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Introduction. 

 

The Riemann Hypothesis has been an open problem for a long time. This is an attempt to 

give a proof of the hypothesis based, mainly on model theory, more precisely, results 

related to countable recursively saturated models relative to a language L. Also essential 

here are known results that were first given by Littlewood and Robin. The proof of the 

Riemann Hypothesis is based on the existence of a countable recursively saturated model 

relative to a language L, of the Peano system of axioms of arithmetic. 

 

 

Section 1. Preliminary facts. 

 

The following reformulations have been known for some time and the proofs of the 

statements in this section can be found in many references. 

 

Robin’s reformulation of RH [7]. The Riemann Hypothesis is true if and only if there is 

an n0  (and in fact n0 = 5041) such that (n)/n < e

  log(log(n)) , for all n > n0 (here (n) 

is the sum of divisors function). 

 

Littlewood’s reformulation of RH [1]. The Riemann Hypothesis is equivalent to the 

statement that for every  > 0 , we have M(x) = O(x
( 1/2 +  )

), when x   (here M(x) is 

the Mertens„ function). 

 

We write (R) for the statement in Robin‟s reformulation (Robin inequalities). We also 

write (L) for the statement in Littlewood‟s reformulation (that is M(x) = O(x
( 1/2 +  )

), 

when x  ).  

 

We can conclude that the statement: 

 



 

 

“there is an n0 such that (n)/n < e

  log(log(n)) , for all n > n0 “ 

 

is equivalent to the statement: 

 

“for every  > 0 , we have M(x) = O(x
( 1/2 +  )

), when x  ”. 

 

We will write (R)  (L) for this equivalence (which is a known result).  

 

 

Section 2. Model Theory. 

 

The following theorems will be used in our results (for a brief introduction to model 

theory, see the appendix). 

 

Definition. Let   be an uncountable cardinal. A model M is said to be   - saturated 

if for every set  (of fewer than   formulas) of formulas (x) in the diagram language 

of M, if for every finite subset of formulas 1, 2, 3, ….n   the sentence x (1(x)  

2(x)  3(x)  …. n(x)) is true in M, then the infinitely long sentence x (  (x)) 

is also true in M. 

 

We also note the following theorem on the existence of saturated models, due to Keisler. 

 

Theorem (Keisler, 1963) [2]. Let I be a set of power  . There is an ultrafilter D over I 

such that every ultraproduct  DMi  is +1 - saturated. 

 

Observation 1. We assume that the reader is familiar with the concept of recursively 

saturated model, and the theorem on the existence of a recursively saturated model (for 

reference, see [2]). 

 

Observation 2. We also note the following facts. Any model of Peano arithmetic which 

occurs as the integers in some model of non - standard analysis is recursively saturated. 

As emphasized in [2], “The results of this section can be readily extended to the case of 

an arbitrary countable language by modifying the notion of a recursively saturated model. 

A set S is said to be recursive relative to L if there is an algorithm which decides whether 

or not an arbitrary input belongs to S, but makes use of an oracle which will always 

correctly answer questions of the form  - is  a formula for L? Everything goes through 

with only minor changes when the notion of recursive saturation is replaced by recursive 

saturation relative to L”. We will then work in an enlargement R* of standard analysis on 

R, where the integers represent a model of Peano arithmetic which will be countable and 

recursively saturated relative to a language L.  

 

Observation 3. We notice that the statement from Littlewood‟s reformulation can be 

given with the range of the variable  restricted to the set of rational numbers, and we will 

have a statement equivalent to Littlewood‟s reformulation.  

 



 

 

Definitions. We write N for the natural numbers, and N* for the corresponding set in R*. 

We also write (R*) for the statement in Robin‟s reformulation in R*, in other words (R*) 

will be the statement: 

 

“for any n  N* and n > 5041 the relations (n)/n < e

  log(log(n)) are all satisfied.” 

 

We also write (L*) for the statement in Littlewood‟s reformulation in R*, in other words 

(L*) will be the statement: 

 

“for every  > 0,   R*  there is a K > 0, K  R*, such that M(x)  < K  x( 1/2 +  )
) 

for every x in N*” 

 

As a notation, we must distinguish between (R*) - Robin‟s reformulation, and R* which 

is the enlargement of R. We also note that when we work in R*, all operations, relations, 

and functions are transferred to R* (but we will not always write <*, M*(x), *(n), and 

so on, it will be clear from the context). 

 

 

Section 3. The main theorems.  

 

Theorem 1. In the non - standard model of analysis described above R*, Littlewood‟s 

reformulation (L*) is a true statement.   

 

Proof.  Now we consider the statement (L*): 

 

“for every  > 0,   R*  there is a K > 0, K  R*, such that M(x)  < K  x( 1/2 +  )
) 

for every x in N*” 

 

We consider the formulas x,  (K), and by definition the formula x,  (K) will mean 

(M(x) < K  x
( 1/2 +  )

). We note here that K is a free variable (that is why x,  (K) are 

formulas, not sentences). If we consider all the formulas x,  (K), when x  N*,  and   

Q* (see observation 3), we have a countable set of formulas. We consider the conjunction 

of all these formulas, and we write S(K), so by definition S(K) will mean: 

( x in N*  and  in R*  x,  (K)).                 (*). 

 

We notice that if the sentence (K)( x in N*  in R*  x,  (K)) is satisfied, then (L*) is true in 

our model.  

 

We notice that any finite conjunction of statements of (*), as described above, is satisfied 

in our model. The proof of this is based on the fact that any finite set of elements from R* 

has a maximum and a minimum, and the Archimedean property (its multiplicative form 

still holds in the nonstandard model). Any finite subset of statements from (*), as 

described above, involves a finite set of (extended) natural numbers {x1, x2, x3, …..xp} 

and a finite set of (extended) rational numbers {1, 2, 3, …..p}. Among the values 



 

 

M(x1), M(x2), M(x3), ……M(xp), there is an i such that M(xi) takes a 

maximum value (among the finite set of values above). Without limiting generality, we 

can consider  x1 < x2 < x3 < …..< xp, and also  1 < 2 < 3 < …..< p.  Obviously, we can 

find a K such that  (M(xi) < K  x1
( 1/2 + 1  )

), we just take K > M(xi)/x1
( 1/2 + 1  )

.  

The inequality M(xi) < K  x1
( 1/2 + 1  )

) implies all the other inequalities involved in 

the finite subset of statements from (*) considered above. As a consequence, there is a K 

which is equal to the value for K found above such that the inequalityM(xi) < K  

x1
( 1/2 + 1  )

 is satisfied, and all the other formulas from the finite subset of statements from 

(*) (as chosen above) are satisfied.  

 

We proved that for any S‟(K) that contains only a finite conjunction of formulas of the 

form x,  (K), the sentences: 

 

K (S„(K)) is a true sentence. 

 

From the saturation property (recursive saturation relative to L), we can conclude that the 

sentence (K)( x in N* and  in R*  x,  (K)) is a true sentence. That means that in R* ,  (L*) is 

a true statement. QED.  

 

Theorem 2. The equivalence (R*)  (L*) is true in R*. 

 

Proof. In the standard model it is known that (R)  (L). We can transfer this known 

result to the enlargement R*. This means that (R*)  (L*) is true in R*. QED. 

 

Theorem 3. Riemann‟s Hypothesis (RH) is true in the standard model. 

 

Proof. We note that any counterexample to (R) in the standard model can also be 

considered a counterexample to (R*) in R*. This means that (R*)  (R). From theorem 1 

we know that (L*) is true in R*. From theorem 2 we know that (R*)  (L*) is true in R*. 

In other words we have (L*)  (R*)  (R). That means that the statement from Robin‟s 

reformulation (R) is true in the standard model. It is known (in the standard model) that 

(L)  (RH)  (R). That means that the Riemann‟s Hypothesis is true in the standard 

model. QED. 

 

Observation 4. I am grateful to Professor Feferman, Professor Haskell, Professor 

Scanlon and specially to Professor Keisler for their observations and suggestions (and the 

correction of many errors in the first versions of the article). Any other errors still present 

in this article (if any) belong to the author (Cristian Dumitrescu), but the observations of 

the model theory experts above corrected  many errors present in the first versions of 

this article. I also emphasize that the current version of this proof has not yet passed the 

expert analysis, at this point. The main error that I made in the previous versions of this 

proof is when applying the +1 - saturation property in a model of cardinality at least 

+1 . 

 

Conclusion. The proof of the Riemann Hypothesis is based on the existence of a 



 

 

countable recursively saturated model relative to L, of the Peano system of axioms of 

arithmetic. 

 

Appendix. In this appendix, we will briefly present some facts about model theory. 

Model theory is a combination of universal algebra and logic. We have a set L of 

symbols for operations, constants and relations, called a language.  

 

Example. L = {+, , 0, 1, <}. The language L can be finite or countable. A model M for 

the language L is an object of the form M = < A, +M , M , 0M , 1M , <M  >.  A is a non - 

empty set, called the set of elements of M, and +M  and  M ,are binary operations on 

AA into A, 0M  and  1M  are elements of A, and <M  is a binary relation on A.  

Examples. The field of rationals < Q, +, , 0, 1, > is a model for the language {+, , 0, 1}.  

The ordered field < Q, +, , 0, 1, <, > is a model for the language {+, , 0, 1, <}.  

 

Many facts about models can be expressed in first order logic. In addition to the  

operation, relation, and constant symbols of L, first order logic has an infinite list of 

variables, the equality symbol =, the connectives  (and),  (or),  (not), and the 

quantifiers  (for all),  (there exists). Certain finite sequences of symbols are counted as 

terms, formulas, sentences. Every variable or constant is a term. If t, u are terms, so are t 

+ u, t  u. If t and u are terms, then t = u, t < u, are formulas. If ,  are formulas and v is 

a variable, then ,   ,    ,  v ,  v  are formulas. A sentence is a formula 

all of whose variables are bound by quantifiers. For example, the sentence  

x (x = 0  y (x  y) = 1) states that every non - zero element has a right inverse. The 

central notion in model theory is that of a sentence  being true in a model M. This 

relation between models and sentences is defined by induction on the subformulas of . 

For example, the sentence x (x = 0  y (x  y) = 1) is true in the field of rationals, but 

not in the ring of integers. A set of sentences is called a theory. M is a model of a theory 

T, if for every sentence  T is true in M.  

 

Examples. The theory of rings is the familiar finite list of ring axioms. The theory of real 

closed fields is a set of sentences, consisting of axioms for ordered fields, the axiom 

stating that every positive element has a square root, and for each odd n an axiom stating 

that every polynomial of degree n has a root. For each model M, the theory Th(M) is the 

set of all sentences true in M. Two classical theorems in model theory are the 

compactness theorem and the Lowenheim - Skolem - Tarski theorem.  

 

The Compactness Theorem.[2][3] If every finite subset of a set of sentences has a model, 

then T has a model.  

 

Lowenheim - Skolem - Tarski Theorem. [2] If T has at least one infinite model, then T 

has a model of every infinite cardinality.  

 

Almost all the deeper results in model theory depend on the construction of a model.  

 

The diagram of a language for M is obtained by adding to L a new constant symbol for 

each element of A. the elementary diagram of M, written as Diag(M), is the set of all 



 

 

sentences in the diagram language of M which are true in M. The difference between 

Th(M) and Diag(M) is that Diag(M) has new symbols for the elements of M, while 

Th(M) does not. There are many other concepts that are fundamental in model theory, 

like elementary chains, ultraproducts, saturation, but we will stop here with this brief 

introduction (saturation and the theorem on the existence of a saturated model is 

presented in section 2, and is fundamental in this work, and we wanted to take this brief 

introduction to the point where the reader can understand the concept of saturation, in 

particular, recursive saturation relative to L). 
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