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Abstract. This paper presents a concise exposition of the Dimensional Theory, a novel framework
which helps make sense out of the Copenhagen Interpretation as it explains the peculiarities of
quantum mechanics in a way that is most consistent with that interpretation1.
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INTRODUCTION

The Copenhagen interpretation, though the most widely accepted interpretation of quan-
tum mechanics, does not seem to give a clear meaning to the theory’s mathematical for-
malism. This paper will present a novel framework which helps make sense out of it by
answering certain “why" questions the interpretation leaves unclear. For example, why
does a quantum system not have definite properties prior to being measured? Why is
there a “cut" between the classical observer and the quantum system? Why is there such
a thing as “particle-wave duality"? The underlying framework that will be used to offer
an answer to these questions is called the Dimensional Theory.

ACTUAL VS. ACTUALIZABLE

As this framework is new and unfamiliar, it may help to first present a motivational
observation. When one attempts to represent an object in a higher-dimensional space,
then aspects of that representation which depend on extent along dimensions in that
space not associated with the object itself or an embedding surface must be represented
such that the higher-dimensional representation includes all possible values along those
dimensions. In short, such an object must be represented as a “superposition" of higher-
dimensional representations in a higher-dimensional space. For instance, a point (x0,y0)
in a 2-dimensional plane that is not embedded as a surface in 3-space must be repre-
sented as an infinitely long line, or, put more provocatively, as a “superposition" of an
infinite number of points with common x and y coordinates but different z coordinates.
Furthermore, the superposition “collapses" if a third coordinate zi is attributed to the
point (x,y) to transform it into the point (x,y,zi) which now becomes a single point in

1 A recording of the talk based on this material can be viewed at http://youtu.be/GurBISsM308



3-space, as in fig. 1

FIGURE 1. The point (x0,y0) in R2 represented in R3 before and after "collapse"

Hence, there are two ways of constructing an infinitely long straight line in Euclidean
3-space: (1)Either integrate over all z-values at a certain value for x and y, which in
effect means the line is constructed by an infinite number of points, each specified
by three coordinates, or (2) specify just two coordinates, and allow all z-values to be
included in the representation “by default", as it were. To the extent that this difference
in construction is contemplated at all, it appears that the resultant objects are currently
taken to be equivalent. However, as table 1. shows, they are not, and to give a label to
this distinction, we will call the line as constructed the first way an actual line, and as
constructed the second way an actualizable line.
TABLE 1. Differences in properties between the actual and actualizable line in Euclidean Space

Actual Actualizable

Applicable Metric Interval δi jdxidx j i, j = 1,2,3 δi jdxidx j i, j = 1,2
Locally Displaceable Yes No
Metric Relations between perpendicular lines Directly defined Not directly defined
Effect of addition of third coordinate information No collapse Collapse

The most salient distinction between actual and actualizable objects is that whereas
the former, as objects in the space in which they are represented, never exist in a
superposition, the latter, as manifestations of actual objects in a lower-dimensional
space, always exist in a superposition. The apparent absence of any discussion of these
differences in the mathematical literature may indicate that this could possibly be an
overlooked area of mathematics with high relevance to physics.

THE DIMENSIONAL THEORY

The Dimensional Theory (DT) is a simple framework which applies the ideas discussed
above to the geometry of spacetime to derive the free-particle Feynman path integral
from a few axioms, in the process explaining the peculiarities of quantum mechanics in
a way that is most consistent with the Copenhagen Interpretation.
Let us first present a conceptual discussion. The DT assumes that there exists a limit,
symbolized by |U3max|, in which any region of spacetime V τ reduces to a constant
quantity of variable shape of a 1-dimension reduced analog called areatime. The metric
interval associated with objects in areatime is naturally distinct from the spacetime
metric interval, and consequently so is the associated proper time dimension. Since for
spacetime objects, a definite proper time is required to form the 4-dimensional object we
call a world line, areatime objects with their distinct proper time dimensions lack world



lines in spacetime. By an axiom, it is assumed that areatime objects can be represented
in spacetime in terms of a “superposition" of all possible world lines, but that these are
actualizable. In particular, this means that they “collapse" once a spacetime object with
an actual world line emerges out of the areatime object. Another axiom stipulates that the
passage of time for the areatime object is compared with, or "translated into", passage of
time along any actualizable world line via a mechanism which will be called the angular
dual bilateral symmetry. The construction of the simple symmetry is as follows:

1. The proper time τA of the areatime object and τ of each actualizable worldline must
be represented along orthogonal directions in an abstract plane because we know
from the phenomenon of time dilation that non-orthogonal time dimensions cannot
be considered distinct: we consider time-dilated objects to still exist in spacetime.

2. The passage of time is mapped from τa to τ indirectly via the rotation of an
amplitude τr ≡

√
τ2 + τA

2 with period T ∝ τA

3. Rotations of the amplitude in forward and backward directions are "superimposed"
so that the resultant transformation is just the identity (due to the cancellation of
the opposite rotations). This leads to two new symmetries not found in an ordinary
rotation: invariance under angular displacement for any angle (as opposed to just
multiples of 2π) and under reflection. Hence the name for this symmetry.

FIGURE 2. The symmetry: Two amplitudes τr rotate in opposite directions in the plane of τ and τA

The symmetry ensures that over any finite amount of time the outcome of the transfor-
mation is no change (i.e. the identity) while the process allows a comparison of distinct
time dimensions. Metaphorically, it is a clock that goes both forwards and back and
thereby remains frozen in time. Again, the point of this is to provide a mechanism for
comparing the passage of time without a net transformation between two distinct proper
time dimensions, which preserves their orthogonality, required to maintain distinctness.
By assumption, the endpoints of τA which coincide with the boundary of |U3max| are
identified, resulting in the manifestation of periodicity of τA to spacetime observers. Be-
cause τA only exists in the small limit in which spacetime vanishes, it may repeat itself
many times as it is compared against consecutive intervals along τ , as depicted in fig. 3

FIGURE 3. The same interval τA is compared to consecutive distinct intervals along τ

This turns the abstract plane into a Riemann surface and implies that τA has to be mod-
eled as an imaginary period: τA = iT/2π . If the angle associated with the amplitude is
ϕ ≡ tan−1 (τA/iτ) (where τA is divided by i to make the argument real), then a simple
reparameterization θ ≡ cotϕ = iτ/τA turns the symmetry into two complex conjugate



phases of the form e
τ

τA where the normalization of τr will be absorbed in the normal-
ization of the path integral at the end. We now present an abbreviated mathematical
derivation of the path integral of a single free particle:

• Axiom I: lim
V→0

V τ = AτA ≡ |U3max| (where A is the area associated with the limit)

• Axiom II: Objects which actually exist in areatime must be represented in space-
time by a superposition of all possible actualizable worldlines of the object(s) in
spacetime into which they can emerge.

• Axiom III: The passage of time along the proper time of an areatime object is
mapped to that along each actualizable worldline by means of the angular dual
bilateral symmetry in such a way that the points on τA which coincide with the
boundary of |U3max| are identified.

• Axiom IV: If the areatime object forms a "complex" with other areatime objects
such that the limit |U3max| is exceeded, the actualizable mass associated with it
transforms into actual mass.

Here, actualizable mass m is always associated with a superposition of properties, but
actual mass m (underlined for distinction) never is, which sharply separates the domains
of classical and quantum physics. A fuller discussion of this distinction, including its
impact on the equivalence principle, is given in reference [2]. Now, taking axiom I to
apply to the “free particle", the object underlying it, actually existing in areatime, lacks
a spacetime worldline. From axiom II follows that the particle manifestation must be
modeled in terms of a superposition of all possible actualizable worldlines. We can think
of each actualizable worldline as a path in space that is traversed over a time interval.
This time interval is compared to the passage of the time for the underlying areatime
object using the mechanism outlined in axiom III and elaborated above. For a single
free particle, the appropriate substitution is τA ⇒± ih̄

mc2 where the ± indicates that the
symmetry results in both phase factors. Then we have

e
τ

τA ⇒ e
mc2
±ih̄ τ = e∓i mc2

h̄ τ = e∓i mc
h̄
∫

ds = e±i S
h̄ (1)

Where
∫

ds = s = cτ is the finite spacetime interval and S = −mc
∫

ds is the classical
relativistic free-particle action. In the non-relativistic limit, we get

e±i S
h̄ = e±

i
h̄
∫

L(r,ṙ,t)dt ∼ e±
i
h̄
∫
( 1

2 mv2)dt (2)

Where L(r, ṙ, t) is the Lagrangian associated with the system. Under the DT then, this
fundamentally dynamic quantity arises out of a geometric mechanism for comparing
two distinct proper time dimensions. Since the comparison involves each actualizable
worldline separately, both phase factors must be associated with each actualizable path,
but in practice one associates only one of these with the integral over all paths.
Deriving the free particle path integral, written symbolically as

∫ r′
r Dx(t)ei S

h̄ , from this
point on is well understood [1] and due to space constraints the explicit calculation will
not be performed here. The end result in terms of the propagator K(r′,r, t) is

K(r′,r, t) =
(

m
i2π h̄(t f − ti)

)3/2

e
im
2h̄

(r′−r)2
(t f−ti) (3)



Again, this looks exactly like the standard expression but the path integral here is
interpreted as an integral over all actualizable, not actual paths. The propagator is only
associated with one of the phases but the fact that the transition probability requires
taking its absolute square indicates that both complex conjugate phase factors due
to e

τ

τA contribute equally to the spacetime manifestation. The propagator allows the
determination of a quantum state Ψ(r′, t f ) from an earlier state Ψ(r, ti)≡Ψ0:

Ψ(r′, t f ) =
∫

∞

−∞

K(r′,r, t)Ψ0dr3 (4)

from which it follows that the quantum state Ψ(r′, t f ) is also actualizable.
Axiom IV applies when a quantum system is ‘measured’: this represents the ‘actual-
ization’ or emergence of an actual spacetime object: The detector-system complex in
areatime exceeds the limit |U3max| →actualizable mass m is transformed to actual mass
m→ The object is associated with a spacetime proper time →the superposition of ac-
tualizable worldlines “collapses"→ An actual spacetime worldline begins to form. This
is identified with the "wave function collapse", but the eigenstate ψ is now actual

Ψ
m→m−−−→ ψ (5)

For objects like electrons this is evidently reversible, as they soon “spread out" again,
but sufficiently rapid successive “measurements" may forestall the “de-actualization".
Finally, since in this framework the wave function phase factor e−i Ĥt

h̄ ultimately comes
from the factor e

τ

τA via ei S
h̄ , and proper time is proportional to the metric interval, the

wave function encodes within its mathematical expression areatime metric information.
In particular, if Ψ describes entangled components, it models the spacetime manifesta-
tion of a system confined to a local region in areatime, parts of which can give rise to the
emergence of actual objects in distant regions in spacetime with correlated properties.

CONCLUSION

This paper presented a novel framework, the Dimensional Theory, which permits one to
make sense of the Copenhagen Interpretation of quantum mechanics. While unfamiliar,
it makes a definite and highly unexpected prediction arising from the distinction between
actual and actualizable mass: photons, as purely actualizable objects, do not produce
gravity fields. This can at least in principle be tested against calculations in the literature,
such as by Tolman et. al.[3], which assume that radiation in transit is a field source.
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