting for the remaining. The authors hint that the new field may be 

identified with the Higgs field.  

 

PACS numbers: 41.20jb, 42.25Bs, 03.65-w. 03.50 De 

 

1. Introduction 
 

         We know that the beauty of the Maxwell’s equations is that while they are very simple 

linear equations, all aspects of electromagnetism can be explained by them. Since we propose 

to confine ourselves to the study of the transmission of electromagnetic waves in vacuum, we 

shall study Maxwell’s equations in vacuum given by 

                                               𝑖        ∇ ∙      =    0,              𝑖𝑖        ∇ ×         =    −
𝝏𝑩

𝝏𝒕
 . 

 

                             𝑖𝑖𝑖     ∇ ∙ 𝑩     =    0 ,             𝑖𝑣       𝑐2∇ × 𝑩   =       
𝜕

𝜕𝑡
                               (1) 

 

We know for the electric field these equations have solutions in the form [1] (see Annexure) 
  

 

                                                    =  
𝒐

 𝑠𝑖𝑛(𝜔𝑡 − 𝒌. 𝒓)  . 
                                                       (2)                                        

 

Similarly, for the magnetic field, the solutions may be written as 

 

                                                  𝑩 =  𝑩𝒐 𝑠𝑖𝑛(𝜔𝑡 − 𝒌. 𝒓)  . 
                                                      (3)                                                           

 

Note that the magnetic field will always be perpendicular to the electric field and both will in 

turn be perpendicular to the direction of propagation. Another important point to be kept in 

mind is that the solutions represent not a single wave, but a wave front that has electric and 

magnetic fields as constants at any instant in the transverse direction.  

      

2.  Gauge Invariance and the Spatial Amplitude  
 

          This constancy of the electric field in the transverse direction (field in the direction of 

propagation is zero) at any instant results in its zero divergence at any point. In fact the 

electromagnetic wave has to be seen as progressing as a wave front, and not as a single wave 

progressing along a straight line. The progression of the wave may be represented by 

successive wave fronts in the direction of motion. Note that the wave front is assumed to 

extend to infinity in the transverse plane. This concept of the wave front and the energy 

contained by it cannot be understood clearly in classical terms. The picture becomes clear 

when we take up the quantum mechanical interpretation according to which the wave front is 
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constituted by the points on paths at any given instant that the wave could occupy. This means 

that although there is only one wave, its progression can only be represented by succession of 

wave fronts in time. 

          An interesting aspect of this wave propagation is that it does not alter the picture even if 

we attribute spatial oscillations to the wave along with the oscillations in the electric (also 

magnetic) field. The idea that the electromagnetic wave has oscillations not only in the 

electromagnetic field, but also in space by way of displacement along the transverse direction 

          
 

                             Fig.1. This shows the propagation of the plane wave in  

                            terms of successive wave fronts in the transverse direction. 
 

                                                               
 

may appear rather naive at first. But we shall show that such an idea is quite logical. We 

should keep in mind that the introduction of the transverse spatial oscillations will just shift the 

wave front slightly in the transverse plane which will have no effect on the electromagnetic 

aspects of the wave propagation as the wave front is assumed to have infinite spread in the 

transverse plane. If we take a wave front frozen at any instant, the electric field on it in any 

direction would remain constant. This would mean that the divergence of the electric field will 

be zero at any point on that wave front. Therefore the introduction of the spatial amplitude to 

the electromagnetic wave will still be consistent with Maxwell’s equations.  
 

          It is reasonable to assume that the spatial oscillations propagating at luminal velocities 

constitute the basic wave that transports the electromagnetic oscillations and that both 

oscillations will be either in phase or with opposite phases. To put it differently, the 

electromagnetic wave could be pictured having its electric and the magnetic oscillations riding 

on the spatial wave. If we denote the spatial amplitude by ηo, then we may represent the spatial 

wave as  
 

                                                     =   
𝒐
 sin⁡𝑖(𝜔𝑡 − 𝒌. 𝒓) .                                                  (4) 

 

Note that the introduction of the spatial wave above does not alter the situation represented by 

the solutions given in (2) and (3). The electromagnetic wave represented by (2) and (3) 

continues to represent the electric and magnetic fields in the transverse planes and their 

variation with time. In other words, the spatial wave defined by (4) is consistent with the 

Maxwell’s equations. 

          We shall now relate the spatial amplitude of the electromagnetic wave to the currently 

understood gauge invariance of Maxwell’s equations. We know that Maxwell’s equations 

possess the gauge freedom in terms of vector potential and scalar potentials which satisfy the 

relations 
 

                                 𝐴`  =     𝐴 + ∇𝜒      𝑎𝑛𝑑     `   =      −   𝜒/ 𝑡                                   (5) 

 

where χ satisfies the wave equation  
 

                                                     
𝜕2𝜒

𝜕2𝑥
  −   

1

𝑐2 
𝜕2𝜒

𝜕2𝑡
  =  0                                                           (6)                                    

     

Needless to say, (6) is the direct result of the introduction of the Lorenz gauge condition [2] 
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                                                   . 𝑨 −  
1

𝑐2 
𝜕

𝜕𝑡
  =  0         .                                                    (7)                                    

 

It can be easily shown that the values of the electric field and the magnetic field given by  

 

                                                  𝛏  =    − −
∂𝐀

∂t
     ;        𝐁  =     x𝐀                                                 (8) 

are independent of χ. In fact, till recently it was presumed that only ξ and B represent whatever 

is observable in an electromagnetic field. The vector potential A and the scalar potential  

were not considered to be observable entities. However this assumption had to be changed 

after the discovery of Bohm-Aharonov effect [3].  
 

            We know that just like χ, the spatial displacement η also follows the wave equation. If 

we now relate η to χ by the relation 
 

                                                          𝜂 =     𝐶 𝜒                                                                        (9) 

 

where C is a constant, then we need not invent a new gauge freedom to explain the invariance 

of solutions of Maxwell’s equations to the introduction of the spatial amplitude to the 

electromagnetic wave. Since “e χ” has the dimension of action, C will have the dimension of 

(LeA
-1

) where L and A stand for the dimension of length and action respectively. We shall 

now try to obtain a new interpretation for the gauge invariance. 
 

          Let us study the case in more detail. If we represent the electric field of the 

electromagnetic wave by (2), then to comply with (8), the scalar and the vector potentials may 

be expressed as 

 

                      𝑨   =   𝐴𝒐 𝑐𝑜𝑠 𝜔𝑡 − 𝒌. 𝒓          ;        =   
𝒐

 𝑐𝑜𝑠 𝜔𝑡 − 𝒌. 𝒓                             (10) 

 

Substituting (2) and (10) into (8), we obtain  

 

                                                  𝝃𝒐  =    −(𝒌
𝑜
−𝜔𝑨𝑜)                                                          (11) 

 

In order to maintain compatibility with (5), (8), (2) and (10), we may express χ as  

 

                                               𝝌  =    𝝌𝒐 𝑠𝑖𝑛(𝜔𝑡 − 𝒌. 𝒓)                                                       (12) 

 

Based on this expression for the χ-wave, we obtain the desired result that the gauge 

transformation introduced in (5) modifies only the amplitudes of A and  without altering their 

dynamical properties. This is what is expected in a gauge transformation. Now when we 

compare (12) with (4), we obtain the relation (9). The positive and negative signs on the right 

hand side of (12) mean that the oscillations of the electric field in the electromagnetic wave 

have a phase difference of either 0 or 2 with those of χ (and also η). It will be shown in a 

separate paper that these two values for the phase difference are of immense importance in 

determining nature of the electric charges of the electron and positron.    

 

3. Structure of Photon 
 

          Initially when the concept of photon was introduced by Einstein, it was treated as the 

particle aspect of the energy of the electromagnetic waves. The wave nature becomes relevant 

when we take a large group of the photons which can be studied classically. But the structure 

of photon itself has remained an enigma. The classical picture of the wave and the quantum 
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picture of the particle have remained irreconcilable. There is one more reason for this 

incompatibility. The classical picture deals with only the propagation of the wave front. The 

idea of a single wave train is not properly defined in the classical approach. This is more so 

because it is not clear what the spatial spread of a single wave is in the transverse direction 

although as a matter of convenience it is generally taken as zero. If in the photon has to be 

treated as a wave train, then it will have to be constituted by such wavelets having zero spatial 

spread in the transverse direction. But since photon is a circularly polarized system with unit 

spin, it becomes still more difficult to represent it in terms of such waves with zero spatial 

amplitude. 
 

          With the introduction of the spatial amplitude as explained in the previous section, 

attributing an internal structure to photon becomes much simpler. We know that the equation 

given in (9) along with the gauge invariance of Maxwell’s equations hides the existence of the 

spatial amplitude of the electromagnetic wave. The existence of the spatial amplitude allows us 

to treat photon as a wave train formed by helical waves. If we assume that the basic form of the 

electromagnetic wave is helical, then, it is clear that the electric vector will ride on the helical 

spatial wave, making it circularly polarized. We shall now show that the helical structure of the 

                                               
      Fig.2. This is the projection  of a circularly polarized  wave on a transverse plane. The vertical and the horizontal     

       lines stand  for two spatial  waves  having a phase  difference of  .  Here we have also shown arrows pointing 

          inward representing the electric field at these points having a phase difference of π  with spatial oscillations. 
                                                                      

 

electromagnetic wave will force ηo to possess only a certain value. We know that the helical 

nature of the electromagnetic wave may be represented by   

 

                           
𝑥

 =   
𝑜

sin 𝑡 − 𝑘𝑧   𝑎𝑛𝑑    
𝑦

  =    
𝑜

cos 𝑡 − 𝑘𝑧  .                         (13)  

 

Here we assume that the wave is progressing along the z-axis. If we take the projection of such 

a wave on to the transverse x-y plane, then it is obvious that we will obtain a circle (figure 2). 

We have to now estimate the velocity of the circular motion. The simplest case of the circular 

motion can be obtained if we assume that it is executed at the velocity of light. Any other 

velocity will involve introduction of a new attribute to the electromagnetic wave. Since the 

wave is also progressing with velocity c along z-axis, it is obvious that by the time the wave 

travels one wave length, it would have executed one full circle in the transverse directions. 

Therefore, we may conclude that the radius, R of the circle will be given by 

 

                                                       𝑅  =    /2   =   1/𝑘  .                                                   (14)   
 

          Here we have a clearer idea of the term helicity used in the case of the electromagnetic 

wave because now we have the case of the spatial amplitude of the wave spinning around an 

axis. This allows us to understand the concept of spin of the electromagnetic wave classically 

on the basis of the helical structure of the wave. Since a point on the electromagnetic wave 
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executes rotational motion in the transverse direction, we may take the magnitude of its 

angular momentum for this motion to be 

 

                                     𝑆  =    |𝒓 × 𝒑|    =    ( 2)( ℎ )    =  ħ                                     (15)                                          

 

         This picture of the wave allows only one value for the spatial amplitude which is λ/2π. 

This in turn means that χo can take only the value λ/(2πC). Note that only χo is taking a 

constant value. The phase of χ can take the entire range of values from 0 to 2π. On a deeper 

study of equations (9) to (12) we find that the spatial wave is the most fundamental wave. We 

may assume that the potentials A and  given by (10) are waves riding on this fundamental 

spatial wave with a phase difference of π. The ξ-wave given by (2) also can be taken as riding 

on the spatial wave with a phase difference of 0 or π.  

          On the basis of the above discussion one may be tempted to presume that the gauge 

freedom allowed to the amplitude of the spatial wave is not actually put to use as it takes only 

one value which is /2. On detailed scrutiny we observe that this is not true. We know that if 

we consider two plane polarized waves of same frequency travelling in the same direction in 

phase, the resultant amplitude will be twice that of the individual ones. In this manner, it is 

possible to construct plane polarized waves having any amplitude and all these combinations 

will satisfy Maxwell’s equations due to the property of the gauge freedom discussed above.  
 

         In the above approach we have considered Maxwell’s equation in vacuum. In fact, it can 

be easily shown that the above approach will hold good even when we take the case with 

electric charges. 

 

4. Discussion  
    

                   We saw that the Maxwell’s equations in vacuum accept plane polarized 

electromagnetic waves as the solution. In this context it is interesting to note that waves 

moving forward in time and those moving backward in time, both are solutions of the 

Maxwell’s equations. Therefore, even when we take the circularly polarized photon as the 

fundamental state of the electromagnetic wave, its corresponding state in reverse time also will 

be a solution of the Maxwell’s equation. But we know that on reversing the time coordinate the 

helicity as also the direction of the electric (and the magnetic) field will get reversed. In fact, 

we have to take the linear combination of these helical waves of opposite helicity as the 

solution of the Maxwell’s equation. Here it is pertinent to recall that photon is its own 

antiparticle which means that a photon travelling backward in time will be indistinguishable 

from one travelling forward in time. Therefore, the solutions of Maxwell’s equations will have 

to be represented by a linear combination of the waves moving forward and backward in time. 

This is the reason why in Feynman diagrams photon is treated as an entity having no direction 

in time. Here in our case, the linear combination of two circularly polarized helical waves with 

opposite helicity will give us a plane polarized wave both in electromagnetic and spatial 

oscillations. Obviously such a wave will have zero spin angular momentum. It becomes clear 

now why cosine and sine functions provide a good representation of the electromagnetic wave. 

The plane polarized spatial wave will not be observable due to the gauge invariance discussed 

in section 2. 

          The introduction of the spatial amplitude to the electromagnetic wave implies the 

existence of a new field which causes these spatial oscillations. It will be shown in a separate 

paper that a particle like electron can be attributed the structure of confined electromagnetic 
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wave. The generation of the rest (mass) energy of the particle is seen to be the direct result of 

the localization of the energy of the electromagnetic wave having spatial oscillations. It is 

observed that the fine structure constant, α is the ratio of the energy of the electromagnetic 

field of the electron to its rest mass. Since the fine structure constant represents the strength of 

the electromagnetic interactions, we are prompted to conclude that the rest mass of electron 

obtains its main contribution from some other field. This leads to the suggestion that the 

energy of the spatial oscillations belongs to new field. We should keep in mind that the 

existence of the Higgs field has been mooted for quite some time as the field that creates mass. 

We shall not identify the spatial oscillations to the Higgs field right now [4]. We shall examine 

the possibility of identifying the new field with the Higgs field later. We shall show in the next 

paper that mass could be created by the confinement of the electromagnetic wave and a major 

part of the energy involved in its creation could be attributed to the energy of the spatial 

oscillations. If this proposition is to hold good, the electromagnetic wave has to be treated as a 

composite wave having oscillations in the new field as well as in the electromagnetic field. 
 

    

5. Conclusion 
 

          The idea that the electromagnetic wave possesses spatial oscillations may appear 

fanciful as the properties of the electromagnetic wave have been extensively studied and 

understood. However, we observe that this spatial amplitude has remained hidden under the 

disguise of the gauge invariance and therefore it does not go against the experimentally 

observed properties of the electromagnetic wave. In a series of papers we shall show that we 

could treat electron as a confined electromagnetic wave and the spatial amplitude of the 

electromagnetic wave plays a crucial role in explaining its spin and electric charge. Therefore, 

it is a comforting thought that the introduction of the spatial amplitude will in no way affect 

the results validated by the conventional approach. The idea that the major part of the energy 

of the electromagnetic wave is constituted by the oscillations in the new field, if found 

acceptable, may result in a completely new way of looking at the basic structure of particles. 
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Annexure 
 

 

 

Maxwell’s equations in vacuum is given by 

                                               𝑖        ∇ ∙      =    0,              𝑖𝑖        ∇ ×         =    −
𝝏𝑩

𝝏𝒕
 . 

 

                             𝑖𝑖𝑖     ∇ ∙ 𝑩     =    0 ,             𝑖𝑣       𝑐2∇ × 𝑩   =       
𝜕

𝜕𝑡
                               ( I) 

 

 

          We shall now solve these equations using Feynman’s insightful approach to understand 

how the concept of the electromagnetic wave emerges from them [1].  
 

        We know that the first equation in (I) could be expanded to obtain 

 

                             ∇ ∙           =          
𝜕𝑥

𝜕𝑥
 +   

𝜕𝑦

𝜕𝑦
  +    

𝜕𝑧

𝜕𝑧
      =        0                                       (II) 

                 

Here we assume that there are no variations in the field variables with respect x and y, so that 

the first two terms could be taken as zero. Hence, we have 
 

                                                         
𝜕𝑧

𝜕𝑧
   =       0                                                                     (III) 

                            

This means that ξz is a constant in the z-direction. If we study Maxwell’s equation (1.iv), 

assuming that just as in the case of the electric field, the magnetic field also has no variation in 

x and y directions, then  it can be seen that Ez is also a constant in time. Such a field could be 

conveniently taken as zero as we are interested in only dynamic fields. Therefore we may take 

Ez = 0. In other words, the electric field exists only in the x and y directions. Now as a first 

step, for the sake of simplicity, we may assume that the electric field has a component only in 

the x-direction and obtain a solution on that basis. Later we may take up the case where the 

electric field has a component only in the y-direction and get the corresponding solutions. 

Then, the general solution could always be expressed as the superposition of the two cases. 
 

          Let us take the Maxwell’s equation (1.ii) and express the components along the three 

coordinate axes as 

 

       ∇ ×   𝑥   =   
𝜕𝑧

𝜕𝑦
 −  

𝜕𝑦

𝜕𝑧
 ,    ∇ ×   𝑦   =   

𝜕𝑥

𝜕𝑧
 −  

𝜕𝑧

𝜕𝑥
 ,    ∇ ×   𝑧   =   

𝜕𝑦

𝜕𝑥
 −  

𝜕𝑥

𝜕𝑦
        (IV) 

 

Here (xξ)z will be zero because the derivatives with regard to x and y are zero. Note that 

from (II) we have already taken ξx as a constant while ξy is taken as zero. (xξ)x is zero 

because the first term which is a derivative of ξz is zero while the second term is zero for 

reasons already stated. The only component which is not zero is (xξ)y which is equal to 

∂ξx/∂z. Setting the three components of (xξ) equal to the corresponding components of  -

∂B/∂t, we obtain 

 

                                      
𝜕𝐵𝑧

𝜕𝑡
  =    𝟎 ;      

𝜕𝐵𝑥

𝜕𝑡
 =   0 ;     

𝜕𝐵𝑦

𝜕𝑡
 =  −

𝜕𝑥

𝜕𝑧
 .                                         (V)

 
     
Since the z and x components of the magnetic field have zero time derivatives, they represent 

constant fields. Such a field could be conveniently taken as zero as we are interested in only 

dynamic fields. Therefore, we may take Bz = Bx = 0. The last equation in (V) shows that the 

electric field has only the x-component while the magnetic field has only the y-component. 

This means ξ and B are perpendicular to each other. 
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          Let us now take the last Maxwell’s equation whose components along x, y and z 

directions could be written as 
 

        𝒄𝟐  
𝜕𝐵𝑧

𝜕𝑦
 −  

𝜕𝐵𝑦

𝜕𝑧
  =  

𝜕𝑥

𝜕𝑡
;     𝒄𝟐 (

𝜕𝐵𝑥

𝜕𝑧
 −  

𝜕𝐵𝑧

𝜕𝑥
)  =  

𝜕𝑧

𝜕𝑡
;     𝒄𝟐( 

𝜕𝐵𝑦

𝜕𝑥
 −  

𝜕𝐵𝑥

𝜕𝑦
)  =    

𝜕𝑦

𝜕𝑡
           (VI)

 
 

On the left hand side of these equations, except for ∂By/∂z all other terms are zero. Therefore 

we have 

                                                         −𝑐2 𝜕𝐵𝑦

𝜕𝑧
 =  

𝜕𝑥

𝜕𝑡
  .

                                                            (VII)                 

Now taking partial differentiation with regard to t and using the last equation in (V), we obtain 

the wave equations 
 

                                      
𝜕2𝑥

𝜕𝑧2 − 
1

𝑐2  
𝜕2𝑥

𝜕𝑡2  =    0 ;    
𝜕2𝐵𝑦

𝜕𝑧2 − 
1

𝑐2  
𝜕2𝐵𝑦

𝜕𝑡2  =    0 .                             (VIII)
 

 

Note that the above equations represent waves having polarization in one plane. Similarly, we 

can obtain the equations for waves having polarization in a perpendicular plane involving only 

ξy and Bx  as 

                                      
𝜕2𝑦

𝜕𝑧2 − 
1

𝑐2  
𝜕2𝑦

𝜕𝑡2  =    0 ;    
𝜕2𝐵𝑥

𝜕𝑧2 − 
1

𝑐2  
𝜕2𝐵𝑥

𝜕𝑡2  =    0 .                               (IX)
               

 

The solutions for these wave equations can be written as  

  

                                
𝑥

 =  
𝑥𝑜

 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)  ;   
𝑦

 =   
𝑦𝑜

 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)                             (X)  

 

                                𝐵𝑦  =  𝐵𝑦𝑜  𝑠𝑖𝑛 𝜔𝑡 − 𝑘𝑧  ;   𝐵𝑥  =  −𝐵𝑥𝑜  𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧)                         (XI)
 

  

where ω is the angular frequency and k is the wave vector. Actually we could have as well 

taken cosine function or even a complex function of the type  “ξo exp[-i(ωt-kz)]”. It is a matter 

of convenience. However, the fact that the sine function could be expressed as a linear 

combination of two waves, one travelling forward in time and the other travelling reverse in 

time is an added advantage as the wave equation given in (IX) possesses functions representing 

both waves as its solutions. Combining both, the wave equation in a general direction will be 

given by 
 

                                                    =  
𝒐

 𝑠𝑖𝑛(𝜔𝑡 − 𝒌. 𝒓)  . 
                                                    (XII)                                        

 

Similarly, we may obtain the wave equation for the magnetic component also which may be 

written as 
 

                                                  𝑩 =  𝑩𝒐 𝑠𝑖𝑛(𝜔𝑡 − 𝒌. 𝒓)  . 
                                                 (XIII) 

                                                           

where Bo will always be perpendicular to ξo 

 

 


