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Abstract. A geometric theory in 10+1 dimensions is developed starting from a transition S10 → S3×S7 

followed by dynamical compactification in which S7 becomes the compactified particle dimensions in a 
Kaluza-Klein  theory,  and  the  spatial  S3 inflates.  The  closed  space  acquires  a  vacuum  winding 
π7(S3)=π4(S3)=Z2 with  Spin(3),  SU(2),  U(1)  eigenvalues  (0,–½ 1)  and chirality  Z2 =  {L,  R}.  This 
vacuum breaks the symmetry of the particle space SU(4)/SU(3)  ≅ S7 to (Spin(3)⊗SU(2)⊗U(1))/Z3 

giving  12  topological  monopoles  (π6(S2)=Z3×Z4)  with  spin  ½  giving  3  families  of  4  fermionic 
monopoles that split into Spin(3) coloured and colourless SU(2) doublets with the same charges as the 
fundamental  particles.  Topological  conditions  in  the  classical  theory  give  a  definition  of  Planck's 
constant ħ=c3χ2/G as the physical scale of the topological spin charge, and define the Weinberg angle as 
tan2θW=5/16. Closed formulae for e, g, g', mZ, mW, mH are derived in the classical theory. The topological 
monopoles take the form of rotating compactified black holes in the dimensionally reduced theory, 
where their ergo-region can trap virtual-radiation sufficient to cancel the rest mass of the black hole. 
This leads to the derivation of a quantum field theory for the topological monopoles where the Kaluza-
Klein dimensional reduction gives a Lagrangian containing the terms of the Standard Model, including 
a quartic scalar field term which gives the coupling constant value λ=1/8 for the Higgs term.

1. Introduction
The development of a pure geometrical Kaluza-Klein theory [1-5] for the known particle interactions in 
the original spirit of Kaluza [1] was apparently shown not to be possible by Witten [6] because the 
chirality of electroweak interactions couldn't be generated. However, this result no longer holds for a 
closed universe, where a chiral vacuum becomes possible with a topological winding at the level of the 
whole closed universe which breaks the symmetry of the particle dimensions in a Kaluza-Klein theory,  
and allows for topological monopoles as defects in the local structure of the space. The closure of the 
space also gives rise to a dynamical compactification [7] mechanism driven by the transfer of radiation 
from the non-spatial dimensions to the spatial dimensions [8]. This transfer of radiation gives a see-saw 
process where the compactification drives a form of inflatonless inflation [9] in the spatial dimensions. 

This  paper  imposes the closure condition on the the assumption of 10+1 dimensions to  give a 
unified universe of S10, and so the geometrical theory will be referred to as S10 unified field theory 
(STUFT). This metric-field theory introduced in [10] contains no matter fields or any other fields, and 
so is a a pure metric field theory in which the higher dimensional universe is empty of matter, as was  
originally assumed by Kaluza [1] and envisaged by Einstein [11,12]. However, the field equations of 
Einstein gravity extended to any number of spatial dimensions support metric-wave solutions as the 
dimensional extension of gravitational waves in General Relativity, and so the universe is assumed to 
initially contain metric-wave radiation. This gives radiation that realises the dynamic compatification of 
dimensions through a compactification-inflation see-saw mechanism of radiation transfer.

The metric-field equations are assumed to describe a real “fabric of space” as a direct extension to 
the “fabric“ conceptualisation of space-time in General Relativity. This means that the 10 initially equal 
spatial dimensions are assumed to be physical dimensions, and not just the effective dimensions of a 
projection theory [13-16]. This physicality assumption is extended with the following three conditions:
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1) if there is contact of the “fabric of space” at two distinct points in the space, then a bridge can 
form between those two points

2) the “fabric of space” can form holes when the topology allows
3) the space is physically closed

The first condition is that the Einstein-Rosen bridge [17] solution of General Relativity can be extended 
to 10+1 dimensions and can form upon self-contact of the “fabric of space” given a suitable stress-
energy term. The second physical assumption is that when the topology allows, metric-field radiation of 
sufficient energy can create holes in the space. The critical assumption is that the universe is closed, as 
in combination with the previous two conditions it gives the topology for the formation of a non-trivial 
winding in the space and a spectrum of 12 topological defects [10]. 

The topological conditions of STUFT are outlined in section 2 and the compactification-inflation 
see-saw  given  in  section  3  [10].  The  standard  dimensional  reduction  techniques  of  Kaluza-Klein 
theories are applied in section 4 to obtain the dimensionally reduced classical theory. The topological 
conditions applying in the dimensionally reduced theory gives non-singular topological monopoles, as 
is the case for the “solitons” of other Kaluza-Klein theories [18,19]. This no singularity condition is  
applied to the Kerr metric in section 5, where the properties of the space give a geometric basis for 
Planck's constant and the Compton wavelength. Closed formulae for the coupling constants, the vector-
field masses, the scalar-field mass and the energy density of the topological winding of the space are 
obtained [10],  and all  agree well  with the Standard Model.  The classical  monopole theory is  then 
considered  in  section  6,  where  difficulties  in  the  classical  theory  require  a  change  in  descriptive 
framework. It is shown in section 7 that the inclusion of the helical wave property of the topological 
monopoles found in section 5 in the classical theory leads to the derivation of a quantum field theory 
with symmetry (Spin(3)⊗SU(2)⊗U(1))/Ζ3, where the Spin(3) coloured monopoles possess 1/3 electric 
charges. The Lagrangian terms of the quantum field theory derived from the dimensionally reduced 
classical theory of section 4 agree with those of the Standard Model.

2. Electroweak Vacuum and Particles
The metric-field equations in 10+1 dimensions will be taken to be that of Einstein gravity with a stress-
energy tensor for the energy density of metric-waves

µ νµ νµ ν
κ T
c

gG 4=Λ+   (1)

and the universe is assumed to initially contain an energy density ρ0 of metric-waves,. The Ricci scalar 
of the Einstein action encapsulates isotropy and homogeneity conditions, which also give the metric for 
a closed space in any number D of spatial dimensions as being the Friedman-Robertson-Walker metric
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for a sphere SD with time dependent radius a(t) and generalised angle element ΩD–1. For stress-energy 
tensor components Ttt = ρc2, Tii = p, the field  equations for a(t) are given by

κ ρ=Λ−
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which gives the SD cosmology the generic character of the radius of the sphere increasing up to some 
maximum radius and then decreasing. The point of maximum radius for the S10 cosmology will be 
taken to mark the time t0=0 at which point the radiation energy density is ρ0.

As the S10 shrinks from its maximum radius at t0=0, the energy density of the metric-wave radiation 
ρ will increase, which in the classical metric field theory will be associated with an increase in the wave 
amplitude  of  the  metric-waves.  If  any  of  these  metric-wave  modes  are  such  that  they  oscillate 
orthogonal to the surface of the sphere S10, then these two factors will inevitably lead to a situation 
where wave crests collide internally to the sphere. The “fabric of space” is assumed to be such that this  
can result in the formation of an internal Einstein-Rosen bridge [17], for which the topology of the 
sphere SD is changed to that of a torus Tn+m=Sn×Sm. This is the critical transition from which all else 
follows, and so it  is assumed that either the given mechanism leads to such an internal bridge,  or 
extending the  Einstein action with additional curvature terms leads to the existence of some  other 
mechanism by which an internal bridge forms. In any case, the net result would be the insertion of a 
tunnel through SD, where the fusing would be topologically equivalent to two internal hemispherical 
depressions in the sphere meeting and fusing to form a tube. The homotopy group πn(Sn-1) = Z2 ∀n>2 
shows that the meeting of such hemispherical depressions in Sn at their equatorial sphere Sn–1 can result 
in a torus Tn+m with a non-trivial winding, where πm(Sn) = Z2 is required for consistency

S10 →  T2+8 = S2×S8 as π8(S2) = Z2

S10 →  T3+7 = S3×S7 as π7(S3) = Z2

S10 →  T4+6 = S4×S6 as π6(S4) = Z2

The second possibility is selected as it involves the S3 of a closed spherical spatial cosmology given by 
the Friedman-Robertson-Walker metric. This gives S7 as being the non-spatial dimensions, where the 
given homotopy group is for a map from S7 to the whole S3 spatial cosmology, and so would give a 
non-trivial vacuum structure. The sphere S7 is a Hopf fibre-bundle [20,21] of an S3 fibre over an S4 

base-space, and the non-trivial map of the given homotopy group involves a map from the S4 base-
space to the S3 cosmology, as π7(S3) = π4(S3) = Z2.

The map from S4 to S3 is an example of the homotopy group relation πn(Sn-1) = Z2 ∀n>2, where the 
equatorial sphere S3 of S4 is mapped to the spatial cosmology S3. This gives the topological transition as 
leading to a sphere decomposition sequence that is locally of the form

S10 →  S3×S7 → S3×(S3×S4) → S3×(S3×(S3×S1))

The first step is the transition due to the formation of an Einstein-Rosen bridge, the second step is the 
separation of S7 into S3 fibre and S4 base-space, and the last step is the sphere S3 being split off by the 
map to the spatial S3. As it is the sphere S7 which is mapped to the spatial sphere S3, the twisted torus 
T3+7=S3×S7 can be identified as having an inner sphere S7 that is “rotated” in going around the outer 
sphere of S3. This identification for the sphere composition of the torus T3+7 allows for the S3 of the S4 

base-space to be identified with the group space of the symmetry group Spin(3) ≅ SU(2) and S1 with 
that of U(1), such that group eigenvalues can be found for this non-trivial vacuum structure. 

The dimensional reduction of the maps Sn to Sn–1 ∀n>2 can generically be given by the coordinate 
parametrisation xn–1 = xξ cosξ, xn = xξ sinξ such that the radius of the sphere r2 = x0

2 + … + xn-2
2 + xξ

2 is 
reduced to that of Sn-1. For S4, this parametrisation reduces the radius r2 = x0

2 + x1
2 + x2

2 + xξ
2 to that of 

S3, where the  x3,  x4 coordinates define the S1 group space of U(1) with group eigenvalue 1, and the 
coordinates x0, x1, x2, xξ define the S3 group space of SU(2) with group eigenvalue ½. As the S3 fibre of 
the space S7 doesn't participate in the map to the spatial S3, the corresponding group eigenvalue is 0, 
which selects the group Spin(3) as the double cover of SO(3) with group eigenvalues including 0. 

The map π7(S3) = π4(S3) = Z2 specifies a non-trivial winding in the orientation of the S3 sub-space of 
the S4 base-space of S7 in going around the outer sphere of S3 in the torus T3+7=S3×S7, which implies 
that the rotation sense of the winding can be related to the sense of “going around” the spatial S3. Such 
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relative rotation sense is  simpler  for  the case of  non-trivial  twists  in the torus T2=S1×s1,  where S1 

denotes the outer circle of the torus and s1 the cross-section. Non-trivial twists in T2 are given by the 
homotopy group π1(S1) = Z, but attention will be restricted to the cases {–1,+1}. In going clockwise 
around the outer S1 of the torus T2, the inner s1 circle is either rotated clockwise or anti-clockwise by 
2π, where using the right-hand rule as the definition of rotation sense gives the labels of left and right 
for {–1,+1}. It should be noted that the choice of clockwise and the right-hand rule to define rotation 
sense is arbitrary, but once that choice is made the two cases of the twisted T 2 torus can be given the 
chiral labels {L, R}. For the non-trivial vacuum of  π4(S3) = Z2 the rotation sense in the spatial S3 is 
defined by way of the rotation group SU(2), where the right-hand rule gives the same chiral labels. A 
similar arbitrary choice of rotation sense has to be made for the internal particle base-space S4, where 
following the convention of the Standard Model gives the S4 space orientation as being (–½,1). This 
gives the twisted vacuum as having (SO(3),SU(2),U(1)) eigenvalues (0,–½,1) with the two possibilities 
of  the  non-trivial  map  π7(S3)  =  π4(S3)  = Z2 having spatial  chiralities  {L,  R}.  For  the  local  colour 
symmetry group being Spin(3) this would give the colour, isospin and hypercharge eigenvalues of the 
electroweak vacuum in the Standard Model, where the electroweak vacuum has chirality L. It was 
claimed in [6] that the chiral vacuum of the Standard Model cannot be generated for a Kaluza-Klein 
theory, but that result was for flat space-time whereas STUFT considers a closed cosmology.

The map from the S4 base-space of S7 to the spatial S3 breaks the equivalence of the 7 non-spatial 
dimensions, leaving the symmetry of the S3 (colour) fibre intact but breaks the symmetry of the S4 

(electroweak) base-space. This symmetry breaking leaves intact the symmetry of a closed S1 embedded 
in the S4 base-space, where the (SU(2), U(1)) eigenvalues (–½,1) show a compact embedding for the 
unbroken U(1) symmetry with group embedding angle tanφW = ½. For any transition where manifold G 
is reduced to H, the homotopy group relation π2(G/H) = π1(H) shows that topological monopoles arise 
when π1(H)≠0 [22], which will be true for the compact embedding of the unbroken U(1) symmetry. 

The group embedding angle tanφW=½ for the unbroken U(1) symmetry differs from the Weinberg 
angle tanθ W≈0.55 [23-25] in the Standard Model. However, there is a distinction between the physical 
spaces which possess a physical scale, and the group spaces of the unitary groups SU(2) and U(1),  
which are unit spheres. The group angle  φW gives the embedding of the unbroken U(1) group in the 
broken SU(2) and U(1) symmetries, whereas the expression of the Weinberg angle tanθ W =g'/g is in 
terms of the SU(2) and U(1) coupling constants g and g'. In the dimensionally reduced Kaluza-Klein 
theory these coupling constants give the physical scale of the compactified dimensions. So in STUFT, 
the Weinberg angle will be expressed in terms of the physical scales of the isospin S3 (radius  rI) and 
hypercharge S1 (radius rY) spaces as

W
I

Y
W r

r φθ tantan =

where tanθ W > tanφW indicates that  rY >  rI. Although the vacuum map S4 → S3 could be expected to 
distort the physical shape of the S4 base-space, the dimensional reduction of S4 to S3 gives an anomaly 
in the definition of the physical scales of rY and rI.

The surface of a sphere Sn is geometrically defined to be the set X of coordinate tuples (x0, …, xn) in 
(n+1)-dimensions for a given radius The coordinate parametrisation that picks out an S1 from Sn to give 
the equatorial sphere Sn–1 results in the subset Y⊂X of coordinate tuples (x0, …, xn–2, xξ) in n-dimensions. 
In the set X, each coordinate xi has the same range [–rn,+rn] and the same mean square over the set X of 
〈xi

2〉 = rn
2/(n+1) ∀i. The subset Y of the equatorial sphere Sn–1 consists of the same coordinates xi for i=0, 

…, n–1 with the same root-mean square values, and so the calculated radius rn-1 of the equatorial sphere 
Sn–1 in terms of the coordinates of Sn is

22
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For the map S4 → S3 where the hypercharge radius rY is the radius of the full S4 and the isospin radius 
rI is the radius of the equatorial sphere S3, the Weinberg angle θ W  will be given by

5590.0
4
5

2
1tantan ≈== W

I

Y
W r

r φθ   (4)

This closed formula for tanθ W gives sin2θ W=5/21≈0.2381 and cos2θ W=16/21, which compares with the 
experimental range of sin2θ W= 0.2312 – 0.2397 [23-25].

With the value of the group embedding angle tanφW=½ being modified by a dimensional reduction 
anomaly in  physical  scale,  the  irrational  value  of  the  Weinberg  angle  tanθW is  compatible  with  a 
compact embedding for the unbroken U(1) symmetry, for which the theory will contain topological 
monopoles. However, there will not just be a single type of topological monopole because the initial  
apportioning of the dimensions of the S7 space into S3 fibre and S4 base-space will not be unique. For 
the trivial vacuum, these different ways to apportion these non-spatial dimensions will be equivalent, 
but for the non-trivial vacuum they will not. The different ways for the space S7 to be apportioned to 
the S4 base-space is given by the homotopy group for the mapping of S7 to S4

π7(S4) = Z×Z12 = Z×Z3×Z4

The Z3×Z4 factor gives the spectrum of topological monopoles for the symmetry breaking that leaves 
the U(1) symmetry of electromagnetism unbroken, as can also be seen from the homotopy group for the 
map from S6 to the spatial S2 around a monopole

π6(S2) = Z12 = Z3×Z4

Table 1: SO(3), SU(2), U(1) eigenvalues for the SU(3) co-sets with particle identification

 SU(3) co-set 1/3 2/3 1
 SO(3)    1  SU(2)  +½  U(1)    2/3  (u+2/3)  U(1)    2/3  (c+2/3)  U(1)    2/3  (t+2/3)

 SU(2)  –½  U(1)  –1/3  (d–1/3)  U(1)  –1/3  (s–1/3)  U(1)  –1/3  (b–1/3)
 SO(3)    0  SU(2)  +½  U(1)    0     (νe)  U(1)    0     (νμ )  U(1)    0     (ντ )

 SU(2)  –½  U(1)  –1     (e–1)  U(1)  –1     (μ–1)  U(1)  –1     (τ–1)

The space S7 corresponds to the space of a quotient G/H of Lie Groups G and H, where of the possible 
group quotients giving S7, SU(4)/SU(3)  ≅ S7 is selected by the symmetry breaking of the non-trivial 
winding of the space. The SU(4) symmetry acting over S7 is broken by the non-trivial vacuum, where 
the standard pattern of SU(n) symmetry breaking to SU(n−p)⊗SU(p)⊗U(1) gives

SU(4) → (SU(2) ≅ Spin(3)) ⊗ SU(2) ⊗ U(1)

which has the same local form of SO(3)⊗SU(2)⊗U(1) as found for the non-trivial vacuum. However, 
the Z3 centre of the group quotient SU(4)/SU(3) gives the full symmetry group as being

(Spin(3) ⊗ SU(2) ⊗ U(1))/Z3   (5)

where this Z3 of the colour fibre gives a 1/3 factor to the U(1) eigenvalues of the monopoles with 
Spin(3) eigenvalue |λC| = 1. So the U(1) charge eigenvalues are given by
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1

−
=Yλ   (6)

which gives the particle identification for the 3 by 4 table of topological monopole eigenvalues shown 
in Table 1 [10].

These topological monopoles are not point defects with a singularity, as their topological basis gives 
them the form of a spatial sphere S2  being wrapped around S7 such that the configuration cannot be 
unwound. In any SD space given by (2), space only exists within the surface and does not exist in either  
the interior  or  the exterior  of the sphere SD.  So when the spatial  S2 of  a  topological  monopole is 
wrapped around S7 devoid of space, the S2 surface of the topological monopole will mark the boundary 
of a real hole in space with the same finite radius as the S7 dimensions. This surface boundary would be 
in the locally flat space-time of the full S3 cosmology, and so this S2 surface would have to be in one of 
the representations of the Poincaré group, which for massive objects in their rest frame are just in terms 
of the rotation group. There are two distinct topological maps from the S3 group space of the SU(2) 
rotation group to the S2 surface around a spatial hole: the first is the same dimensional reduction of Sn 

to Sn–1 with homotopy group πn(Sn-1)=Z2 ∀n>2, for which the SU(2) group eigenvalues are ±½; and the 
second is the decomposition of the S3 fibre-bundle into S1 fibre and S2 base-space, where h: S3 → S2 is 
given by the parametrisation

h(x0, x1, x2, x3) = (x0
2 + x1

2 – x2 
2 – x3 

2, 2(x0 x3 + x1x2 ), 2(x1 x3 – x0x2 ))

The mapping from the S2 base-space defined by this parametrisation to the S2 spatial sphere gives the 
monopole “hedgehog” [26,27] with homotopy group π3(S2)=Z and SU(2) group eigenvalues ±1. 

The coordinate parametrisation x3 = xξ cosξ, x2 = xξ sinξ for S3 gives S2,  r2 = x0
2 + x1

2 + xξ
2, with the 

U(1) rotation of x2, x3 in the group space being around the coordinate axis of xξ. When this is mapped to 
the spatial S2 it specifies a rotation about one of the axes in 3 spatial dimensions, which gives the 
topological  construction  of  an  object  with  SU(2)  rotation  group  eigenvalues  of  ±½,  and  so  the 
topological monopoles of Table 1 will also have the topological spin charge of ½ for fermions.

These  two  decompositions  of  S3 to  S2  also  give  two  distinct  classes  of  topological  monopole 
because the embedding of the unbroken U(1) in SU(2) means that a circle S1 must be selected from the 
isospin group space S3. The fibre-bundle decomposition of S3 where the S2 is mapped to the spatial S2 

gives a configuration where the U(1) generator IQ is mapped to the spines of the “hedgehog” to give an 
electric monopole. The coordinate parametrisation of S3 that leads to the homotopy group  π3(S2)=Z2 

gives the topological basis for the Dirac magnetic monopole [28], where IQ is aligned with the z-axis. 
The Dirac string is removed by expressing IQ as being aligned in opposite directions in the northern and 
southern hemispheres of the S2 spatial sphere, with a 2π gauge rotation of U(1) at the equator joining 
the two hemispheres of the configuration together

)ˆ)(cos1(
sin

zI
r

qA mN
Qθ

θφ −=    )ˆ)(cos1(
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zI
r

qA mS
Q−+= θ

θφ

1
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2 −∇−=−= λλ

θ φφφφ
e

NmNS

q
iA

r
qAA )2exp( φλ meqiq=

This topological basis for the electric and magnetic monopoles gives the Dirac quantisation condition 
for  the  gauge  rotation  qeqm=½n in dimensionless  units.  It  also  means  that  STUFT  will  display 
electromagnetic duality and contain a spectrum of both electric and magnetic monopoles, which will be 
added to the energy-momentum tensor in the dimensionally reduced theory as a perfect fluid.

The monopoles of Table 1 also possess non-Abelian charges, where the issue of charge confinement 
is the same for both colour and isospin charges as their corresponding spaces are both S3 sub-spaces of 
the full S7 particle space. An electric monopole for the S3 fibre-bundle is given by the S2 base-space 
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being mapped to the spatial  S2 such that  S1 fibre  orientation is  that  of  the monopole “hedgehog”. 
Consider  a  topological  monopole/anti-monopole  pair  separated  along  some  line,  which  gives  the 
following 3 distinct topological regions:

1) S2 base-space maps to the spatial S2 around the centre point of each monopole
2) S1 fibre maps to the spatial S1 around the line connecting the pair
3) Outer region not enclosing either the monopoles or their connecting line

The topology of regions 1 and 2 prevent any unwinding of the monopole configuration, but in region 3 
the configuration gives both the S2 base-space and the S1 fibre with no constraints. So the symmetry of 
the S3 particle space is free to act locally to unwind the configuration such that it is trivial in region 3.  
This is not the case for the Abelian charges where the particle space S1 lacks the degrees of freedom 
required to locally unwind the configuration. The topological constraints of regions 1 and 2 limit this 
local unwinding of the configuration to the formation of tube such that the charge flux only flows along 
the connecting line between the pair. As this charge flux must be the same at all points between the  
pair,  the field energy will  increase linearly with separation,  and so there-exists a constant force of 
attraction for all separation distances. This is the classical confinement of non-Abelian charges, where 
the topology giving the Z3 factor in (5) for colour charges means that the same topological argument for 
classical confinement will also apply to configurations of 3 coloured monopoles.

3. Compactification-Inflation See-Saw
The  previous  section  considered  the  consequences  of  the  transition  from S10 to  S3×S7 due  to  the 
formation of an internal bridge, which included the appearance of matter in the form of topological 
monopoles. The effect of the transition on the metric-wave radiation assumed to be present in the initial 
S10 cosmology will be considered in this section, where the focus on metric-wave radiation within SD 

reveals an issue with regards to the interpretation of the cosmological constant  Λ. The cosmological 
term Λ is not constant in an absolute sense, but is specifically constant with respect to variation in the 
metric gμν, which is clearly seen in the derivation of the metric field equations from the Einstein action 
as the variation is with respect to the metric gμν. The Friedman-Robertson-Walker metric for a general 
SD cosmology is parametrised by a radial scale factor a(t), where the radius a of the sphere SD is in the 
D+1 spatial  dimension. So the SD metric  gμν(a) is  parametrised by an extra-dimensional variable  a 
outside of the D-dimensional surface, and the cosmological constant Λ(a) can be similarly parametrised 
whist still being constant with respect to the metric gμν within the surface of the sphere SD. 

Taking the covariant derivative of the field equations (1) for constant Λ gives the conservation law 
Tμν

;ν=0,  but  when  the  cosmological  term  is  parametrised  by  the  extra-dimensional  variable  a,  the 
conservation law with only radiation in the space becomes

 





++==Λ=Λ
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For a(t) just varying with time, only the energy conservation equation will be modified
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This can be rewritten in the infinitesimal form of the thermodynamic equation dE+PdV+VdP=0

01)( =Λ−++ VddVpDVd
κ

ρρ   (7)
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where setting Λ(a) = Λp p(a) gives the term (Λp/κ)Vdp. The need for a cosmological pressure term is 
not particularly apparent in an open infinite space, but is more clearly necessary in a closed SD space. 

The stress term Tii = p in the field equations of general relativity apparently says that pressure acts 
as a gravitational source, which is a bit misleading. For a gas inside some volume, the pressure of the  
gas is given by the force exerted against the bounding surface, which for the gas in the centre of the 
volume is not a local description. As the force on the enclosing boundary is due to the momentum 
change of the gas particles, the local description of pressure is as a momentum density and this is what 
the stress term  Tii =  p is denoting. So it is momentum density which acts a gravitational source in 
general relativity, not pressure as such. For a space with a boundary, the metric-wave equations will  
possess a boundary term which would necessarily have to account for the pressure of radiation exerted 
against the boundary, whereas for a closed SD space there is no such boundary term, and the global 
pressure of radiation being applied to the space is not being accounted for by the stress-energy tensor. 
This would leave the global pressure effect of radiation within the space unaccounted for, but this 
omission is remedied by introducing a cosmological term  Λ(a)=Λpp(a).  Viewing radiation within a 
closed SD space from the perspective of the D+1 dimensions within which the sphere resides, gives the 
path of radiation as being curved as it follows the surface of the sphere. The gravitational effect of the 
stress-energy density within the surface of the sphere does not account for this deflection, because the 
gravitational effect acts within the confines of the surface, which is orthogonal to the deflection of the 
radiation in D+1 dimensions. A cosmological pressure term Λ(a) that is “constant” within the surface is 
the additional term required to account for the global effects of radiation pressure on the surface of SD.

This outward radiation pressure of metric-wave radiation within an SD surface will be demonstrated 
for the topological monopoles of the previous section, which have an S2 surface of the compactified S7 

particle dimensions and encompass a real hole in 3+1 dimensional space-time. Consider metric-waves 
in the surface of the compactified sphere, where the radius r of the sphere S2 gives a long-wavelength 
cut-off and the diameter 2χ of the compactified S7 gives a short-wavelength cut-off. This combination 
means that if the radius decreases, some of the metric-waves in the S2 surface will be excluded from the 
surface into the exterior volume of space. From the perspective of 3 spatial dimensions this radiation 
would appear to come from the volume of the sphere, where the change in energy would be given by

dE = TdS  –  PdV   (8)

Continuing with the 3-dimensional perspective of the radiation, if the energy density ρ=E/V is used as 
the value of the rate of energy change in sphere, then
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Using the 3-dimensional equation of state ρ=E/V=3P for radiation and the Maxwell relation
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1 CTP == ρ  (9)

where  C is  some constant.  As this  is  the characteristic  relation for the energy density of radiation 
emitted from a black body at temperature T, it implies that the shrinking S2 would appear to be a black 
body from the perspective of the exterior 3D space. The 2-dimensional perspective of the metric-wave 
radiation within the S2 surface is that of radiation in 2 spatial dimensions, for which the equation of 
state  ρ=2p gives energy conservation in the sphere S2 as being  pV=const. So the outward radiation 
pressure gradient for the shrinking S2 will be dp/dr∝1/r4, which equates to the radiation pressure P in 
the 3-dimensional perspective, P=dp/dr. This then gives the apparent temperature T of the sphere S2 in 
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3-dimensions as being inversely proportional to radius, as for a black hole.
This derivation of  T∝1/r involves equating the perspective in 2 spatial dimensions within the S2 

surface with the exterior perspective in 3 spatial dimensions, where the 3-D radiation pressure p3=P is 
distinct from the 2-D radiation pressure p2=p. The thermodynamic equation (8) implies that the entropy 
SD and temperature TD should similarly be labelled with the number of spatial dimensions D in which 
they are defined. The entropy of equations (8) and (9) is S3, and the black body temperature is T3∝1/r, 
whereas the S2 energy conservation relation  p2V=const. is for the condition of 2-D adiabatic changes 
dS2=0 in the sphere. Equating the 3-D radiation pressure with the 2-D radiation pressure gradient is 
consequently based upon the adiabatic condition ∂S2/∂r=0 for the sphere. It has just been shown that the 
shrinking S2 emits radiation, and so the total amount of radiation energy E in the sphere is proportional 
to the radius r, but the adiabatic condition ∂S2/∂r=0 implies that the surface entropy S2  doesn't change 
with energy E, ∂S2/∂Ε=0. As the thermodynamic temperature TD in D spatial dimensions is defined by

D

D

TE
S 1=

∂
∂

this implies that the 2-D temperature T2 of radiation within S2 is infinite for all values of the radius r. 
This is in turn implies that the surface entropy density of S2 has reached its maximum value, and so it is 
simply proportional to the area A of the sphere, S2=const.A, as for a black hole. For a short-wavelength 
cut-off of 2χ, the maximum number of wave modes per dimension will be proportional to 1/2χ, where 
for r>>χ the number of configurations given by the multinomial coefficient will increase exponentially, 
and  so  the  maximum density  of  states  per  dimension  g1 will  be  given  by  g1∝exp(1/2χ).  As  the 
configurational entropy is given by ln(g1), this maximum density of configurations per dimension gives 
the entropy S2 for the radiation in the sphere as being

( ) AkS B
22 2χ

=  (10)

This maximum entropy bound would be expected to be displayed by the sphere S2 for r>>χ because it 
is at the upper limiting temperature of T2=∞. It can be noted that simply setting the compactification 
scale χ to the Planck length lp=√(ħG/c3) in (10) gives the entropy expression for a black hole derived by 
considering Hawking radiation [29]

A
G
ckAkS BB

44

3

22 ==
χ

The significant difference is that (10) was derived without reference to quantum theory, but on the basis 
of metric-wave radiation within a sphere SD exerting an outward pressure. From the perspective within 
S2, the thermodynamic equation (8) gives the outward heat flow from the surface of the sphere

dE2 + P2dV2 = T2dS2 = dq

For a closed SD cosmology in which there is no space exterior into which radiation can be excluded, the 
corresponding thermodynamic equation will be

dED + PDdVD = (Λp/κ)VDdPD

The significance of this for STUFT is that after the transition to the torus T3+7=S3×S7 there will be an 
outward radiation pressure P=dp7/dr from S7 and an outward pressure p=dp3/dr from S3. In the torus 
T3+7 the two spaces are “exterior” spaces to each other, and so if P>p radiation will be driven out of the 
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particle dimensions S7 into the spatial  S3. This situation will be realised for the scenario of the initial 
transition occurring during the contraction of S10, which would be expected to initially continue into the 
S3×S7 phase. The radiation pressure pD in an SD cosmology without a cosmological term Λ(a) scales as 
pD(a)∝1/aD+1 for  radial  scale  factor  a(t),  whereas  with  a  Λ(a)  term the scaling  can  be  denoted  as 
pD(a)∝1/aD+ε, where 0<ε<1. The radiation pressure gradients will then be (for some 0<δ<1)

δχχ +∝
∂
∂= 8

7 1pP
ε+∝

∂
∂= 4

3 1
aa

pp

and so the radiation pressure from  S7 to S3 will  increase faster than in the reverse direction.  This 
pressure difference is free to drive metric-wave radiation from the S7 particle dimensions of the torus 
and into the outer S3 spatial cosmology. The earlier conclusions then imply that the radiative resistance 
to  further  contraction  of  S7 would be  reduced,  and the radiation  pushed into the  spatial  S3 would 
increase the outward radiative pressure term against the S3 surface and resist further contraction. As the 
scale factor χ(t) continued to decrease, more radiation would be pushed from S7 into S3, where the field-
equations (3) for a cosmological term of the form Λ(a)=Λpp(a) imply that this will not only halt further 
contraction of S3, but reverse it into an expansion.  As the scale factor  a(t) increases and that of  χ(t) 
decreases, the quantity of radiation transferring from S7 to  S3 will decrease until it is insignificant in 
comparison to the radiation already within S3, and the S3 cosmology exits this inflationary epoch. 

The thermodynamic analysis given for S2 shows that this conclusion essentially follows from the 
physicality assumption for the “fabric of space”, where the surface of space acts like any other closed 
physical surface with respect to outward pressures. This leads to the conclusion that the cosmological 
“constant” is a cosmological radiation pressure term Λ(a)=Λpp(a), where the currently low radiation 
pressure of the cosmic microwave background at  T3=2.725K [30] would give a low current value for 
Λ(a). If the spatial S3 is assumed to be approximately described by the Friedman-Robertson-Walker 
metric, where the dynamics are dominated by the relativistic content of the universe for the majority of 
its history, then the small a(t) result of a2 ∝ t could be assumed to be a rough approximation up to the 
current age of the universe tU. Assuming that the radiation scaling is approximately given by p(a) ∝ a–4 

leads to  the approximation Λ(a) ∝ a–4 ∝ t–2, where Λ∝ tU
–2 in Planck units approximately gives the low 

current value for the cosmological term of Λ=1.7×10–121 [31-33]. This would seem to provide additional 
confirmation that the cosmological term is a cosmological pressure term, where it should be noted that 
this line of reasoning is for a closed SD cosmology.

As this compactification-inflation see-saw is driven by the relative radiation pressures, the extent of 
the increase in the spatial scale factor a(t) due to the see-saw alone will be given by a constant radiation 
pressure condition for metric-wave radiation within the torus T3+7. For the generic scaling form of the 
radiation pressure within SD with a cosmological term Λ(a), the constant pressure condition will be of 
the form  aε+1χδ+1=const. where the values  0<ε<1 and 0<δ<1 depend upon the exact form of the full 
metric and the constants  κ,  Λp. The absolute physical scale of the radius  a in any SD cosmology is 
undefined, but the scale of  a can be meaningfully defined relative to χ such that  a/χ is a physically 
defined quantity. Given that the two scales would initially be given by a=2χ for a simple transition of a 
sphere to a torus, the estimated increase in this measurable quantity will be given by:

 )3()10(2 εδεχ
χ

+++−=a
(11)

Assuming that the scale of χ is now given by the Planck length lp the constant area condition of ε=0, 
δ=0 gives an inflationary factor of a/χ = 2(lp)–10/3 = 1.87×10116, whereas the constant volume condition 
of  ε=0,  δ=1 gives an inflationary factor of  a/χ = 2(lp)–11/3 = 7.41×10127. It should be noted that in all 
cases lp

–1 of the increase will be due to the unit χ being used to measure physical distances decreasing. 
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4. Kaluza-Klein Dimensional Reduction
The compactification of the previous section means that the scale χ of the particle dimensions will not 
be fixed in an absolute sense. If the torus T3+7=S3×S7 could be viewed in the 11 spatial dimensions in 
which it notionally resides, then the scale factor χ(t) of the compactified dimensions would decrease as 
the spatial scale factor a(t) increased. The scale χ(t) would only be stationary at the moment when the 
S3 spatial cosmology reached its maximum radius, and χ(t) reached its minimum. After this, the scale 
factor a(t) of S3 would decrease due to the gravitational attraction of the content of the universe, and 
this decrease in S3 would start to increase the radiation pressure. Radiation in the torus S3×S7 is free to 
transfer between the S3 and  S7 depending upon the relative radiation pressures, and so the increasing 
radiation pressure of a contracting  S3 is free to transfer to  S7,  such that the pressure forces the  S7 

particle dimensions to reflate and the see-saw runs in reverse. In this way, the scale χ will be forced to 
remain non-zero at all times, which is the physical condition required for a Kaluza-Klein theory.

All physical scales in the metric-field theory are relative to  χ because it is also the radius of the 
spatial S2 wrapped around the compactified S7 in the monopoles. In normal electrodynamics, changing 
the radius r of a sphere bearing charge q on its surface would not change the electric far-field. So if two 
such electrically charges objects formed a stable configuration where they were separated by some 
distance d, such as in some physical material, the distance d could be used to measure the change in the 
radius r. This will not be possible for charged topological monopoles of radius χ, as a change in χ will 
also change the electric far-fields in the Kaluza-Klein theory, because the gauge fields are in terms of 
the compactified particle dimensions with radius χ. So when the scale χ changes, all physical means of 
measuring length scales will change with it, such that χ remains immeasurable.  This only leaves the 
arbitrary definition of a length scale, and this is the form of the meter in the S.I. unit system, which will 
be given by 1m=Mχ in this theory, where the value chosen for M was fundamentally arbitrary. 

Although the scale  χ will be continually changing in an absolute sense, as all physical scales are 
defined relative to χ, the physical scale χ will be constant in terms of physical measurement. So the pre-
condition of a Kaluza-Klein theory that there-exist compactified dimensions of some fixed size is met  
in physically measurable terms. The dimensional reduction procedures for Kaluza-Klein theories can 
now be applied to the torus T3+7=S3×S7, where those of this section come from the Kaluza-Klein review 
[4]. The space-time coordinates of the space S3 will be denoted  xμ and those of the compactified S7 

denoted ym. The non-Abelian gauge fields of the theory are given by adopting the anastz for the metric:







Φ−

Φ−
=

)(
)()(

yB
BBByxg

g
mn

m

nnm
mn

XY
ν

µνµµ ν (12)

where

)()( xAyB an
a

n
µµ ξ=

and gμν is the metric of space-time and Φmn is the metric of the S7 particle dimensions. Transformations 
of the ym coordinates that have an x-dependence of the form

ym → ym + ξa
m(y) εa(x)

induce the usual non-Abelian transformation for a gauge field

cb
abc

aaa AxCxAA µµµµ εε )()( +∂+→

The structure constants Cabc can be related to the structure constants fabc of a non-Abelian group through 
the introduction of a gauge coupling constant g
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Cabc =  g fabc and  ta = gTa so that [Ta, Tb] = ifabcTc

The action for Einstein gravity in 10+1 dimensions in given by

RgxdS 2111 det
2
1

∫−=
κ

(13)

where the cosmological term and stress-energy tensor have been left out for simplicity. Substituting the 
ansatz (12) into this action and integrating over the  y variables gives the effective 3+1 dimensional 
action for general relativity and non-Abelian gauge fields of the standard form

µ ν
µ νµ νµ νπ a
a FFgxdRgxd

G
S

214214 det
4
1det

16
1

∫∫ −−=       (14)

where the standard normalisation of the gauge fields in Kaluza-Klein theories has been used [4]. 
The group quotient SU(4)/SU(3) gives the differential manifold S7 of the compactified dimensions, 

and so the symmetry group in this action is SU(4), with SU(3) co-sets. This symmetry is broken by the 
non-trivial vacuum winding of homotopy group π7(S3) = π4(S3) = Z2, where the parametrisation of the 
sphere S4,  x4 =  xξ cosξ,  x3 =  xξ sinξ, gives the S3 group space of SU(2) which is then mapped to the 
spatial sphere S3. In terms of the gauge fields of (14), this mapping corresponds to an instanton-like 
configuration [34] for which the gauge field is pure gauge, Aμ=U–1∂μU for U∈SU(2)

σx ⋅= ˆiU (15)

where the spatial variables  x in the surface S3 have been normalised to unit vectors and there is no 
explicit dependence upon a 4th Euclideanised time variable. However, this configuration has an implicit 
time dependence where it is pure gauge at all times in the S3×S7 phase, but doesn't exist in the S10 phase 
before and after the S3×S7 phase of the current universe.  This pure gauge configuration has no field 
strength  Fμν, but breaks the symmetry of the gauge fields in (14) to (Spin(3)⊗SU(2)⊗U(1))/Z3 as in 
section 2. This gives the Lagrangian for the gauge fields with this gauge field background as being

µ ν
µ ν

µ ν
µ ν

µ ν
µ ν BBWWGGL a

a
a

a
G 4

1
4
1

4
1 −−−= (16)

where Gμν is the Spin(3) colour field strength, Wμν is the SU(2) isospin gauge fields and Bμν is the U(1) 
hypercharge gauge field.

The action for the scalar sector of the dimensionally reduced theory is derived from the ansatz
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which differs from (12) by including x dependence in the metric Φmn. Substituting this into (13) gives 
the action [4,35]
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It is only the electroweak S4 base-space of the compactified S7 that possesses the spatial x dependence 
through the non-trivial vacuum winding, and so the indices of the metric Φmn(x, y) in (18) will only run 
over 1-4. Furthermore, the parametrisation x4 = xξ cosξ, x3 = xξ sinξ of S4 gives S3, and so the non-zero 
elements of the metric for the vacuum map S4 to S3 can be denoted as the scalar terms

111 Φ=φ , 222 Φ=φ , 333 Φ=φ , 43344 22 Φ=Φ=φ (19)

Substituting this form for the metric into (18) gives a quadratic term for m=1-4

mmmm DDDDL φφφφ µ
µµ

µ 2
1

2 +=

and a quartic term
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Combining the scalar terms into the representation of SU(2)⊗U(1)
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i
i

Φ (21)

allows the quadratic term in the action to be rewritten as the local Lagrangian term

LS = (DμΦ)†(DμΦ) (22)

for the closed S3 space containing no net topological charge. For the background vacuum configuration 
with (SU(2), U(1)) eigenvalues (–½,1) the form of the scalar field derivative will be

( )ΦBgWgΦD iaai
µµµµ σ '22 ++∂=

The definition of the eigenvalues for the unbroken U(1) charge symmetry given in (6) and that of the 
Weinberg angle in (4) gives the basis for the field definitions of the Standard Model

µµµ θθ BWA WW cossin 3 += µµµ θθ BWZ WW sincos 3 −= (23)

and the isospin g and hypercharge g' coupling constants in terms of the electric coupling constant e

egg WW == θθ cos'sin (24)

In terms of the scalar field Φ denoting the 4 non-zero terms of the metric Φmn, the non-trivial winding 
of the electroweak vacuum corresponds to a spatial variation in  Φ such that the bottom term of the 
SU(2) doublet always points in the same direction in going around the spatial S3. This gives the local 
form φ1=φ2=0 and φ3=φ4=φ at all spatial locations x in S3 at all times in the S3×S7 phase. Substituting 
φ=η into the local Lagrangian term (22) gives mass terms for the W and Z gauge fields

2
2

2

2
η





= gmW

2
2

2

cos2
η

θ 





=

W
Z

gm (25)
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The spatial variation in  Φ going around S3 is accompanied by the pure gauge variation arising from 
(15), which in the local Lagrangian term (22) for φ3=φ4=φ will give Dμφ = ½φ and a mass term in the 
perturbative expansion φ=η+δφ 

222
2

2
1

42
1 δ φδ φηµ

µ HmDD =





→ΦΦ (26)

for which the scalar field mass is half the electroweak scale η. This gives an explicit demonstration that 
the dimensionally reduced theory gives the mass terms for the vector and scalar fields as claimed  in 
[10]. In addition to the quadratic Lagrangian term (22), the quartic term (20) also gives a term in the 
local Lagrangian with φ1=φ2=0 and φ3=φ4=φ and the pure gauge configuration from (15)

( )( )
22

4 28
1

8
1







−→−= φφφφφ µµ DDL (27)

This is the form of the quartic term of the Higgs potential in the Standard Model, with scalar coupling 
constant λ=1/8, as claimed would be the case in [10].

5. Compactified Black Holes
In the dimensionally reduced theory, the topological monopoles of section 2 will be rotating objects 
bearing electric or magnetic charges. The surface topology of the monopoles is given by S2×S7, where 
the spatial  configuration is  unwound within the compactified surface,  such that  the interior  of  the 
monopole is devoid of space. Such monopole “solitons” with no spatial singularity are feature of some 
Kaluza-Klein theories [18,19], but they do not always reduce to the black holes of General Relativity.  
In STUFT, the condition that the S2 surface encloses a hole in space demands the existence of a spatial 
surface for the space-time metric of the topological monopoles in the dimensionally reduced theory. For 
the neutrino-like monopoles of Table 1 with no electric charge and a topological spin charge,  this 
spatial surface condition in the dimensionally reduced theory can only be met by a black hole with a 
physical surface at the event horizon. In the General Relativity portion of the dimensionally reduced 
theory, this gives the condition that the Kerr metric for this neutral compactified black hole monopole 
possesses a real value for the radius of the event horizon.  So consider the Kerr metric for a rotating 
black hole with mass m and angular momentum j in natural units G=1, c=1
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where

m
ja ≡ 22 2 amrr +−≡∆ θ2222 cosarR +≡

The horizon for the rotating black hole occurs at grr= ∞, i.e. ∆= 0, which in physical units is given by:
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The condition that the monopole has no singularity and an S2 surface requires the event horizon of the 
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black hole to have a real-valued radius, which will only be true for angular momentum given by

c
Gmj

2

≤

A topological monopole with radius given by the compactification scale χ could be expected to satisfy 
this bound, for which the angular momentum is

2
3

χχ G
cj =  (28)

and the event horizon radius is 

2c
Gmχχ = (29)

As the compactification scale  χ is the radius of the S7 particle dimensions it is the smallest physical 
scale in the space, which implies that jχ is the smallest value for angular momentum in the space. To 
demonstrate the effect of this, consider a particle of mass m travelling along the surface of a tube with 
cross-section given by the compactified S7 dimensions of radius χ. For the particle travelling at velocity 
v parallel to the length of the tube, its energy is given by E=γmc2, where γ=(1−v2/c2)-½. The condition 
that the particle must have also angular momentum jχ around the tube gives the tangential momentum 
as pφ=γmvφ =jχ/χ. Using the Relativity relation pk=Evk/c2 and angular velocity vφ = χω gives 
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For the condition vφ = c that is true for the event horizon surface of the compactified black hole, and 
also for a circular wave mode around the compactified tube, this gives

ωχjE = (30)

From this we have the obvious identification ħ = jχ, with χ being the Planck length lp and mχ being the 
Planck mass mp

G
cclmj pp

23χ
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This identification ħ = jχ would appear to give the rotating black hole a rotation group eigenvalue of 1, 
but this would not be the measured angular momentum because a rotating black hole causes an angular 
rotation of the reference frame in the vicinity of the black hole given by (in dimensionless units)

 ( ) θ
φθω

φ

22222 sin
2),(

∆−+
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aar
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g
g

dt
dr tt

t

At the surface of the event horizon, this frame-dragging is given by

)2()( χχω c= or v = ωχ = ½ c
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Whereas the angular momentum bound (28) corresponds to jχ=mχχc, this frame-dragging will give the 
measured angular momentum of the horizon as j=½mχχc. The moment of inertia for a mass shell with 
mass m and radius r is Im=½mr, giving the angular momentum for rotational velocity v of j=½mrv. So 
the measured angular momentum j=½mχχc of the event horizon would appear to be due to a mass shell 
m of radius χ rotating at the maximum velocity of c, giving a measured rotation group eigenvalue of ½.

This gives Planck’s constant as being geometrical in origin, due to the physical compactification 
scale  χ inside which the Poincaré group of relativity does not apply. The enclosing surfaces of such 
spatial regions must be describable in terms of representations of the rotation group with eigenvalues of 
1 or ½, and where the physical scale of the angular momentum is given by ħ. So for any representation 
Ψ of the rotation group the action of the angular momentum operator is given by

JzΨ = nħΨ or JzΨ = ½ nħΨ

and this adds the scale ħ to the Lie Algebra of the rotation group

[Ji, Jj] = iħ ε ijkJk  (32)

This scale propagates throughout the Lie Algebra of the Poincaré group, and adds ħ to the commutator 
relations of the Hamiltonian formulation of classical physics through the infinitesimal generators

µ ννµνµ δ iixPx =∂= ],[],[ (33)

As the Poincaré invariants are mass and spin, the physical scale factor is given by ħ, and the physical 
length scale of χ only appears in its invariant form χ2, as in the definition of ħ given in (31).

The scale ħ gives the physical scale factor between the compactified particle dimensions of radius χ 
and the unit sphere  S3 of the rotation group applying to the S2 surface of the topological monopoles 
with unbroken U(1) charge symmetry. The physical scale of the circle S1 giving the underlying group 
space of the unbroken U(1) symmetry group is also given by the compactification scale χ, where the 
scale factor q for U(1) is related to ħ of the SU(2) rotation group by the area ratio between S1 and S3
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Adding in the factor of c for an electric charge e with a non-zero gauge field A0 term, the physical scale 
of the Dirac quantisation condition is given by

cneqm 2
1=

and the unit circle S1 of the U(1) group is given by group elements of the form






= φλ
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where the physical scale of the electric charge e is given by

3183.01 ≈=
πc

e


     (34)

With the value of the Weinberg angle given by (4) the values of the isopin and hypercharge coupling 
constants g and g' given by (24) will be
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which compare with the Standard Model values of 0.652 and 0.357 respectively [36]. The SO(3) colour 
coupling constant gc has an S3 group space, and so has an area ratio factor of 1

1=
c

gc


(37)

The scalar field terms of the dimensionally reduced theory in section 4 gave expressions for the masses 
of the W and Z fields (25), which in terms of these closed formulae for the coupling constants are [10]
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These are not particle masses, but are instead just mass terms for classical physics waves, i.e. the W and 
Z waves of the dimensionally reduced theory take the form of evanescent waves. These mass terms for 
the  W and Z fields will limit their range in the classical field theory, such that they will not give the 
classical confinement of charges discussed in section 2. This is in contrast to the massless colour fields 
with Spin(3) symmetry, which by the topological arguments of section 2 will display classical field 
theory configurations of coloured monopoles with a colour flux tube between them.

6. Classical Monopole Theory
The derivations of the previous section give a geometric origin for Planck's constant ħ in terms of being 
the physical scale factor for all the topological charges: spin, electric charge, isospin and colour. As the 
topological spin charge, Planck's constant enters into the Lie Algebra of the Poincaré group and then 
the Hamiltonian formulation of mechanics (33). Despite this being a feature of quantum theory, this is 
still strictly a classical physics theory. 

The spin invariant ħ also applies to the gauge fields of the dimensionally reduced metric, where it is 
included in the wave uncertainty relations ΔfΔt≥½ and ΔλΔx≥½ of classical physics to give uncertainty 
relations ΔEΔt≥ħ/2 and ΔpΔx≥ħ/2 for wave radiation in the dimensionally reduced theory. The radius χ 
of the particle dimensions defines the physical scale of the natural unit system (mp, lp, tp) in (31), where 
mass, spin ħ and the speed of light c are the invariants of the dimensionally reduced space. Since the 
intrinsic error of measurement for a measuring scale is ±½ the units used, the error of distance and time 
measurement  will  be ±½lp and  ±½tp,  which  limits  the  accuracy of  measurement  for  the  canonical 
variables of Hamiltonian mechanics
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by (31). As the topological spin charge ħ is an invariant of the space, changing the unit system will not 
change this  intrinsic  measurement  limit  of  ħ/2  for  the  product  of  the  measurement  errors.  So  the 
Heisenberg uncertainty relations will apply to measurements of both wave radiation and the topological 
defects, because of the compactification of the particle dimensions [10].

Many of the features of the Standard Model have now been derived at the classical physics level, 
but there are no fermionic matter fields as the topological monopoles are discrete objects, and there is 
no quantisation of the metric field, or gauge fields, to give bosonic particles. It is these features which 
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mark the transition to quantum field theory, where [10] showed that the form of quantum theory can be 
derived in terms of a change in descriptive framework due to difficulties in the classical physics theory. 

In the classical monopole theory in the dimensionally reduced space, the black hole monopole of 
section 5 has an ergo-region defined by the boundary where  gtt=0, which for a rotating black hole is 
outside of the event horizon with a radius given in dimensionless units by

)cos( 2222 θammr −+=+

which for the limit rh = χ of the compactified black hole monopole becomes

)sin1( θχ +=+r (39)

Macroscopic black holes decrease in mass through the emission of radiation, and decrease in angular 
momentum by the Penrose process [37] involving the ergo-region. But the limit of the compactification 
radius χ for a topological monopole with a spin charge of ħ/2, means that neither the mass nor angular 
momentum of the Planck scale  black hole can be carried away by radiation through these means.  
However, the sign of gtt is reversed inside the ergo-region χ<r<r+(θ), and so radiation within the ergo-
region will have the mass invariant m2< 0 of virtual-radiation. For the topological conditions applying 
to the Planck scale black holes, propagating radiation can be trapped in orbit by the sign reversal of the 
metric term gtt, which can conceptually be viewed in terms of total internal reflection at the ergo-region 
boundary. Such a view gives a physical basis for the classical physics wave equations possessing a non-
propagating radiation tail beyond the ergo-region boundary, as for evanescent waves with total internal 
reflection in optics. So whereas the macroscopic black holes of section 3 decrease in mass through the 
emission of radiation, at the limit of the compactification radius χ the mass of this frustrated black hole 
can instead be decreased through a process of virtual radiation being trapped in the ergo-region.

An estimate for this mass reduction can be found from E=ħω (30) for the energy of radiation, which 
for  ω being the inverse of the Planck time tp=lp/c gives  E =  mpc2 by (31). This implies that radiation 
trapped within the ergo-region could cancel the Planck mass of the bare topological monopole, leaving 
the rest mass of the monopole largely determined by the charge fields [10]. In which case, the coloured 
monopoles would be expected to be more massive than the non-coloured monopoles, mc=1>mc=0, and the 
masses greater for monopoles with greater electric charge,  mq=2/3>mq=1/3 and  mq=1>mq=0.  It  should be 
noted that although the neutrino-like monopoles have no electric far-field because the W and Z fields 
cancel, as mZ >mW there is a small region where the fields haven't cancelled yet, and so by this simple 
argument the neutrinos would be expected to have a non-zero mass mν >0. A similar argument can be 
made for increasing mass to be expected for increasing SU(3) co-set, and the 12 fundamental fermions 
fit this mass hierarchy except for the down quark mass being greater than the up quark mass.

The task is to calculate what the Planck mass of the bare black hole is reduced to when the surface 
bears the charges of Table 1. The issue with this calculation is revealed by considering a monopole and 
anti-monopole collision, where the topological charges of the pair cancel and the resulting black hole 
configuration is free to radiate all its mass away. Applying time reversal to this process gives radiation 
of sufficient energy creating a monopole and anti-monopole pair, which was the second physicality 
condition given at the beginning. For the black hole monopole, the energy of virtual radiation in the 
ergo-region is more than sufficient for this process, being of the Planck energy scale E=mpc2.

Now consider calculating the energy of the field configuration around this black hole monopole 
using the Hamiltonian given by the dimensionally reduced Lagrangian of section 4. As the gauge fields 
and scalar fields propagate as waves in the classical theory, a series expansion approach can be adopted 
for the fields of the propagating radiation trapped in the ergo-region, the non-propagating radiation tail,  
and the charge field for the charges residing on the surface of the monopole black hole. However, the 
energy of the wave terms in this  series expansion can be large enough to create  a monopole/anti-
monopole pair for any of the 12 monopoles of Table 1. This process must also be included in the series 
expansion because a monopole/anti-monopole pair has a dipole moment which will effect the charge 
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field of the bare monopole. So the series expansion must also include this vacuum polarisation effect of 
virtual-radiation creating monopole/anti-monopole pairs, where these monopoles also possess the m2< 0 
mass invariant of the ergo-region, and so constitute virtual-matter. 

The series expansion for the dimensionally reduced Hamiltonian will be denoted as being of the 
form H(n, A, Φ), where n denotes the  monopoles of each of the 12 types, A denotes the gauge fields 
and Φ denotes the scalar fields. The field energy of the monopole in the dimensionally reduced theory 
will be given by integrating the Hamiltonian over the spatial volume surrounding the monopole, and so 
the theory H(n, A, Φ) will have no explicit dependence on space-time coordinates. Each monopole term 
ni(x, t) denotes the space-time coordinates of a monopole of type i, where the motion of the monopole 
is given by the geodesic transport of the covariant derivative Dμ in the dimensionally reduced theory in 
section 4. In generic terms, the form of the Hamiltonian of the dimensionally reduced theory will be
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The terms a, b, c come from the gauge field strengths of the gauge field Lagrangian (16), the terms d, e, 
f come from the quadratic scalar field Lagrangian term (22), and the terms  s,  t,  u,  v come from the 
quartic scalar field Lagrangian term (20). The terms α, β, γ would come from linear covariant derivative 
terms for the monopoles, and the terms σ and τ from quadratic covariant derivative terms. All that will 
be required is that at least one of the terms β, γ, σ and τ be present in the Hamiltonian, because these 
terms change the numbers of discrete monopoles through the creation of monopole/anti-monopole pairs 
from wave radiation, and their annihilation to radiation. 

The wave expansion for the gauge fields A and scalar fields Φ will be of the form
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where the integral over ω is required because ω≠|k| for virtual-radiation in the ergo-region of the Kerr 
metric. The ranges of the ω and k integrals are linked by the dispersion relation for virtual-radiation in 
the ergo-region, where E=ħω ≤mpc2 by (30), (31) and the bare monopole mass. When the Hamiltonian 
contains at least one of the terms β, γ, σ and τ, waves in the expansion (41) will create a monopole/anti-
monopole pair for E≥2mi where mi is the reduced mass of the type i monopole with bare mass mp. This 
gives recursion in (40), where the calculation of the reduced mass mi of the type i monopole from the 
bare mass mp includes the term being calculated. So the wave expansions of (41) will give a recursive 
series expansion in terms of the monopoles/anti-monopoles created in the Hamiltonian.

The form of  the terms in the classical  physics  of  (40)  defines  3 and 4 point  reaction vertices  
between the gauge fields, the scalar fields and the discrete monopoles. However in the wave expansion 
of the terms β, γ, σ and τ, the created monopole/anti-monopole pairs must annihilate back to radiation 
because they carry conserved topological charges which cannot change the topological charge of the 
original monopole that the Hamiltonian expansion is about. This means that the terms β, γ, σ and τ will 
give closed loops over monopole/anti-monopole creation and annihilation, where the ω integral of (41) 
for the closed loop will  be over the range of energies  for the created pair.  The same Hamiltonian 
expansion of (40) must then be recursively repeated for every monopole and anti-monopole created in 
the initial term H0 of the expansion. This gives an infinite series expansion for the recursion
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where ωΕ  is the upper limit given by the dispersion relation for virtual-radiation in the ergo-region. The 
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sign  reversal  of  gtt in  the  ergo-region also  impacts  space-time separations  such that  causal  events 
involving the ergo-region can have space-like separations, giving a distance equivalent to the mass 
invariant m2<0 in the ergo-region. So when the integrals of (42) are switched from phase-space to real-
space, the time integrals will be subject to a corresponding ergo-region constraint, and so be of the form
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This recursive series expansion can be expressed in terms of the Hamiltonian density by including the 
spatial integrals of (40) to give
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Although this is of the same form as the path integral expansion in quantum field theory [38], here it is 
a recursive expansion for the mass reduction of the bare monopole mass by virtual-radiation trapped in 
the ergo-region of the compactified black hole that is a monopole.  This recursive expansion for the 
terms of the theory H(n, A, Φ) will be expressed as
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where  the  variable  n gives  the  recursion  depth,  and the  variable  a runs  over  the  combinations  of 
reaction sequences possible at that recursive depth. Each term Tn

a(n, A, Φ) is of the form of a reaction 
sequence that starts with a single monopole mi that emits virtual-radiation wj, and then both mi and wj 

take part in a reaction sequence that ends with the initial monopole mi again. 
Since (44) has the same form as the path integral expansion of quantum field theory, the same visual 

aid of Feynman diagrams [38] can be used to graphically denote the reaction sequences, where the 
terms of a Feynmann diagram are related to the terms of the Hamiltonian (44) to give an expression for 
Tn

a(n,  A,  Φ).  The vertex terms of the Hamiltonian are given by the terms  T0
a(n,  A,  Φ),  where the 

following 4 generic monopole reactions are of primary relevance to changes in monopole numbers:

1) mi + Vn → m'i + w + Vn'
2) mi + wj + Vn → m'i + Vn'
3) wj + Vn → m– + m+ + Vn+1'
4) m– + m+ + Vn+1 → wj + Vn'

Every monopole reaction sequence will start with the first vertex term as it denotes the emission of 
virtual-radiation, and ends with the second vertex term denoting the absorption of virtual-radiation. The 
creation and annihilation of monopole/anti-monopoles pairs is given by vertex terms 3 and 4. The term 
Vn is a running accounting term for the construction of the terms Tn

a(n, A, Φ), imposing the condition 
that the monopole reaction sequence ends with the initial monopole only, and also imposes the energy 
conditions of the integrals in the wave expansion (42).

The terms of  T1
a(n,  A,  Φ) are generated from combinations of  T0

a(n,  A,  Φ),  and this pattern is 
repeated at each recursive level so that the terms Tn

a(n, A, Φ) are generated from combinations of the 
terms T0

b(n, A, Φ), …, Tn-1
c(n, A, Φ). In this process, the accounting term Vn starts at zero and records 

the numbers of monopoles produced by the reaction vertices, such that balancing reaction vertices are 
added to return the term Vn to zero when the reaction sequence ends with the initial monopole. In this 
way,  each successive term  Tn

a(n,  A,  Φ)  in  the series expansion is  an ever  larger  reaction network 
involving more reaction vertices, where (45) is an infinite series.

Despite the complexity of the space-time integrals over the gauge fields A and scalar fields Φ, the 
difficulties of H(n, A, Φ) are with the countable numbers of monopoles n, because H(n, A, Φ) is such 
that Gödel’s proof of incompleteness  [39] can be constructed solely within the scope of  H(m,  A,  Φ), 
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using only terms that denote physical monopoles, fields and reactions within the theory itself.  The 
consistency required of  H(n,  A,  Φ) by the proof is also just in terms of the monopoles, where their 
topological basis ensures that a monopole either exists or it doesn't, and so the dimensionally reduced 
theory  H(n,  A,  Φ) will have the required consistency over  n.  The incompleteness discussed in [10] 
applies to the virtual-monopole reaction network as follows:

 Logical truth values are physically realised by existence in H(n, A, Φ), where a term A denoting 
a physical property is true if the property exists, and false if it doesn't.

 Logical operations can be physically realised in H(n, A, Φ) in terms of physical terms A and B.
 Logical implication in H(n, A, Φ) is physically realised in terms of causation, where physical 

state A causing physical state B gives a realisation of A implies B.
 Logical induction is present in H(n, A, Φ) in terms of induction from a true statement about a 

property of one monopole ni=1 to a true statement about any number of monopoles.

This gives a physical realisation of the logical operations required for H(n, A, Φ) to constitute a formal 
deductive system in its own terms, i.e. without the external application of mathematical operations. 

 Successor function is physically realised by monopole creation, s(ni): ni → ni + 1.
 Predecessor function is physically realised by monopole annihilation, p(ni): ni → ni – 1.
 Zero function is physically realised by annihilation of all anti-monopoles created about a 

monopole and vice-versa, z(ni): ni → 0.
 Projection functions are given by the identification of monopole types, and this identification 

can be extended to any combination of monopole reactions, Pi(n1, …, nm) → ni ∀i.

This gives a physical realisation within H(n, A, Φ) of the initial functions required for the operations of 
arithmetic and partial recursive functions over the natural-numbers to be realised in physical terms.

 Addition over the number of monopoles ni of some type i is realised in the construction of the 
term Tn

a(n, A, Φ) by the accounting term Vn controlling how many times the successor function 
s(ni) is applied.

 Multiplication over the number of monopoles ni  of some type i is realised in the construction of 
the term Tn

a(n, A, Φ) by the accounting term Vn controlling how many times a term Tm
b(n, A, Φ), 

with m<n, containing addition over ni is added to the term Tn
a(n, A, Φ).

 Substitution is physically realised in terms of creating a reaction network term Tn
a(n, A, Φ) from 

pre-existing reaction network terms T0
b(n, A, Φ), …, Tn-1

c(n, A, Φ).
 Recursion is physically realised in terms of creating a term Tn

a(n, A, Φ) denoting a new reaction 
network from pre-existing reaction networks, which can subsequently be included some number 
m of times in further reaction networks. In this way a new variable m is added to the theory.

 A recursive number theoretic function f(n0, …, nm) is physically realised in terms of the numbers 
of monopoles and monopole reaction sub-networks (denoted n0, …, nm) giving some number of 
monopoles or monopole sub-networks, i.e. f(n0, …, nm) → n

 The infinite recursion that gives the infinite series expansion of (45) means that the function 
creation process can be repeated indefinitely, and so every recursive number-theoretic function 
is realised within the scope of H(n, A, Φ) in physical terms.

This gives a physical realisation of arithmetic over the natural-numbers of n and all number theoretical 
functions within H(n, A, Φ), such that Gödel’s incompleteness proof can be constructed solely within 
the scope of H(n, A, Φ) in physically-real terms denoting monopole numbers and reactions.

 Gödel number g can be calculated for any term within H(n, A, Φ) because all number-theoretic 
functions are defined within H(n, A, Φ).

 Diagonal function D can be defined for the same reason.
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 Gödel and Rosser sentences can be expressed within the scope of H(n, A, Φ) using only terms 
contained within H(n, A, Φ).

So the theory  H(n,  A,  Φ) is proven to be mathematically incomplete using only the terms denoting 
monopoles and wave radiation in the dimensionally reduced theory. As the undecidable propositions in 
H(n, A, Φ) are also expressed within the terms of the theory, they could correspond to observables. 

This will be the case for the classical monopole theory H(n, A, Φ) because equation (30) gives both 
the Planck relation for wave radiation, and the Compton frequency of a topological monopole in the 
compactified space. The angular momentum limit of ħ gives the physical scale in equations (32, 33) for 
the two Casimir invariants of the Poincaré group (mass and spin), characterising the structure of the 
dimensionally reduced space-time. This angular momentum limit imposes the condition on the motion 
of a topological monopole that it must travel in a helical spiral around the compactified dimensions 
with the Compton frequency of equation (30). However, the classical monopole theory H(n,  A,  Φ) is 
over the dimensionally reduced space-time where the structure of the compactified dimensions is no 
longer present, and so the helical spiral motion of a monopole particle cannot be explicitly denoted 
within the scope of the theory. This gives a description problem of needing to denote both particle and 
wave motion for a topological monopole at the same time. For the purely particle description of the 
topological monopoles in the classical theory  H(n,  A,  Φ) this is not possible, and the helical wave 
motion  of  a  topological  monopole  cannot  then  be  derived  within  the  scope  of  the  dimensionally 
reduced classical theory as it crosses the classification divide between particle and wave motion.

7. Quantum Field Theory
The helical wave property of topological monopoles found in section 5 gives a scientific description 
problem as  there-exists  a  physical  property  p that  can  neither  be  predicted  from  H(n,  A,  Φ),  nor 
included in H(n, A, Φ) as it will result in an inconsistent theory with wave-particle duality. There-exists 
no  hidden  variable  that  can  be  added  to  H(n,  A,  Φ)  to  account  for  p,  as  the  problem lies  with 
incompleteness over n. Adding extra fields to A or Φ won't work as it misses the source of the problem, 
and the infinite recursion of (45) means that all possible n variables have already been considered in the 
course of the incompleteness proof. The wave property p cannot be attached to the terms in H(n, A, Φ) 
as the character of the incompleteness proof for  p means that it is a property of the infinite virtual-
monopole reaction network given by the expansion in H(n, A, Φ). This would make the wave property 
p a physical property of an infinite set that cannot be reduced to the monopole content of the set.

The replacement procedure identified in [10] to convert the incomplete theory  H(n,  A,  Φ) into a 
scientifically complete theory HC(Ψ, A, Φ) is to replace the natural-number valued terms n(xμ) for the 
countable number of monopoles with real-number valued continuous field terms  Ψ(xμ), to which the 
wave property p can be attached without causing an inconsistency or set-theoretic type conflict. This 
procedure works  because Gödel’s  incompleteness  theorems only apply to  formal  systems over  the 
natural-numbers, not over the real-numbers. As the incompleteness of H(n, A, Φ) individually applies 
to each of the 12 monopoles, the replacement Ψi(xμ) must be performed for all of them, where the spin 
charge  ħ/2 for the monopoles means that the field term  Ψi must be a relativistic spinor. The wave 
property attached to Ψi then implies that the relativistic spinor must satisfy the Dirac equation

0=Ψ−Ψ i
i

i mDiγ µ
µ       (46)

where Dμ is the covariant derivative for the geodesic transport of the corresponding discrete monopole 
in the dimensionally reduced classical theory of section 4, and mi is the monopole mass. 

As the topological monopoles are discrete objects, the second part of the replacement procedure 
[10] is the addition of an ancillary function M that converts the Ψi into the observed values ni for the 
countable number of particles of type i. The mathematical conditions of the incompleteness proof mean 
that M cannot be derived within H(n, A, Φ). If M were derivable in H(n, A, Φ) that would imply M was 
a partial  recursive number-theoretic function that also holds over the real-numbers, but as all  such 
functions can be expressed within H(n,  A,  Φ) the inverse M–1 would be derivable within H(n,  A,  Φ). 
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This inverse could then be used to reverse the replacement procedure to give an apparently consistent 
and complete theory H'(n, A, Φ) over the same terms as the incomplete theory H(n, A, Φ). But such a 
modification to an incomplete theory cannot be both consistent and complete, so the assumption that M 
was derivable in  H(n,  A,  Φ) was incorrect. The  x variation of the continuous field  Ψi description of 
some number of discrete objects must be integrated over to give ni, and the wave property of Ψi implies 
that M must be of the form ni = M(Ψi

†
 Ψi), so

ii
i gxdn ΨΨ= ∫

214 det µ ν (47)

The condition of local causality for the monopoles described by observables ni, and the binary character 
of  this  operator  provide  the  basis  for  deriving  the  spin  statistics  for  the  fermionic  fields  Ψi [38]. 
Consistency of the complete theory then requires that the same procedure be applied to the continuous 
vector gauge fields  A and scalar fields  Φ,  where the equivalent expression of (47) for these fields 
similarly provides the basis for deriving the spin statistics for these bosonic fields [38]. It is this step 
required for consistency of HC(Ψ, A, Φ) which gives the quantised gauge particles and quantised scalar 
particles in this quantum field theory.

The theory HC(Ψ, A, Φ) obtained by the replacement n→Ψ retains all the topological and geometric 
features found for the classical physics H(n, A, Φ), and so all the values ħ, θW, e, g, g', gc, λ, mZ, mW, mH 

carry over to HC(Ψ, A, Φ). The Lagrangian terms for the classical physics H(n, A, Φ) found in section 4 
carry over to give a local Lagrangian for the 12 fermions of Table 1

L = LF + LG + LS + LV (48)
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where the non-zero terms of the particle space metric Φmn for the electroweak vacuum are written as a 
representation of the SU(2)⊗U(1) symmetry
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In these terms, the quartic term of the Lagrangian gives the apparent potential term
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which for the electroweak vacuum with φ1=φ2=0 and φ3=φ4=φ is

( )( )φφφφ µµ DDLV 8
1−=    (from 27)

The masses for the W and Z bosons arise in LS from the scalar field φ=η at all spatial locations in S3, 
whereas the Higgs boson mass arises in LS from the gauge field of the instanton-like configuration (15). 
The apparent local potential term LV is not responsible for the electroweak vacuum in STUFT, where it 
instead arises from the global topology of the particle space S7 being twisted in going around the full S3 
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of the spatial universe. This global origin of the symmetry breaking makes the pursuit of unification in 
a local Lagrangian with symmetry group SU(4) and SU(3) co-sets somewhat pointless, as such a local 
theory would necessarily fail to represent the global topology of the space.

The chirality of the instanton-like configuration of (15) is only an issue for the spinor fields Ψ i 

denoting the 12 fermions of Table 1, where it will give different covariant derivative terms in (46) for 
left  and  right  chiralities  of  Ψi.  This  chirality  of  the  electroweak  vacuum  also  gives  unequal 
contributions to the fermion mass terms of  LF, as the pure gauge field gives a factor of ½Ψi in the 
covariant derivatives of the left-handed spinor fields.  This different behaviour of the left  and right 
spinor fields Ψi creates a problem in  LF as the form of the mass terms  mi varies with chirality and 
SU(2)⊗U(1) eigenvalues. The pure gauge field of the instanton-like configuration (15) gives the gauge 
variation in S3 such that the scalar field Φ of the electroweak vacuum is given by φ3=φ4=φ at all spatial 
locations x in S3 at all times in the S3×S7 phase. This means that the local Lagrangian term LF can be 
given SU(2)⊗U(1) invariance by replacing the mass terms mi with

 gi(Ψi
L

†
 Φ ψi

R + ψi
R

†
 Φ†

 Ψi
L) (49)

This term is of the form of the γ term in (40) and gives the impression that the electroweak vacuum is 
directly the source of mass for the fermions, which is not the case in STUFT. The electroweak vacuum 
is the source of the topological conditions that give fermionic monopoles, but their masses are given by 
the Hamiltonian expansion of the previous section, and this is the source of the underlying problem 
with fermion masses in (48).

The local symmetry of the classical monopole theory H(n,  A,  Φ) is (Spin(3)⊗SU(2)⊗U(1))/Z3 as 
given by (5), which will carry over to the theory HC(Ψ, A, Φ) with Lagrangian (48). The replacement 
n→Ψ giving fermionic fields denoting the classical topological monopoles in  HC(Ψ,  A,  Φ) has to be 
such that the fields Ψi are in representations of these symmetry groups. This is straightforward for 
SU(2)⊗U(1) where the fields  Ψi can  be  placed in  the fundamental  representation of  these unitary 
groups. The colour group Spin(3) has a complication, because the electroweak vacuum gives the colour 
eigenvalues of the topological monopoles as appearing to be those of SO(3), placing the fields Ψi in a 3 
dimensional representation with colours (r, g, b). If the colour group really was SO(3), then the direct 
product of these 3 dimensional representations in the Lagrangian (48) would be

53133 ⊕⊕=⊗

However, the colour group is not SO(3) but its double cover Spin(3). Whereas the group space of SO(3) 
is S3 with opposite points identified, that of Spin(3) is the full S3. For the 3 dimensional representation 
of colour (r, g, b) this means that for Spin(3) r will be distinguishable from −r etc. unlike for SO(3). In 
Lagrangian (48) the field Ψi is not just in representations of the gauge symmetry groups, but is also in a 
representation of the Poincaré symmetry group for space-time. This places the field Ψi in the spinor 
representation for spin ½ particle and anti-particle, where in the combined representation of space-time 
and Spin(3) colour, a combined red particle and red anti-particle state will be colourless r+(−r)=0. The 
fermionic Ψi fields will be in a 3 dimensional Spin(3) representation where the representation and its 
complex conjugate are distinguishable, giving the colour direct product representation in (48) as being

8133 ⊕=⊗

for a colour singlet and a colour octet. Insisting upon a unitary colour group in (48) for the fermionic 
fields, would misinterpret this form for the terms in (48) as implying that the colour group is SU(3), as  
in the Standard Model. 

The assumption that the topological monopoles of the classical physics possess a wave property p 
that cannot be derived in the mathematically incomplete theory H(n, A, Φ), gives a description problem 
that is resolved by the replacement n→Ψ leading to the quantum field theory HC(Ψ, A, Φ), but the mass 
calculation problem of H(n, A, Φ) remains. The theory HC(Ψ, A, Φ) does not resolve this problem, but 
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instead the form the Hamiltonian expansion (44) constrains the validity of the replacement n→Ψ. This 
is because the integrals of (44) are over the space-time of the Kerr metric of a compactified black hole, 
which possesses an event horizon, rotational frame-dragging and an ergo-region, none of which can be 
denoted by the continuous field  Ψi(xμ) in space-time. However, far from the compactified black hole 
space is flat and a monopole can be approximated as a point. In this far-field limit  r>>χ the point 
monopoles counted by the natural-number variable  n can be replaced with  Ψ,  and the Kerr metric 
dropped from the Hamiltonian expansion (44) to give
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This Hamiltonian expansion about a point particle is only valid in the far-field limit r>>χ, and so this 
gives the range of validity for the replacement n→Ψ that yields the quantum field theory HC(Ψ, A, Φ). 
This specifically means that  HC(Ψ,  A,  Φ) is only valid in the limit  that the gravitational effects of 
particles are negligible, and so the quantum field theory cannot be re-combined with General Relativity. 
The limits on the integrals arise in (47) from the ergo-region limit E ≤ mpc2 which will not be present in 
a theory in the far-field limit which omits the ergo-region. However, all the terms in HC(Ψ, A, Φ) are 
now waves subject to the Heisenberg uncertainty relation ΔEΔt≥½ħ, where setting the time variation to 
its minimum Δt= ½tp = ½lp/c gives ΔE ≥ cħ/lp = mpc2 by (31), which for the equality bound recovers the 
ergo-region bound of the classical physics theory. So using Heisenberg's uncertainty relation in place of 
the ergo-region constraint in the Hamiltonian expansion (50) gives a consistent quantum field theory 
for the far-field limit of |x|>>χ and for energies E<<mpc2.

The Hamiltonian expansion (50) gives the form of the path integral expansions of quantum field 
theory [38], and the rest of the standard development of a quantum field theory proceeds in exactly the 
same way here. This includes the renormalization procedure [40] to handle the recursion that gives rise 
to (50), so as to normalise the calculation to the measured masses of particles. Cut-off regularization 
will have a physical basis in this quantum field theory, as the compactification scale χ gives a physical 
small scale cut-off, and the radial scale factor a(t) of the spatial universe gives a large scale cut-off. It 
can be noted that the term (49) is required to ensure SU(2)⊗U(1) invariance of the Lagrangian (48), so 
that the theory can be renormalized. 

In this section, a quantum field theory with local gauge symmetry (Spin(3)⊗SU(2)⊗U(1))/Z3, a 
non-trivial vacuum with the eigenvalues of the electroweak vacuum, and 12 fermionic monopoles with 
the  eigenvalues  of  the  fundamental  particles  has  been  derived  from  Einstein  gravity  in  10+1 
dimensions. Plank's constant ħ was derived, the values of the coupling constants θW, e,  g, g', gc and λ 
have all been derived with the values of the Standard Model, and a scalar (Higgs) boson mass predicted 
to be given by mH = ½η [10]. The SU(3) colour group of the Standard Model has been explained as a 
misinterpretation of Spin(3) in the Lagrangian (48). The reason for the derivation of this quantum field 
theory is the mathematical incompleteness of the classical physics theory H(n, A, Φ) for the calculation 
of the mass reduction of a monopole with bare mass  mp, and this limitation still remains in that the 
fermion masses are unpredicted by this work. In addition, there are classical physics interactions of 
monopoles that are not included in the far-field limit of the quantum field theory. These include the 
SU(3)  co-set  transitions  where a  particle  changes  between co-set  family,  and so the  values  of  the 
Cabibbo-Kobayashi-Maskawa  (CKM)  and  Pontecorvo-Maki-Nakagawa-Sakata  (PMNS)  family 
transition matrices remain unpredicted. The gravitational effects of the topological monopoles are also 
not included, but can be approximated by a Newtonian potential and a spin field for the rotational 
frame-dragging. The spin field will allow spin-flip interactions for near direct collisions of classical 
physics monopoles that are not possible under the Lagrangian (48)

b
L

a
R

b
R

a
L mmmm +→+

Such interactions will have a very small collision cross-section, but because the cross-section is non-
zero, STUFT predicts that right-handed neutrinos exist [10].
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8. Cosmology
As a pure metric field theory, STUFT will be strictly invariant under the joint action of time reversal 
T(t) → –t and parity P(x) → –x for all dimensions, i.e. P10T invariant. After the topological transition 
S10 → S3×S7 and compactification, the spatial parity operator is dimensionally reduced to P3 and the 
remaining 7 parity operators become charge reversal operators C(q) → –q, such that P10T invariance 
becomes  global  C7P3T invariance.  However,  the  electroweak  vacuum breaks  the  symmetry of  the 
electroweak base-space, leaving the colour and electromagnetic symmetries intact to give local C4P3T 
invariance  for  these  charges,  but  local  C3 and  P3 violation  for  isospin  charges.  This  discrepancy 
between global and local invariance arises because the global operation of C7P3T reverses the chirality 
of the electroweak vacuum (L→R) and the time development of the whole cosmology, whereas the 
local operators  C3 and  P3 reverse the isospin charge and chirality of a particle,  but not that of the 
electroweak vacuum. Similarly the local time reversal operator T will change a monopole into an anti-
monopole, but not reverse the time development of the universe, and this implies local T violation. As 
the positive energy of matter is associated with temporal translation in the positive time direction, and 
the negative energy of anti-matter with temporal translation in the negative time direction, the positive 
time bias of an expanding cosmology implies a T violation bias in favour of matter over anti-matter  
[10]. This origin for local T violation implies that the extent of T violation will be correlated with the 
expansion rate da(t)/dt>0 of the S3 universe, and so will be low in the current epoch, but would have 
been higher in the inflationary epoch and its immediate aftermath when the monopoles formed.

This matter bias for an expanding cosmology predicts a net matter content for the STUFT universe, 
but this slight bias would be expected to be dominated by those monopoles and anti-monopoles which 
wouldn't  have  annihilated  to  radiation.  The  predicted  non-zero  mass  of  the  neutrino-like  electric 
monopoles gives a form of hot dark matter that would largely retain its primordial distribution of both 
matter and anti-matter, as neutrinos are so weakly interacting as not to have annihilated. In addition, the 
magnetic duals of electric neutrinos would be expected to be of a higher mass and so possibly give a 
form of cold dark matter, where again the weakness of their interactions could be expected to have left 
a distribution of both monopoles and anti-monopoles.

In STUFT, monopole/anti-monopole annihilation is  to  a neutral  black hole with a compactified 
surface that then emits its mass as radiation, which implies that the time taken for annihilation will be  
related to monopole mass. The relation between electric and magnetic charges in the Dirac quantisation 
condition, and the correlation between monopole charge and mass, implies that magnetic monopoles 
would be expected to have a much greater mass than their electromagnetic duals. This implies that 
magnetic monopoles would have frozen out before the electric monopoles in the early universe of the 
S3×S7 phase, and their annihilation time-scale is much longer than that of the electric monopoles. Under 
the conditions of high temperature and density in the early STUFT universe, there can exist a magnetic 
monopole mass above which the annihilation time-scale is such that the resulting neutral black hole 
acquires in-falling energy faster than it is emitted as radiation, and so grows. This would be the most 
significant  form  of  mass  perturbation  in  the  early  STUFT universe.  It  should  be  noted  that  the 
derivation of quantum field theory in section 7 was for the far-field limit of negligible spatial curvature, 
and so the application of quantum field theory in the vicinity of black holes and the high curvature of 
the  early  STUFT universe  might  not  be  entirely  valid.  Some  of  these  primordial  black  holes  of 
monopole/anti-monopole origin could have persisted and continued to grow. The super-massive black 
holes at the centres of galaxies would seem to indicate a potential role for such primordial black holes  
of magnetic monopole origin in the formation of galaxies. An estimation of the magnetic monopole 
masses in STUFT would be required to determine whether it does give such primordial black holes. If 
there is a distribution of macroscopic primordial black holes resulting from magnetic monopole/anti-
monopole annihilation, they would also give a cold dark matter contribution.

The multi-stage sphere decomposition pattern of STUFT would have occurred as the early universe 
expanded, and the sequence would explain the pattern of intersection for the running coupling constants 

S10 →CI  S3×S7 →CF S3×(S3×S4) →BS S3×(S3×(S3×S1)) →EW S3×(S3×S1)
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CI is the de-unification transition that starts the compactification-inflation see-saw driven by radiation 
transfer from S7 to S3 and gives the non-trivial vacuum winding of S7 around S3. The CF transition 
marks the colour-fibre separation from the particle space S7 and corresponds to the intersection point of 
the isospin coupling  g and the colour coupling  gc. The BS transition marks the separation of the S4 

electroweak base-space into S3 and S1, corresponding to the intersection point of the isospin coupling g 
and hypercharge coupling g'. The electroweak transition EW is then just a dynamic transition when the 
energy level drops below the electroweak energy scale η.

The closed universe S3 will expand up to some maximum radius and then contract back down again 
as the see-saw process of section 3 runs in reverse. As the two scales a(t) and χ(t) become comparable 
again the above sphere sequence would be reversed, ending in the initial transition being reversed with 
the restoration of the unified S10  phase. This gives the pattern of a cyclical universe, which then raises 
concerns about continuously increasing entropy with each cycle. However, these concerns are covered 
by the conclusion of section 3 that the definition of entropy is specific to the number of dimensions. So 
any closed  cycle  that  crosses  a  dimensional  reduction  will  encounter  an  entropy anomaly  as  the 
definition of entropy changes. For a black hole the entropy goes from S3 for matter falling into a black 
hole, to S2 for metric waves in the surface of the black hole, and back to S3 when the energy is emitted 
as radiation.  Attempting to directly compare the entropies  S3 and  S2 will  give an apparent  entropy 
anomaly because the comparison is not like with like. When matter falls into a black hole and is re-
emitted as radiation, the radius of the black hole remains the same and so the S2 entropy is unchanged. 
Outside  of  the  black  hole  the  conversion  of  matter  to  radiation  increases  the  S3 entropy as  to  be 
expected by the laws of thermodynamics. So there is no entropy problem with this closed cycle as long 
as the entropies in the different numbers of dimensions are not directly compared against each other. A 
similar  situation arises for a cyclical universe between the  S10 entropy in the S10 phase and the  S3 

entropy of the S3×S7 phase. In this case, the increase in S3 entropy during the expansion and contraction 
of the universe requires the transition back to S10 to occur at a larger radius than that of the initial 
transition so as to give the same S10 entropy density in the unified S10 phase. Under these conditions 
there would be no entropy problem with a cyclical universe.

9. Discussion
The incompleteness proof of section 6 and derivation of quantum field theory in section 7 on the basis 
of the wave property being undecidable in the classical physics is a significant result, as it undermines 
the physical justification for matter fields. With the compactification of particle dimensions and the 
spatial inflation of the universe being powered by a radiation transfer mechanism in section 3, the 
physical justification for inflaton fields is also questionable. This then makes the addition of symmetry 
breaking fields in a field theory appear somewhat arbitrary. Without a convincing physical basis for 
matter  fields  being  fundamental  and  arbitrary  fields  being  of  questionable  physicality,  this  leaves 
geometric field theories in classical physics as being a primary route to the unification of physics. The 
assumptions of closure and physicality for the “fabric of space” of a metric field theory give a different 
path to symmetry breaking and particles, where the symmetry breaking is by a topological transition 
that gives a non-trivial winding of the space, such that monopoles arise as stable topological defects. 

Although in general there will exist a range of metric-field theories displaying these characteristics, 
STUFT appears to possess an underlying mathematical structure that identifies it as being unique. This 
is because the closure condition in 10+1 dimensions leads to STUFT being characterised by the closed 
spaces S0, S1, S3  and S7 in the 4 normed division algebras. The closure of space in Einstein gravity 
means that the spatial expansion will be reversed, and the transition S10 → S3×S7 reversed S3×S7 → S10 

restoring  the  initial  space,  which  necessarily  gives  a  cosmology that  is  cyclical  in  time  (S 1).  The 
transition leads to topological monopoles and anti-monopoles which are characterised by S0 = {–1, 1}, 
and this  gives a realisation of all  4 spheres.  Furthermore,  the helical  wave property found for the 
topological monopoles in section 5 means that they in representations associated with all 4 spheres:

 S0: monopoles and anti-monopoles
 S1: helical waves
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 S3: representations of the rotation group with group manifold S3, i.e. spin
 S7: representations of the group quotient SU(4)/SU(3) ≅  S7, i.e. Table 1

As there are only 4 normed division algebras, the 4 spheres S0, S1, S3 and S7 are uniquely defined and 
only realised for unification of spatial and particle dimensions in a geometric theory with the topology 
of STUFT. These characteristics uniquely identify STUFT as being the only geometric field theory that 
yields a quantum field theory for 12 fermionic monopoles with the eigenvalues of the fundamental 
particles [10]. 

The difference between the Spin(3) colour group of STUFT and the SU(3) of the Standard Model 
was explained in section 7 as a misinterpretation of the fermionic field representation in the Standard 
Model. The Spin(3) coloured monopoles were shown in section 2 to possess the required 1/3 electric 
charges of the quarks, and so the topological monopoles of STUFT correspond to the known fermionic 
particles. It can also be noted that the vacuum eigenvalues (0,–½,1) gives the Standard Model colour 
angle θQCD=0, without the additional assumptions required for colour group SU(3). The Spin(3) colour 
group is related to the cosmological difficulty of the closed spatial universe of STUFT, whereas the 
current evidence appears to point to an open universe. The issue is that the closure of the universe is the 
direct reason for the chiral vacuum with the characteristics of the electroweak vacuum, which then 
gives  the  topological  conditions  for  the  12  topological  monopoles  of  Table  1.  This  means  that  in 
STUFT, the existence of fermionic matter is directly linked to the universe being closed S3. The closure 
of  the universe also underlies  the compactification-inflation see-saw of section 3,  which is  further 
dependent upon the physicality assumption of the “fabric of space”. This physicality assumption also 
gives the basis for identifying the group spaces of the symmetry groups Spin(3), SU(2) and U(1) with 
the physical particle spaces S3, S3 and S1, where the closed formulae for the coupling constants and 
boson masses were derived on the basis of this identification. This directly links the S3 fibre of the S7 

particle space with the group space of the colour group in STUFT, and so the colour group can only be 
Spin(3) unless the physicality assumption is dropped. However, if the physical assumption is dropped 
then all the other results of STUFT are lost. 

STUFT successfully derives closed formulae for θW, ħ, e,  g,  g',  λ, mZ,  mW,  mH in classical physics, 
where the values given by these formulae for a compactification scale of the Planck length are to within 
1-2% of experimental values (see Appendix A). This is despite the discrepancy in physical units which 
arises for the occurrence of dimensional compactification in a relativistic theory, as the definitions of 
some physical quantities are dependent upon the number of dimensions of the space in which they are 
defined. Even in the classical physics, it would be expected for these formulae to be modified because 
their derivation ignores any distortion to the S7 particle space due to the non-trivial vacuum structure. 
All these classical values would be further expected to be subject to quantum corrections, which would 
be the explanation sought for the experimental up-down quark mass reversal relative to the simple 
heuristic classical physics argument in section 6. The calculation of the masses of both the electric and 
magnetic monopoles is the significant outstanding issue in the development of STUFT, and whether 
they are actually calculable in the classical physics. To the geometrical success of STUFT in deriving 
the parameters of the bosonic sector of electroweak theory, must be added the topological success in the 
fermionc sector  of  deriving  the topological  charges  of  the fermions.  This  specifically includes  the 
derivation of 3 particle families. It seems difficult to square this level of predictive success with the  
local colour group not really being Spin(3) and the universe apparently not being closed.

A final point to note is that the principle of maximal symmetry would select the Ricci scalar for the 
action for 10+1 dimensional Einstein action, where the topology of STUFT is the same whatever the 
curvature terms. It should be noted that the derivations of section 5 require the dimensionally reduced 
gravitational action to be that of General Relativity based upon the Ricci scalar, and this may limit the 
possible form of the curvature terms in the 10+1 dimensional action to the corresponding Ricci scalar.
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Appendix A
The expression for the radius χ of the event horizon for a topological monopole of the Planck mass mp 

(29) can be used to give an expression for the energy density ρ7 of the compactified surface S2×S7:
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The non-trivial electroweak vacuum is given by the manifold S3×(S3×S4) of the cosmology, where the 
symmetry of the S7 particle space is broken to S3×S4, and both spheres would be compactified to radius 
χ. The total mass mη of the electroweak vacuum for the S3 cosmology can be expressed in terms of the 
mass density ρ3,4 of the particle dimensions S3×S4 as:
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Since all 3 particle spheres S3, S4 and S7 have the same radius χ, the mass density ρ3,4 can be related to 
the mass density ρ7 through the areas of the spheres.
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The measurable radius of the S3 cosmology will be denoted as Rχ, where the physical unit of distance 
measurement in the space S3×S7 is  χ. This gives the ratio of the areas of the S3 cosmology and S2 

topological monopole as being:
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In a local theory, the energy scale η of the cosmological electroweak configuration will be given by:
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For the values χ = lp = 1.616199×10−35 m and mp = 1.220932×1019 GeV/c2 this gives the energy scale as 
being η=246.0701 GeV/c2, which agrees with that of the Standard Model [36]. Using this expression 
for the electroweak vacuum gives the W and Z field masses to be:
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which compare well with the current values for the W and Z boson masses in the Standard Model [36]:

mW = 80.385 GeV/c2 mZ = 91.1876 GeV/c2 

The electroweak vacuum value of (51) gives the predicted scalar field mass (26) as being [10, 41]:

mH = ½η = 123.035 GeV/c2 

which compares well with the current experimental range of mH = 125.3-126 GeV/c2 [42, 43].
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