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Summary 
This paper reveals that the reference function G(2n)=2n/(ln(n))^2 plays a significant role in the distribution of 

the total number of pairs (p, q) of primes that fulfill the condition (p + q = 2n), which constitutes Goldbach’s 
conjecture. Numerical experiments up to 2n=500,000 show that, in the plot of the number of pairs versus 2n, the 
ratio of the lowest points over G(2n) tends asymptotically to the value 2/3. The latter fact dictates that the lower 
bound concerning the minimum number of pairs that fulfill Goldbach’s conjecture is equal to 4n/[3(ln(n))^2]. 
Moreover, smoothed sequences by treatment of the aforementioned pairs are revealed.  

 
 
1. Introduction 
Goldbach’s conjecture [1] states that “every even natural number > 4 can be written as a 

sum of two primes”, namely: 

2n p q= +    where  n>2, and  p , q are prime numbers,     (1) 

where the set of primes is { }2,3,5,7,11,=  . This is also called the ‘strong formulation’ of 
the conjecture. 

In 1900, Hilbert said that Goldbach’s conjecture was one of the 23 most difficult problems 
for mathematicians of the 20th century [2], while Landau sorted four main problems for the 
first few numbers including Goldbach’s conjecture [3,4]. 

The weak formulation of the conjecture has not been yet proven, but there have been some 
useful although somewhat failed attempts. The first of these works was in 1923 when, using the 
‘circle method’ and assuming the validity of the hypothesis of a generalized Riemann, Hardy 
and Littlewood [5] proved that every sufficiently large odd integer is sum of three odd primes 
and almost all the even number is the sum of two primes. In 1919, Brun [6], using the method 
of his sieve proved that every large even number is the sum of two numbers each of whom has 
at least nine factors of primes. Then in 1930, using the Brun’s method along with his own idea 
of “density” of a sequence of integers, Schnirelman [7] proved that every sufficiently large 
integer is the sum of maximum c primes for a given number c. Then in 1937, Vinogradov [8], 
using the circle method and his own method to estimate the exponential sum in a variable prime 
number, was able to overcome the dependence of the great Riemann hypothesis and thus 
provide the evidence of the findings of Hardy and Littlewood now without conditions. In other 
words, he directly proved (theorem of Vinogradov’s theorem) that all sufficiently large odd 
number can be expressed as the sum of three primes. The original proof of Vinogradov, based 
on inefficient theorem of Siegel-Walfisz, did not put a limit for the term “sufficiently large”, 
while his student K. Borozdkin [9] showed in 1956 that ότι 

153
0 3n = =314348907 is sufficiently 

large (has 6,846,169 digits). Later, after improvements in the method of Brun, in 1966 Chen 
Jing-Run [10] managed to prove that every large integer is the sum of a prime and a product of 
at most two primes. In 2002, Liu and Wang [11] lowered the threshold around 

3100 13462 10n e> ≈ × . The exponent is too large to allow control of all smaller numbers with the 
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assistance of a digital computer. According to Internet reports [12,13], the computer assisted 
search arrived for the strong Goldbach conjecture up to order 1018 
(http://www.ieeta.pt/~tos/goldbach.html) and, for the weak Goldbach conjecture not much 
more. In 1997, Deshouillers et al. [14] showed that the generalized Riemann hypothesis implies 
the weak Goldbach's conjecture for all numbers. Also, Kaniecki [15] showed that every odd 
number is the sum of at most five primes, provided the validity of Riemann Hypothesis. 

Most of these classic works have been included in a collective volume by Wang [16]. 
Specifically, in this volume the first section includes the representation of an odd number as a 
sum of three primes with six papers (Hardy and Littlewood; Vinogradov; Linnik; Pan; 
Vaughan; Deshouillers, Effinger, Riele & Zinoviev), the second section includes the 
representation of an even number as a sum of two nearly primes in six other works of (Brun; 
Buchstab; Kuhn; Selberg; Wang; Selberg) and finally the third section includes the 
representation of an even number as a sum of a prime and an almost prime in nine works 
(Renyi; Wang; Pan; Barban Til; Buchstab; Vinogradov; Bombieri; Chen Jing-Run; Pan). 
Finally, apart from the individual reports of certain articles, the collective volume includes 234 
additional citations arranged by author, referring to the period 1901-2001. 

The strong formulation of Goldbach conjecture, which is the subject of this paper, is much 
more difficult than the above weak one. Using the above method of Vinogradov [8], in separate 
works Chudakov [17], van der Corput [18] and Estermann [19] showed that almost all even 
number can be written as a sum of two primes (in the sense that the fraction of even number 
tends to the unit). As mentioned above, in 1930, Schnirelman [7] showed that every even 
number n ≥ 4 can be written as a sum of at most 20 primes. This result in turn enriched by other 
authors; the most well-known result due to Ramaré [20] who in 1995 showed that every even 
number n ≥ 4 is indeed a maximum sum of 6 primes. Indeed, resolving the weak Goldbach 
conjecture will come through that every even number n ≥ 4 is the sum of at most 4 primes [21]. 
In 1973, using sieve theory methods (sieve theory) Chen Jing-run showed that every 
(sufficiently large even number can be written as a sum either of two primes or of one prime 
and one semiprime (i.e. a product of two primes) [22], e.g. 100 = 23 + 7·11. In 1975, 
Montgomery and Vaughan [23] showed that “most” even number is a sum of two primes. In 
fact, they showed that there was a positive constants c and C such that for all sufficiently large 
numbers N, every even number less than N is the sum of two primes with CN1-c exceptions at 
the most. In particular, all the even integers that are not sum of two primes have zero density. 
Linnet [24] proved, in 1951, the existence of a constant K such that every sufficiently large 
even number is the sum of two primes and a maximum of K powers of 2. Heath-Brown and 
Puchta [25] in 2002 found that the value K = 13 works well. The latter improved to K = 8 by 
Pintz and Ruzsa [26] in 2003.  

It is noteworthy that in 2000 Eq(1) was verified using computers for even numbers up to 
4×1016 [27], and the attempt was repeated by T. Oliveira e Silva with the help of distributed 
computing network to n ≤ 1.609×1018 and in selected areas up to 4×1018 [13]. However, 
mathematically these checks do not constitute conclusive evidence of validity of Eq(1), and the 
effort continues today [28,29]. Initial attempts were [30-32]. 

In this paper we present experimental results on all even numbers between 6 and 500,000. 
 
 
2. The reference function G(2n) 

In 1793 Gauss gave the approximate formula 

( )
ln
nn
n

π = ,     (2) 
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for the estimation of prime numbers less or equal to n. It can be used to produce something like 
the ‘probability’ that a randomly chosen odd number is prime. 

Moreover, Sheldon [33] showed that the probability that the number 2λ+1 is prime, is 
approximated by: 

( )
2

ln 2λ
      (3) 

The proof is based on the fact that, for large λ, by virtue of Eq(2) the quantity π(2λ+1)-π(2λ-

1) is almost exactly 
( )
2

ln 2λ
, which can be interpreted as the expected number of primes in the 

set {2λ,2λ+1}. Since there is only one candidate for being a prime, namely 2λ+1, the proof of 
Eq(2) is complete■. 

 
Definition-1. Let us define the function ( )2np N  as the number of ways that an even number 

(N = 2n, n = 3, 4, ...) can be written as the sum of two primes, p and q that fulfill Eq(1). In other 
words, it is the total true number of pairs (p, q) that fulfill Eq(1).   

 
Definition-2. Let us assume independency of events and define the function G(N) as a 

probabilistic approximation of ( )2np N .  
 
Since 2p q n+ = , if we take that one of the two primes is smaller or equal to the other 

prime, for example p q≤ , then p n≤  and 2n q n≤ ≤ . To evaluate the function G(N) we have 
to find each prime p and establish whether or not the corresponding q is prime. We can apply 
Eq(2) and find an estimate of the number of primes p, particularly the value ( )nπ , which 
corresponds to the maximum possible value of p, i.e. p=n. Each of the aforementioned ( )nπ  
values of p generates a q, equal to 2n-p, which may or may not be prime.  

Concerning q, which may take either of the extreme values n or 2n, according to Eq(3) the 

corresponding number of primes almost exactly varies between 
( )
2

ln 2n
 and 

( )
2

ln n
. However, 

since ( ) ( ) ( )ln 2 ln 2 ln 0.6931 lnn n n= + ≈ + , for large n, the differences are rather of minor 
importance. Therefore, since Eq(2) underestimates the true prime-counting function, we 

consider the greater value, i.e. 
( )
2

ln n
. 

As a result, we can say that the expected number of pairs of primes (p,q) is given by the 

multiplication of ( )nπ  times the maximum probability, i.e. 
ln
n
n

 by 2
ln n

, that is: 

( )
( )2

22
ln

nG n
n

= .      (4) 

The reference function G(2n) given by Eq(4) appears for the first time.  
 
It is the aim of this paper to determine a lower bound for p2n as a function of 2n, and 

particularly in terms of G(2n).  
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3. Processing the numerical data 
A MATLAB® code was developed to determine functions G(2n) and p2n for all even 

numbers 2n lying between 6 and 500,000. The results are presented in Figure 1, where the ratio 
2nR  is determined as: 

( )
2

2 2
n

n
pR

G n
=       (5) 

It is noticed that the ratio 2nR  fluctuates near to the value 2/3 (see details in Table 1). By 

definition, the reference function ( ) ( )22 2 lnG n n n=  corresponds to 2 1nR = ; although the 
aforementioned line 2 1nR =  is closer to the bottom than top, there are 95035 points beyond (38 
percent) and 154963 ones  below (62 percent) it.  
 

 
Figure 1: Convergence of ratio 2nR  versus increasing even numbers 2n.  

 
 

Table 1: Details for the minimum ratio 2nR  defined by Eq(5). 
Interval of even numbers 

(2n) 

Minimum ratio  

( 2nR ) 

280,000 – 500,000 0.6751 
460,000 – 280,000 0.6680 
440,000 – 460,000  0.6742 
420,000 – 440,000 0.6736 
400,000 – 420,000 0.6719 
380,000 – 400,000 0.6690 
360,000 – 380,000 0.6768 

... ... 
20,000 – 34,000 0.6316 
12,000 – 30,000 0.6223 
8,000 – 24,000 0.5762 
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3.1 Lower bound 
Since the limit of the ratio 2nR  is a little higher than 2/3, a lower bound for 2

L
np  is 

approximated by: 

( )2 2
4

3 ln
L
n

np
n

= .      (6) 

The quality of Eq(6) is excellent, as shown in Figure 2 for all even numbers between 
440,000 and 500,000.  

 

 
Figure 2: The lower bound (in red color) given by Eq(6) and the reference function (in green color). 

 
 
3.2 Basic cell 
The lowest white-colored horizontal gap that appears in Figure 1 is due to the fact that, 

when 2n=6λ (λ=2,3,…), the value p2n may approximately be twice larger than that obtained 
either for 2n=6λ-2 or 2n=6λ+2. A theoretical explanation is given in the ‘Discussion’ section.  

Within this context, for a better insight, we split the interval [6, 500000] into 166,665 
consecutive cells of the form (6λ-2, 6λ, 6λ+2), λ=2,3,4 and so on. We start with the cell 
(10,12,14), i.e. λ=2 and continue with (16,18,20) , i.e. λ=3, (22,24,26), i.e. λ=4, etc.  

For every cell we calculate the following three ratios: 

( )
6 2

6 2 6 2
pR

G
λ

λ λ
−

− =
−

,   
( )

6
6 6

pR
G

λ
λ λ
=    and    

( )
6 2

6 2 6 2
pR

G
λ

λ λ
+

+ =
+

, 2,3,λ =      (7) 

for which the corresponding results are shown in Figure 3.  
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Figure 3: The three ratios for the basic cell (6λ-2, 6λ, 6λ+2) are shown in blue, red and green color, respectively. 

 
 
It is clear that, both the left and right ends of cells occupy a very similar area (however the 

left end is somehow higher, in the average sense), whereas the middle point is about twice 
higher (again, in the average sense). These facts explain the appearance of the above-mentioned 
lowest white-colored horizontal gap. 

 
3.3 Smoothing procedures 
The above findings have revealed that the points within the cloud are interrelated at least on 

the level of the basic cell. Moreover, in Figure 4 we have again divided the set of natural 
numbers in consecutive cells of the form 2n = (6λ-2, 6λ, 6λ+2), the first being (10, 12, 14). 
Then, based on every cell, we construct triangles (in blue lines) of which the centroids are 
connected by straight lines (in magenta color). The green line represents Eq(4), whereas the red 
line in the bottom refers to 2

L
np  of Eq(6). We notice that most of the centroids are above the 

green line.  
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Figure 4: Number of pairs (p,q) that fulfill Goldbach’s conjecture and B0-smoothing in the neighborhood of the 

even number 2n=285368. 
 
 
As shown in Figure 5, let us now denote by B0 the family of the basic cells [(10, 12, 14), 

(16,18,20), (22,24,26) and so on] in which the set   is divided; its step is s0 = 2.  
In the sequence, we denote by B1 the family of second-level cells in which we take the 

midpoint of every B0-cell as elements of another cell sequence with step equal to s1 = 6; the 
first of these cells is (12,18,24), the second is (30,36,42), the third is (48,54,60) and so on.  

Moreover, we denote by B2 the family of third-level cells in which we take the midpoint of 
every B1-cell as elements of another cell sequence with step equal to s2 = 18; the first of these 
cells is (18,36,54), the second is (72,90,108) and so on. 

In analogy, we can define B3-family with step equal to s3 = 54 and so on. 
Obviously, whenever we pass from family Bn to family Bn+1 we have to multiply its 

previous sn step by 3 (i.e., sn+1=3sn). 
From a physical point of view, the abovementioned Bi-families constitute the procedure for 

determining the ‘linearly distributed’ center of mass of the cloud of points that refer to the 
function 2:2 nn p→ , where all points of the cloud possess the same mass. Actually, by 
definition, the basic B0-family refers to the centers of masses of the triangles that are formed by 
the ends and the middle of the B0-cells (cf. Fig.4). Also, by definition, the B1-family consists of 
the centroids of the already found centroids of B0-family. Then, again by definition, the B2-
family consists of the centroids of the already found centroids of B1-family, and so on. By 
continuously shifting the starting point to the right and extending the step (successively 
multiplying by 3) we obtain a smoother and smoother average curve.  
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Figure 5: Construction of smoothing families: B0, B1 and B2. 
 
 
 
As shown in Figure 6, the abovementioned successive smoothings lead to decreasing 

amplitudes. 
 
 
 

 
Figure 6: Smoothed distribution of total number of pairs (p,q), at the midpoints of successively enlarged 

cells, whereas the smoothing procedure is shown in Figure 5. 
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4. Discussion 

Due to the high difficulty of the topic under investigation, as a first step for further close 
examination, a non-strictly mathematical approach was followed in order to reveal some of the 
laws or properties hidden in the conjecture. The results so far (until 2n = 500,000) show an 
excellent agreement between reality and the proposed Equation (6). The latter formula is based 
on the assumption that the logarithmic-like curve (Eq(4)) can be considered as a reference 
function in conjunction with the finding that the ratio of the total number of pairs over the 
reference function is very close to 2/3. 

Setting in the reference function a factor exactly equal to 2/3, for even numbers less or 
equal to 285,368 the proposed formula slightly deviates at 463 positions (by only 1 to 17 
units); see also Table 1. For even numbers greater or equal to 285,370 no violation has been 
observed up to the value 2n = 500,000. To fix this drawback there are two easy ways. The first 
way is to decrease to factor from 2/3 to a slightly smaller one (according to Table 1), whereas 
the second way is to split the interval [6, 500000] into a few broad subintervals and use a 
multiply defined function 2np .  

A remaining issue is the fact of an approximately double, or similar, ratio for the mid-points 
of every cell (6λ-2, 6λ, 6λ+2). Below we try to justify the reason for this fact, in a qualitative 
way. First of all, we have to mention the procedure of determining the number 2np  of pairs 
(p,q) that fulfill the conjecture, i.e. p+q=2n. The procedure of determining the value of 2np  is 
quite deterministic. One standard way to do it is described by the following Theorem-1.  
 
4.1 Determination of the total number of pairs (p,q) that fulfill the conjecture 

Theorem-1: Every even natural number 2n  can be decomposed into a sum of two odd 
natural numbers (primes or composites) in so many different ways, sn , as the integer part 

(floor) of the rational number ( )1 2n − , that is ( )1 2sn n= −   . The index ‘s’ results from the 

word ‘sample’, thus referring to sample of sn  odd numbers (from which we will later isolate 
the prime numbers).  

Proof 
We distinguish two cases (Case-1 and Case-2) as follows. 
Case-1: When n is odd, we form the sets: 
Α = {3, 5, …, n} and  B = {2n-3, 2n-5, …, n}. Since the order of items is not important in 

the sets, in order to maintain the desired sequence (in the form of rows or columns) we form the 
vectors [ ]3,5, ,a n=



  και [ ]2 3,2 5, ,b n n n= − −


 . It is obvious that all elements of the vector 

c a b= +


   are strictly defined and are equal to 2n as opposed to probabilistic pairs that can be 
derived from the sets A and B. Also, it is evident that any enhancement of the vector a  will 
give terms contained in the vector b



, displayed from right to left, so it makes no sense. Finally, 
it is obvious that the cardinality of two sets is the same, ie cardΑ = cardΒ = (n-1)/2.  

Case-2: When n is even, we form the sets: 
Α = {3, 5, …, n-1} and B = {2n-3, 2n-5, …, n+1}. As previously, we consider the new 

vectors [ ]3,5, , 1a n′ = −


  and [ ]2 3,2 5, , 1b n n n′ = − − +


 . It is obvious that all elements of the 

vector c a b′ ′ ′= +


   are again equal to 2n. As previously, any enhancement of the vector a  will 
give terms included into the vector b



, displayed from right to left. Finally, it is obvious that the 
cardinality of two sets is the same, i.e. cardΑ = cardΒ = n/2-1.  

Summarizing the results of the two above cases, it is easily concluded that: 



10 
 

( )1
2

n
cardA cardB

− 
= =  

 
■     (8) 

 
4.2 The unit cell 
The reason that (the order of magnitude) of the number of pairs of primes that correspond to the 
end values (6λ-2, 6λ+2) of every cell is about half of that for the midpoint (6λ) is as follows.  

The triple of numbers (6λ-2, 6λ, 6λ+2) are consecutive even numbers. This implies that the 
subsets of even numbers  ={x/x  6λ-2, 6λ, 6λ+2} for λ = 1,2,3 ... and λ∈  are disjoint and 
their union is the set 2  of all even numbers ≥ 4: 

 2 = {x/x  6λ-2, 6λ, 6λ+2}  where  λ ≥ 1.      (9) 

If we replace λ in Eq(9) with two natural numbers λi and λj where (λi, λj)∈ , such as: 
λ = λi + λj ,            (10) 

the triple of the successive even numbers is transformed to  

                                                           6(λi + λj) - 2            (11a) 
                                                           6(λi + λj)            (11b) 
                                                           6(λi + λj) + 2.          (11c) 

 

Proposition-1. The set of natural numbers   is divided into six equivalence classes, those of 
elements with remainder 0, 1, 2, 3, 4 and 5, namely: 

Κ(0) = {x/x = 6λ + 0   λ∈ }          (12a) 
Κ(1) = {x/x = 6λ + 1,  λ∈ }          (12b) 
Κ(2) = {x/x = 6λ + 2,  λ∈ }          (12c) 
Κ(3) = {x/x = 6λ + 3,  λ∈ }          (12d) 
Κ(4) = {x/x = 6λ + 4,  λ∈ }          (12e) 
Κ(5) = {x/x = 6λ + 5,  λ∈ },        (12f) 

which are disjoint each other and their union gives the set  , that is: 

Κ(0)∪Κ(1)∪Κ(2)∪Κ(3)∪Κ(4)∪Κ(5) =         (13) 
 

Proposition-2. The set of natural numbers contained in the equivalence classes K(0), K(2), 
K(3) and K(4) are composite numbers as multiples of 2 and 3.  

 
Proposition-3: The classes K(1) and K(5) include all primes (except of 2 and 3) as well as the 
multiples of primes being > 3; these can be combined in the formula:  

6λ ± 1 = Primes + Multiples of Primes > 3       (14) 

 
Lemma: The mid-point of the basic cell (6λ–2, 6λ, 6λ+2) corresponds to a higher number of 
pairs 6p λ  than their endpoints. 

Proof  
Based on Proposition-3, Equations (11) may be further transformed as follows:                                             

Left end:            6(λi + λj) – 2 = (6λi – 1) + (6λj –1),    (15a) 
           Mid-point:          6(λi + λj) = (6λi – 1) + (6λj +1),     (15b) 

Mid-point:         6(λi + λj) = (6λi + 1) + (6λj –1),     (15b΄) 
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         Right end:            6(λi + λj) + 2 = (6λi +1) + (6λj +1).    (15c) 

Therefore, we achieved to transform all the even numbers into a sum of two odd numbers of the 
form 6λi±1, which (by virtue of Proposition-3) either are primes or multiples of primes ≥ 5. The 
fact that even numbers of the form 6λ can be analyzed in two different ways as a sum of odd 
numbers [cf. by virtue of either Eq(15b) and Eq(15b΄)], leads to a higher probability for them 
compared to those in the form (6λ-2) [Eq(15a)] or  (6λ+2) [Eq(15c)]. In all cases, the procedure 
of Theorem 1 has been implicitly considered as a sieve. A trivial application is given in 
Appendix A, where it is shown that the mid-point gives nine pairs while the end points only 
four. 
 

5. Conclusion 
In this study we achieved to determine a closed form expression that calculates a lower 

bound concerning the total number of pairs of primes that fulfill Goldbach’s conjecture. For 
even numbers greater or equal to 285,370 no violation has been observed up to the value 
500,000 when applying a factor 2/3 over a probabilistic reference function. Moreover, using 
basic cells and their multiples, we revealed hidden smoothing curves within the cloud of points 
that represent the number of pairs of primes that fulfill Goldbach’s conjecture.  
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APPENDIX A 
 

Formation of pairs of primes on a basic cell (6λ-2, 6λ, 6λ+2) 
 

We apply the trivial case p+q=2n, with n=45, where the even number 2n=90 is the mid-
point of the basic cell (6λ–2, 6λ, 6λ+2) = (88, 90, 92). 

According to Theorem-1, we form two columns, A and B, and then fill them starting from 3 up to 

the ns-th row, where 
( )1

2s

n
n

− 
=  
 

. Setting n=44, 45 and 46, it comes out that ns = 21, 22 and 22, 

respectively. The procedure is clearly shown in Table 2, where the pairs of primes are included. 
 
 

Table 2: Example for the decomposition of a triad of numbers (6λ–2, 6λ, 6λ+2), for λ = 15, in sums of two odd 
numbers (primes and composites).                   
        
          6λ-2 = 88            6λ = 90          6λ+2 = 92 
         
          COLUMNS           COLUMNS           COLUMNS 
      Α      Β       Α      Β       Α      Β 

1 3 85 1 3 87 1 3 89 
2 5 83 2 5 85 2 5 87 
3 7 81 3 7 83 3 7 85 
4 9 79 4 9 81 4 9 83 
5 11 77 5 11 79 5 11 81 
6 13 75 6 13 77 6 13 79 
7 15 73 7 15 75 7 15 77 
8 17 71 8 17 73 8 17 75 
9 19 69 9 19 71 9 19 73 

10 21 67 10 21 69 10 21 71 
11 23 65 11 23 67 11 23 69 
12 25 63 12 25 65 12 25 67 
13 27 61 13 27 63 13 27 65 
14 29 59 14 29 61 14 29 63 
15 31 57 15 31 59 15 31 61 
16 33 55 16 33 57 16 33 59 
17 35 53 17 35 55 17 35 57 
18 37 51 18 37 53 18 37 55 
19 39 49 19 39 51 19 39 53 
20 41 47 20 41 49 20 41 51 
21 43 45 21 43 47 21 43 49 

   22 45 45 22 45 47 
         
 Sum of pairs that 
fulfill Goldbach’s 
conjecture = 4 

 Sum of pairs that 
fulfill Goldbach’s 
conjecture = 9 

 Sum of pairs that 
fulfill Goldbach’s 
conjecture = 4 

      
 Sum of Pairs: 21  Sum of Pairs: 22  Sum of Pairs: 22 
 (Equation 15a)  (Equations 15b and 

15b΄) 
 (Equation 15c) 

Composite number 
Odd prime in the form (6λ-1) 
Odd prime in the form (6λ+1) 
Prime number 3 
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