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Abstract

Constraints imposed directly on accelerations of the system leading

to the relation of constants of motion with appropriate local projectors

occurring in the derived equations are considered. In this way a gener-

alization of the Noether's theorem is obtained and constraints are also

considered in the phase space.
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1 Introduction

We consider equations describing discrete or continuous systems with constraints.
If no constraints are present, we will assume that the unconstrained system is
described by the '�eld' equation:

L[x̃;ϕ] + λN [x̃;ϕ] +G(x̃) = 0 (1)

with the main linear functional L depending on the unknown '�eld' (function)
ϕ(x̃), which necessarily includes di�erential operations, for example

L[x̃;ϕ] =
(
� +m2

)
ϕ(x̃)

the N a functional, usually nonlinear (although may also contain additional
linear terms), depending on the �eld ϕ, for example

N [x̃;ϕ] = ϕ3(x̃)

and the given function G usually describing external forces acting on the system.
Here and further square brackets mean that a given quantity, except that it is a
function, it is also a functional. For discrete systems, such as N material points,
ϕ = (q1, ..., q3N ) can be a 3N dimensional vector and x̃ = (t, i) besides the time
t describes the component indexes i = 1, ..., 3N . In this case, we can choose
L[t, i;ϕ] = q̈i(t). In general, the 'vector' x̃ ∈ M̃ has time-'space' components
describing 'points', components characterizing the �eld ϕ as its tensor type,
and the time t. Usually, we will distiguish the time and 'space' components
by writing x̃ = (t, x̄). We will assume that all components of the vector x̃ are
discrete variables. In other words,M̃ is a set de�ned by a speci�c properties of
the considered system, see also App.7.

We are in good company. Even the space can be described by means of the
�eld ϕ(x̃).

The functionals L,N are also functions depending on the vectors x̃ ∈ M̃ .
The set of functions dependent on the �xed ϕ will be denoted by F̃ϕ .

As usual, we will assume that a freedom of the theory described by Eq.1 is
such as the freedom of the theory descibed by the main linear part:

L[x̃;ϕ] = 0 (2)

It means that in both cases the same type of initial and boundary conditions
can be used to get an unique solution.
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We also assume, following an analogy with the classical mechanics, see also
[1] and App.1, that the system represented by the �eld ϕ - subjects to the
restrictions of the following type:

ˆ
Q[x̃, ỹ;ϕ]L[ỹ;ϕ]dỹ = f [x̃;ϕ] (3)

where Q[x̃, ỹ;ϕ] is a given projector (kernel of a projector Q := Q2) acting in
the linear space of functions F̃ϕ and f [x̃;ϕ] is a given function. They both are
depending in the linear or nonlinear way on the �eld ϕ. The restrictions (3)
together with additional assumption imposed on the 'reaction forces' R[x̃;ϕ] ,
(7), are called here the dynamical constraints (DC). They can be ideal (IC)
or non-ideal constraints (NIC).

In the paper we show how Eq.1 is changing in case of NIDC, Sec.2, and
how Eq.3 can be interpreted, Sec.3. In Sec.3 we also show how all formulas and
equations are changing in the case of ideal constraints, see also App.3.

In the paper the concept of virtual displacements, typical tool when dis-
cussing systems with constraints, is replace by the algebraic concepts such as
the projection operators (projectors), see: [3, 4]. We hope that it gives a new
look at the classic problems.

What I found interesting in the present study is a connection of the certain
constants of motion with the presence of certain projection operators in the
considered equations, see Eq.10. It's like combining constants of motion with a
certain symmetry of considered equations resulting from the Noether's theorem.
Equations with projectors as in Eq.10 or Eq.26 mean that certain changes of
functionals describing these equations do not change the whole equations.We
see in this actually a generalization of symmetries of the equations.

In the case of restrictions (3), Eq.1 has to be changed by

L[x̃;ϕ] + λN [x̃;ϕ] +G(x̃) = R[x̃;ϕ] (4)

with temporarily unknown 'reaction force' R (a generalization of Lagrange's
equations of the �rst kind). In addition, I believe that the emphasis placed here
on Lagrange's equations of the �rst kind is an expression of a broader approach
to the description of the nature including space, see [5], - the opposite of any
kind of reductionist approache - inspite of this that they may be acceptable in
certain cases, see all arguments behind of Lagrange's equations of the second
kind.

For the systems with the constraints, we can look back in such a way that
we want to modify the theory determined by measuring of local entities as
the position of the various parts, taking into account certain global (non-local)
entities, for example energy of the system. In this and only this sense, the
presented approach to classical mechanics contains some elements of quantum
mechanics.

In the case of economics system the local and global entities are important
ingredients of many theories. In this case, Adam Smith's the invisible hand of
the market would solve all the problems of capitalism if the constrains imposed
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by theory would be a result of the primary Eq.1. Otherwise, the global rules
(constraints) can be used to modify the interaction (reaction forces) between
the various actors in the market.

As in other papers, author is using integration sign even in the case of discrete
variables.

2 The 'reaction force' R and a principle of vir-
tual works surrogate (PVW(S)); non-ideal con-
straints

Introducing the complementary projector P :

P [x̃, ỹ;ϕ] +Q[x̃, ỹ;ϕ] = δ(x̃, ỹ) (5)

where δ is Kronecker or Dirac's delta, we can express the general solution to
Eq.3 as follows:

L[x̃;ϕ] = f [x̃;ϕ] + g[x̃;ϕ] (6)

where f [ϕ] = Q[ϕ]f [ϕ] ∈ QF̃ϕ and g = Pg is an arbitrary function from PF̃ϕ,
see (29). Here and elsewhere, for example:

f [ϕ] = Q[ϕ]f [ϕ]⇔
ˆ
dỹQ[x̃, ỹ;ϕ]f [ỹ;ϕ]

Assuming that the 'reaction forces' are such that

ˆ
dỹP [x̃, ỹ;ϕ]R[ỹ;ϕ] = 0 (7)

we get from Eq.4 that

ˆ
dỹP [x̃, ỹ;ϕ] {L[ỹ;ϕ] + λN [ỹ;ϕ] +G(ỹ)} = 0 (8)

see (29). From that, the arbitrary element g in the expression (6):

g[x̃;ϕ] = −
ˆ
dỹP [x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} (9)

and the formula (6) can be described as this:

L[x̃;ϕ]− f [x̃;ϕ] +
ˆ
dỹP [x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} = 0 (10)

Here, f [x̃;ϕ] ∈ Q[ϕ]F̃ϕ. Eq.10 substituts Eq.1 in the case of GCs (3), which are
satis�ed by any solution to Eq.10.

By comparison with Eq.4, the 'reaction force'
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R[x̃;ϕ] = f [x̃;ϕ] +
ˆ
dỹQ[x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} (11)

Following the analogy with classical mechanics one can say that Eq.7 re-
sembles some surrogate of the virtual work principle (VWP) - a surrogate
because the 'reaction forces', at the moment t, can not be perpendicular to the
surface of the constraints (DC), Eq.10 resembles Lagrange's equations of
the �rst kind, and Eq.11 is a formula for the 'reaction forces' of DC (3). In
this analogy, instead of the virtual displacements, we have used appropriate
linear projectors depending on the �eld ϕ. The '�eld' ϕ in the simplest case
may represent the radius vector. But the main di�erence of presented approach
to constraints and canonical approach lies in the fact that there are explicitly
described rather acceleration restrictions caused by the presence of constraints
than constraint surfaces. See also [2].

3 Constraints, constants of motion and projec-
tors. Ideal constraints

We ask now when the restrictions (3) can be interpreted as contraints of the dy-
namical system (1)? To answer this question let us consider classical mechanics
with the general form of constraints:∑

aij(q, t)q̇j + gi(q, t) = 0 (12)

where q̇j is the j-th component of the vector q̇. Holonomic constraints can be
di�erentiated once with respect to time to get Eq.12. Di�erentiating once more
with respect to time, in both cases we get equations which, in the matrix-vector
form, are:

B(q, t)q̈ = b(q̇, q, t) (13)

The matrix B in this equation has to be a singular. Otherwise, it would be a
dynamic equation, which for given initial conditions would describe the problem
in an unique way. If we assume that B is a right invertible matrix, then such a
right inverse exists that

B(q, t)B−1
R (q, t) = I (14)

and

B−1
R (q, t)B(q, t) = Q(q, t) (15)

After multiplication of Eq.13 by the inverse B−1
R (q, t) we get analoge of Eq.3.

In fact, constraints equations obtained in the above way can have the fol-
lowing structure:

Q′B(q, t)q̈ = b(q̇, q, t) (16)
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with projected right invertible or invertible operator B, which actually cor-
responds to a situation in which there are fewer constraints than degrees of
freedom, see App.3. Then, the equivalent equation:

Qq̈ ≡ B−1
R Q′B(q, t)q̈ = B−1

R b(q̇, q, t) ≡ f (17)

has the form (3) with projectorQ = B−1
R Q′B(q, t) , L = q̈ and the functional f =

B−1
R b(q̇, q, t). Q indeed is a projector because: B−1

R Q′B(q, t) · B−1
R Q′B(q, t) =

B−1
R Q′B(q, t)⇐⇒ Q2 = Q. See also App.3.
Multiplying Eq.3 with an operator depending on the �eld ϕ:

A[ϕ]⇐⇒ A[x̃, ỹ;ϕ] (18)

we get equation:

A[ϕ]Q[ϕ]L[ϕ] = A[ϕ]f [ϕ] (19)

where A[ϕ] and Q[ϕ] operate in the space of functions F̃ϕ 3 L[ϕ], f [ϕ]. This
equation is equivalent to Eq.3 if, for example, we assume that operator A[ϕ] is
a right invertible:

A[ϕ]A[ϕ]−1
R = I (20)

where I is the unit operator in space F̃ϕ, and that

A−1
R [ϕ]A[ϕ] = Q′′ ⊇ Q (21)

where Q′′, Q are projectors.
In the case of ideal constraints in which the reaction forces Rideal[x̃;ϕ] are

perpendicular to the constraint surfaces and projectors Pideal[x̃, ỹ;ϕ] projecting
on the tangent surfaces at 'points' ϕ(x̃) are known, then we have, of course:

ˆ
Pideal[x̃, ỹ;ϕ]Rideal[ỹ;ϕ]dỹ = 0 (22)

In this case all derived formulas above will not be changed if

QidealQ = Qideal (23)

and Pideal = I −Qidealbut then, of course, Q→ Qideal. If (23) is not satis�ed,
then, starting from the formula (7), we have changes: so that (8) is modi�ed by

ˆ
dỹPideal[x̃, ỹ;ϕ] {L[ỹ;ϕ] + λN [ỹ;ϕ] +G(ỹ)} = 0 (24)

(9) is substituted by:

Pidealg[x̃;ϕ] = −Pidealf [x̃;ϕ]−
ˆ
dỹPideal[x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} (25)

and (10) is substituted by:
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L[x̃;ϕ]−Qidealf [x̃;ϕ] +
ˆ
dỹPideal[x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} = Qidealg[x̃;ϕ]

(26)
with arbitrary element Qidealg[x̃;ϕ]. In this case it is also clear that 'reaction
forces' are also not unique:

R[x̃;ϕ] = Qidealf [x̃;ϕ] +
ˆ
dỹQideal[x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)}+Qidealg[x̃;ϕ]

(27)
if

Qidealg[x̃;ϕ] 6= 0 (28)

Compare with (11).
We hope however that even in the case of (28) we get an unique result, if

the initial conditions are chosen in accordance with the used constraints.

Constants of motion principle ((CM)P)?

At this point we remind the obvious fact that the constraints in classical me-
chanics are the constants of motion (CM) of equations in which the reaction
forces appear explicitly (e.g., in Lagrange equations of the �rst kind). Since,
for the restrictions (3), the above regularity is not always satis�ed - the con-

stats of motion principle is not true - and we use the name of DC. We would
like to point out that, for the same reason, DC considered are more general
than the non-ideal constraints. If (3) corresponds to the CM, then, because the
projector P occurring in the condition (7) generally does not project on virtual
diplacements, the presented formalizm describes rather non-ideal constraints,
see App.3.

In the situation encountered in astrophysics when the energy of the system
changes for no apparent reason, which is expressed in phrases such as dark
matter or energy, such information can be considered as the presence of DC
which can be obtained by the time di�erentation of the changing in the time
the integral of energy.

But the problem of determining reaction forces has to be solved with some
additional principle or by the trial and error method. For example, the reaction
forces can be determined by the requiring that for constraints which are CM of
the original Eq.1 , disappeared.

4 Examples of linear dynamical constraints (LDC)

Let us collect the main results:
Eq.10 is
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L[x̃;ϕ]− f [x̃;ϕ] +
ˆ
dỹP [x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} = 0

DC (3) are

f [x̃;ϕ] = QL[x̃;ϕ] ≡
ˆ
Q[x̃, ỹ;ϕ]L[ỹ;ϕ]dỹ

with �xed functionals L, f . P,Q - conjugate projectors (idempotent operators)
satisfying Eq.5:

P [x̃, ỹ;ϕ] +Q[x̃, ỹ;ϕ] = δ(x̃, ỹ)⇐⇒ P +Q = I

Because

PQ = QP = 0, P = P 2, Q = Q2 (29)

we see that DC (3) result immediately from Eq.10.
Let us take DC (3) with

f [x̃;ϕ] = µQL[x̃;ϕ] (30)

Hence and from Eq.10

(I − µQ)L[x̃;ϕ] +
ˆ
dỹP [x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} = 0 (31)

We can tell immediately that, at µ = 1, DC (30), (3) lead only to weakning
of the original Eq.1.What happens, for µ 6= 1? In this case, by inverting the
operator I − µQ, we get the following equation:

L[x̃;ϕ] + (I − µQ)−1
´
dỹP [x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} =

L[x̃;ϕ] +
´
dỹP [x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} = 0 (32)

One can understand this result if we take into account that now
´
Q[x̃, ỹ;ϕ]L[ỹ;ϕ]dỹ =

0.
Another example of the linear DC (3) is given by:

f [x̃;ϕ] = −QMϕ(x̃) ≡ −
ˆ
dỹdz̃Q(x̃, ỹ)M(ỹ, z̃)ϕ(z̃) (33)

where M is a given constant matrix and Q a projector, both independent of ϕ.
Now, Eq.10 is given by

LM [x̃;ϕ] +
ˆ
dỹP (x̃, ỹ) {λN [ỹ;ϕ] +G(ỹ)} = 0 (34)
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with the linear functional: LM [x̃;ϕ] = L[x̃;ϕ] + QMϕ(x̃). The term QMϕ
can describe parameters which do not appear in the �rst term because, e.g., of
symmetry in a certain area of considered equations.

One can �nally say that any knowledge about the main linear term
of Eq.1, expressed in the form of (3), allows us to change this equation to the
form of Eq.10 if the analoge of the virtual work principle is assumed. In this
way, relying more on observation than on the proliferation of some ideas, you
can try to understand some phenomena.

5 Examples of nonlinear dynamical constraints
(NDC)

We assume

f [x̃;ϕ] = µQN [x̃;ϕ]⇐⇒ f [x̃;ϕ] = µ

ˆ
Q[x̃, ỹ;ϕ]N [ỹ;ϕ]dỹ (35)

This e�ectively means that, for G = 0, we modify the nonlinear part of Eq.1.
In this case, Eq.10 takes the form:

L[x̃;ϕ]− µ
ˆ
Q[x̃, ỹ;ϕ]N [ỹ;ϕ]dỹ +

ˆ
dỹP [x̃, ỹ;ϕ] {λN [ỹ;ϕ] +G(ỹ)} = 0 (36)

or in short as

L+ (λP − µQ)N + PG = 0 (37)

Hence, the equivalent,

(λP − µQ)−1 (L+ PG) +N = 0 (38)

where (λP − µQ)−1 = λ−1P −µ−1Q, see (29). In other words, all the modi�ca-
tion of the theory can be transferred to linear terms, although without non-linear
terms the above modi�cation disappears!

In all these examples one can treat some constant of motions as constatraints
related to a kind of material surfaces and some, as energy, as purely dynamical
quantities, see also App.1.

These examples also show how 'beautiful' theory can be changed when the
facts clearly demonstrate its partial falsity:(

6 App.1 about analogy with classical mechanics
and the essence of the constraints

In classical mechanics the main quantity around which everything revolves is an
accerelation of objects either extended or point like particles. The accelerations
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in the dynamical equations appear in the linear way. Moreover, if the constrains
are proper times di�erentiated with respect to time (once or twice), then accel-
erations also appear in the linear way, see [1]. Such quantities, which describe
changes, or changes of changes as in the case of acceleration, also appear in a
linear way in the case of 'physical' �elds describing extended systems. They are
responsible for the additional conditions as the initial and boundary conditions,
which must be taken into account to get an unique solution to the considered
equations.

When we look at constraints as constants of motion, the question naturally
arises, what is the di�erence? The answer is as follows: the equations describing
systems with constraints, as, for instance Eq.(10), is obtained by a suitably
modi�ed equations that describe systems without constraints, as in this case the
Eq. (1). Modi�cations to be made can be done in many ways. In mechanics,
this is done by introducing the constraint forces also called the reaction forces.
In the case of the ideal constraints, however, which generalization we considered
in the submitted work, unambiguous results are obtained due to the principle
of virtual work. In the paper, this principle is replaced, or generalized, by Eq.7.

In practice, constants of motion describing constraints can be so easily ob-
tained that to �nd them we do not even need to know the explicit form of
Eq.10! This is it if, for instance, Eq.12 is enough to �nd appropriate constants
of motion.

7 App.2 about the canonical and dynamical con-
straints ((CC) and(DC))

By CC we understand mathematical or physical restrictions which descriptions
does not require 'accelerations' or their analogues. In classical mechanics they
are called holonomic and nonholonomic constraints. From their de�nitions re-
sults that for systems with CC the initial and boundary conditions can not
be arbitrary. It is result of fact that CC eliminate some number of degrees of
freedom like in the case of pendulum or incompressible liquid.

Main di�erence with DC is such that CC are automatically realized by there
equations: 'surfaces' which realizes such constraints. This is not the case of
DC which are realized by the extra forces calculated with the help of
dynamical equations!

8 App.3 An example of CC described in the form
of DC (see Eq.3). Spherical constraints

Let us assume that we have the following spherical constraint:

ˆ
dyϕ2(ȳ, t) = constant (39)

Hence,
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ˆ
dȳϕ(ȳ, t)ϕ̇(ȳ, t) = 0 (40)

and

ˆ
dȳϕ(ȳ, t)ϕ̈(ȳ, t) +

ˆ
dȳϕ̇(ȳ, t)ϕ̇(ȳ, t) = 0 (41)

In this case, to get an analoge of formula (13), or rather (16, we can choose:

B[x̄, ȳ, t;ϕ] = δ(x̄− ȳ)ϕ(x̄, t) (42)

where B is a nonsingular operator at least for t for which ϕ 6= 0:

B−1
R [ȳ, z̄, t;ϕ] = B−1[ȳ, z̄, t;ϕ] = δ(ȳ − z̄) 1

ϕ(ȳ, t)
(43)

Q′(x̄, ȳ) =
1
V

ˆ
dx̄δ(x̄− ȳ) =

1
V

(44)

and

b[t;ϕ] = −
ˆ
dȳϕ̇(ȳ, t)ϕ̇(ȳ, t) (45)

Here V denotes the volume of an integration region, x̄ ∈ V . Of course, (44) is a
projector, which action on a function is reduced to integration and multiplication
by the factor 1/V to get in result a constant. Now, we can use the formula (16)
and (17) to describe CC (39) in the form of Eq.3) of DC with

Q[x̄, ȳ, t;ϕ] = B−1
R Q′B[x̄, ȳ, t;ϕ] =

´
B−1

R [x̄, z̄, t;ϕ]Q′(z̄, w̄)B[w̄, ȳ, t;ϕ] =´
dz̄dw̄δ(x̄− z̄) 1

ϕ(x̄,t)
1
V

´
dz̄′δ(z̄′ − w̄)δ(w̄ − ȳ)ϕ(w̄, t) = 1

V
ϕ(ȳ,t)
ϕ(x̄,t) (46)

Hence, in the DC (3),

f [x̄, t;ϕ] = − 1
ϕ(x̄, t)

ˆ
dȳϕ̇(ȳ, t)ϕ̇(ȳ, t) (47)

It is worth noting here that Q is a projector, but it is a symmetric projector
only for all �eld variables equal to each other:

ϕ(x̄, t) = ϕ(ȳ, t), for x̄, ȳ ∈ V (48)

In other cases, (3) and (7), with (46), can describe the non-ideal constraints
described by a surrogate of virtual work principle:

PR[x̄, t;ϕ] = R[x̄, t;ϕ]− 1
V ϕ(x̄, t)

ˆ
dȳϕ(ȳ, t)R[ȳ, t;ϕ] = 0 (49)

where the projector P was chosen as:

11



P [x̄, ȳ, t;ϕ] = δ(x̄− ȳ)−Q[x̄, ȳ, t;ϕ] = δ(x̄− ȳ)− 1
V

ϕ(ȳ, t)
ϕ(x̄, t)

(50)

This projector re�ects circular symmetry in the case of non-ideal costraints (39).
From (49),

R[ȳ, t;ϕ] =
G[t;ϕ]
ϕ(ȳ, t)

(51)

where a functional G does not depend on the variable ȳ. The values of '�eld'
in the denominator should not necessarily worry us, because the in�nity of the
expression 1/ϕ(ȳ, t) , for t→ t′, can be simultaneosly neutralized by G→ 0 .

Once more, for ideal constraints, we should have:

R[ȳ, t;ϕ] = H[ϕ]ϕ(ȳ, t) (52)

with a scalar H[ϕ]. From (51) we get

ϕ(ȳ, t)2 =
G[ϕ]
H[ϕ]

but this would mean that ϕ does not depend on ȳ in a continuous way. It also
means that the conditions (49) and (3) can not describe ideal constraints.

Spherical constraints describe the simplest nonlinear, holonomic constraints
in physics. They contain the symmetry of the circle, which throughout human
history has been synonymous with - excellence. So would not be strange if they
would be found in some basic �eld theory describing the Universe. The sphere
in the con�guration space of such a system as the universe allows for a situation
in which the individual subsystems run on a sphere of smaller area, the favorite
model in cosmology, as well as a situation reminding the pendulum-like model
in which the kinetic energy takes maximum, and, there are moments in which
the kinetic energy of subsystems completely disappear. In this way the cyclical
evolution takes place.

In the case of ideal constraints (52) we have another projection operator
than (50):

Pideal =
ϕ̇(x̄, t)ϕ̇(ȳ, t)´
ϕ̇(z̄, t)ϕ̇(z̄, t)dz̄

(53)

In this case Eq.22 is satis�ed, see (52) and (40).

9 App.4 about one-sided constraints (CC) in clas-
sical mechanics; short-range forces

On this subject I speak of the following reasons: First, in the Internet, I found
the discussion of such constraints by means of advanced means or complicated
cases including solid mechanics. Secondly, as previously discussed, I am focusing
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not on the elimination of redundant degrees of freedom, but on the forces that
are doing it.

In the case of n material points, the one-sided constraints are characterized
not by equations but by inequalities. Thus, in the case of holonomic constraints
we hawe:

fi(~r1, ..., ~rn; t) ≤ 0, for i = 1, ..., k < 3n

where ~ri means the radius vector of the i-th particle. Inequalities mean a drastic
loosening of restrictions: only if there is 'threat' of their failure, the system
'su�ers' of reaction forces. Such situation can be described by short-range forces,
whose centers satisfy the equations

fi(~r1, ..., ~rn; t) = 0, for i = 1, ..., k < 3n

Usually, the surfaces satisfying the above equations are calle the walls. Short-
range reaction forces should be a priori chosen in such a way that an energy,
which is available for individual particles is not enough to cross the walls. In
this way we avoid tracking, when the particles are hiting in to the walls, nor the
need for discontinuous changes in their momenta. Everything is encoded in the
dynamical equations.

10 App.5 about projectors and one-sided invert-
ible operators

A right invertible operator A is de�ned as an operator for which one can write
the following equation:

AA−1
R = I (54)

with not uniquely chosen a right inverse operator A−1
R and the unite operator

I in a considered linear space. For a left invertible operator, we would have
a similar de�nition, but the operator A−1

R is substituted by an operator A−1
l

standing at the l.h.s. of the operator A:

A−1
l A = I (55)

Occurring here operators A−1
R , A−1

l satisfy the �rst two demands of the Moore-
Penrose de�nition of the generalized inverse (pseudoinverse) denoted by A+:

(1) AA+A = A (56)

(2) A+AA+ = A+ (57)

and often, in considered examples, are satis�ed the second two demands of the
Moore-Penrose de�nition,:
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(3)
(
AA+

)∗ = AA+ (58)

(4)
(
A+A

)∗ = A+A (59)

see [4], what guarantees of getting a least squares solution to the considered
system of equations.

We think however that one-sided invertible operators in the sense of Eqs(54,55),
are more simple and therefore more useful for basic description of nature, and
except that, the request: 'least squares solution' is not always necessary. see
[3, 4] and other author's 'recent' papers.

11 App.6 about strange behavior of some objects

Let us assume that we consider a discrete system such that from Eq.4 R, the
reaction force, has to be a vector. In this case Eq.51 means that G is not a scalar
but must behave so that R , at the transformation of the coordinate system, is
the vector. Taking, however, the scalar product of the two vectors ϕ,R :

(ϕ(·, t), R[·, t;ϕ]) = V G[t;ϕ] (60)

we should get, in the r.h.s., the scalar. This explicit contradiction, we can
probably explained by the fact that G behaves as a scalar on the subset of
vectors ϕ satisfying Eq.39.

12 App.7 abot space M̃ , Cantor's theorem and
evolution theory

In Sec.1 we said that the set M̃ consists of elements (vectors) re�ecting speci�c
properties of the considered system. This is only partly true because in these
elements are also included certain properties of the observer as the experience of
one, two or three dimensional spaces. As we know from the Cantor's theorem,
there is 1-1 correspondence between the points of the plane or of n-dimensional
space and of the stright line. It seems, however, that the identi�cation of objects
with a higher dimensional space is much simpler and e�ective than using
the one-dimensional, and this was used at least by some organisms, see also [5],
page 20, where other opinions are presented.

Higher dimensional spaces particularly preferred by quantum �eld theory
to get meaningful theory appear to be evidence of the fact that even in the
�eld of logic a similar phenomenon can be observed. By means of constraints
certain dimensions can be roll up. By means of them also some constants can
be introduced into considered equations.
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